A review on system and materials for aqueous flexible metal–air batteries
Abstract The exploration of aqueous flexible metal–air batteries with high energy density and durability has attracted many research efforts with the demand for portable and wearable electronic devices. Aqueous flexible metal–air batteries feature Earth‐abundant materials, environmental friendliness...
Ausführliche Beschreibung
Autor*in: |
Lixue Jiang [verfasserIn] Xiaoxuan Luo [verfasserIn] Da‐Wei Wang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Carbon Energy - Wiley, 2020, 5(2023), 3, Seite n/a-n/a |
---|---|
Übergeordnetes Werk: |
volume:5 ; year:2023 ; number:3 ; pages:n/a-n/a |
Links: |
---|
DOI / URN: |
10.1002/cey2.284 |
---|
Katalog-ID: |
DOAJ087601885 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ087601885 | ||
003 | DE-627 | ||
005 | 20230331015550.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230331s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1002/cey2.284 |2 doi | |
035 | |a (DE-627)DOAJ087601885 | ||
035 | |a (DE-599)DOAJe3fc1a1de92c42a89d2e1a8f6dfa14a7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1001-1841 | |
100 | 0 | |a Lixue Jiang |e verfasserin |4 aut | |
245 | 1 | 2 | |a A review on system and materials for aqueous flexible metal–air batteries |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract The exploration of aqueous flexible metal–air batteries with high energy density and durability has attracted many research efforts with the demand for portable and wearable electronic devices. Aqueous flexible metal–air batteries feature Earth‐abundant materials, environmental friendliness, and operational safety. Each part of one metal–air battery can significantly affect the overall performance. This review starts with the fundamental working principles and the basic battery configurations and then highlights on the common issues and the recent advances in designing high‐performance metal electrodes, solid‐state electrolytes, and air electrodes. Bifunctional oxygen electrocatalysts with high activity and long‐term stability for constructing efficient air electrodes in flexible metal–air batteries are summarized including metal‐free carbon‐based materials and nonprecious Co/Fe‐based materials (alloys, metal oxides, metal sulfites, metal phosphates, metal nitrates, single‐site metal–nitrogen–carbon materials, and composites). Finally, a perspective is provided on the existing challenges and possible future research directions in optimizing the performance and lifetime of the flexible aqueous solid‐state metal–air batteries. | ||
650 | 4 | |a activity | |
650 | 4 | |a air electrodes | |
650 | 4 | |a flexible metal–air batteries | |
650 | 4 | |a oxygen electrocatalysts | |
650 | 4 | |a solid‐state electrolytes | |
650 | 4 | |a stability | |
653 | 0 | |a Production of electric energy or power. Powerplants. Central stations | |
700 | 0 | |a Xiaoxuan Luo |e verfasserin |4 aut | |
700 | 0 | |a Da‐Wei Wang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Carbon Energy |d Wiley, 2020 |g 5(2023), 3, Seite n/a-n/a |w (DE-627)1691003859 |w (DE-600)3009616-9 |x 26379368 |7 nnns |
773 | 1 | 8 | |g volume:5 |g year:2023 |g number:3 |g pages:n/a-n/a |
856 | 4 | 0 | |u https://doi.org/10.1002/cey2.284 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/e3fc1a1de92c42a89d2e1a8f6dfa14a7 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1002/cey2.284 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2637-9368 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 5 |j 2023 |e 3 |h n/a-n/a |
author_variant |
l j lj x l xl d w dw |
---|---|
matchkey_str |
article:26379368:2023----::rveosseadaeilfrqeufeil |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TK |
publishDate |
2023 |
allfields |
10.1002/cey2.284 doi (DE-627)DOAJ087601885 (DE-599)DOAJe3fc1a1de92c42a89d2e1a8f6dfa14a7 DE-627 ger DE-627 rakwb eng TK1001-1841 Lixue Jiang verfasserin aut A review on system and materials for aqueous flexible metal–air batteries 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The exploration of aqueous flexible metal–air batteries with high energy density and durability has attracted many research efforts with the demand for portable and wearable electronic devices. Aqueous flexible metal–air batteries feature Earth‐abundant materials, environmental friendliness, and operational safety. Each part of one metal–air battery can significantly affect the overall performance. This review starts with the fundamental working principles and the basic battery configurations and then highlights on the common issues and the recent advances in designing high‐performance metal electrodes, solid‐state electrolytes, and air electrodes. Bifunctional oxygen electrocatalysts with high activity and long‐term stability for constructing efficient air electrodes in flexible metal–air batteries are summarized including metal‐free carbon‐based materials and nonprecious Co/Fe‐based materials (alloys, metal oxides, metal sulfites, metal phosphates, metal nitrates, single‐site metal–nitrogen–carbon materials, and composites). Finally, a perspective is provided on the existing challenges and possible future research directions in optimizing the performance and lifetime of the flexible aqueous solid‐state metal–air batteries. activity air electrodes flexible metal–air batteries oxygen electrocatalysts solid‐state electrolytes stability Production of electric energy or power. Powerplants. Central stations Xiaoxuan Luo verfasserin aut Da‐Wei Wang verfasserin aut In Carbon Energy Wiley, 2020 5(2023), 3, Seite n/a-n/a (DE-627)1691003859 (DE-600)3009616-9 26379368 nnns volume:5 year:2023 number:3 pages:n/a-n/a https://doi.org/10.1002/cey2.284 kostenfrei https://doaj.org/article/e3fc1a1de92c42a89d2e1a8f6dfa14a7 kostenfrei https://doi.org/10.1002/cey2.284 kostenfrei https://doaj.org/toc/2637-9368 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2023 3 n/a-n/a |
spelling |
10.1002/cey2.284 doi (DE-627)DOAJ087601885 (DE-599)DOAJe3fc1a1de92c42a89d2e1a8f6dfa14a7 DE-627 ger DE-627 rakwb eng TK1001-1841 Lixue Jiang verfasserin aut A review on system and materials for aqueous flexible metal–air batteries 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The exploration of aqueous flexible metal–air batteries with high energy density and durability has attracted many research efforts with the demand for portable and wearable electronic devices. Aqueous flexible metal–air batteries feature Earth‐abundant materials, environmental friendliness, and operational safety. Each part of one metal–air battery can significantly affect the overall performance. This review starts with the fundamental working principles and the basic battery configurations and then highlights on the common issues and the recent advances in designing high‐performance metal electrodes, solid‐state electrolytes, and air electrodes. Bifunctional oxygen electrocatalysts with high activity and long‐term stability for constructing efficient air electrodes in flexible metal–air batteries are summarized including metal‐free carbon‐based materials and nonprecious Co/Fe‐based materials (alloys, metal oxides, metal sulfites, metal phosphates, metal nitrates, single‐site metal–nitrogen–carbon materials, and composites). Finally, a perspective is provided on the existing challenges and possible future research directions in optimizing the performance and lifetime of the flexible aqueous solid‐state metal–air batteries. activity air electrodes flexible metal–air batteries oxygen electrocatalysts solid‐state electrolytes stability Production of electric energy or power. Powerplants. Central stations Xiaoxuan Luo verfasserin aut Da‐Wei Wang verfasserin aut In Carbon Energy Wiley, 2020 5(2023), 3, Seite n/a-n/a (DE-627)1691003859 (DE-600)3009616-9 26379368 nnns volume:5 year:2023 number:3 pages:n/a-n/a https://doi.org/10.1002/cey2.284 kostenfrei https://doaj.org/article/e3fc1a1de92c42a89d2e1a8f6dfa14a7 kostenfrei https://doi.org/10.1002/cey2.284 kostenfrei https://doaj.org/toc/2637-9368 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2023 3 n/a-n/a |
allfields_unstemmed |
10.1002/cey2.284 doi (DE-627)DOAJ087601885 (DE-599)DOAJe3fc1a1de92c42a89d2e1a8f6dfa14a7 DE-627 ger DE-627 rakwb eng TK1001-1841 Lixue Jiang verfasserin aut A review on system and materials for aqueous flexible metal–air batteries 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The exploration of aqueous flexible metal–air batteries with high energy density and durability has attracted many research efforts with the demand for portable and wearable electronic devices. Aqueous flexible metal–air batteries feature Earth‐abundant materials, environmental friendliness, and operational safety. Each part of one metal–air battery can significantly affect the overall performance. This review starts with the fundamental working principles and the basic battery configurations and then highlights on the common issues and the recent advances in designing high‐performance metal electrodes, solid‐state electrolytes, and air electrodes. Bifunctional oxygen electrocatalysts with high activity and long‐term stability for constructing efficient air electrodes in flexible metal–air batteries are summarized including metal‐free carbon‐based materials and nonprecious Co/Fe‐based materials (alloys, metal oxides, metal sulfites, metal phosphates, metal nitrates, single‐site metal–nitrogen–carbon materials, and composites). Finally, a perspective is provided on the existing challenges and possible future research directions in optimizing the performance and lifetime of the flexible aqueous solid‐state metal–air batteries. activity air electrodes flexible metal–air batteries oxygen electrocatalysts solid‐state electrolytes stability Production of electric energy or power. Powerplants. Central stations Xiaoxuan Luo verfasserin aut Da‐Wei Wang verfasserin aut In Carbon Energy Wiley, 2020 5(2023), 3, Seite n/a-n/a (DE-627)1691003859 (DE-600)3009616-9 26379368 nnns volume:5 year:2023 number:3 pages:n/a-n/a https://doi.org/10.1002/cey2.284 kostenfrei https://doaj.org/article/e3fc1a1de92c42a89d2e1a8f6dfa14a7 kostenfrei https://doi.org/10.1002/cey2.284 kostenfrei https://doaj.org/toc/2637-9368 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2023 3 n/a-n/a |
allfieldsGer |
10.1002/cey2.284 doi (DE-627)DOAJ087601885 (DE-599)DOAJe3fc1a1de92c42a89d2e1a8f6dfa14a7 DE-627 ger DE-627 rakwb eng TK1001-1841 Lixue Jiang verfasserin aut A review on system and materials for aqueous flexible metal–air batteries 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The exploration of aqueous flexible metal–air batteries with high energy density and durability has attracted many research efforts with the demand for portable and wearable electronic devices. Aqueous flexible metal–air batteries feature Earth‐abundant materials, environmental friendliness, and operational safety. Each part of one metal–air battery can significantly affect the overall performance. This review starts with the fundamental working principles and the basic battery configurations and then highlights on the common issues and the recent advances in designing high‐performance metal electrodes, solid‐state electrolytes, and air electrodes. Bifunctional oxygen electrocatalysts with high activity and long‐term stability for constructing efficient air electrodes in flexible metal–air batteries are summarized including metal‐free carbon‐based materials and nonprecious Co/Fe‐based materials (alloys, metal oxides, metal sulfites, metal phosphates, metal nitrates, single‐site metal–nitrogen–carbon materials, and composites). Finally, a perspective is provided on the existing challenges and possible future research directions in optimizing the performance and lifetime of the flexible aqueous solid‐state metal–air batteries. activity air electrodes flexible metal–air batteries oxygen electrocatalysts solid‐state electrolytes stability Production of electric energy or power. Powerplants. Central stations Xiaoxuan Luo verfasserin aut Da‐Wei Wang verfasserin aut In Carbon Energy Wiley, 2020 5(2023), 3, Seite n/a-n/a (DE-627)1691003859 (DE-600)3009616-9 26379368 nnns volume:5 year:2023 number:3 pages:n/a-n/a https://doi.org/10.1002/cey2.284 kostenfrei https://doaj.org/article/e3fc1a1de92c42a89d2e1a8f6dfa14a7 kostenfrei https://doi.org/10.1002/cey2.284 kostenfrei https://doaj.org/toc/2637-9368 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2023 3 n/a-n/a |
allfieldsSound |
10.1002/cey2.284 doi (DE-627)DOAJ087601885 (DE-599)DOAJe3fc1a1de92c42a89d2e1a8f6dfa14a7 DE-627 ger DE-627 rakwb eng TK1001-1841 Lixue Jiang verfasserin aut A review on system and materials for aqueous flexible metal–air batteries 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The exploration of aqueous flexible metal–air batteries with high energy density and durability has attracted many research efforts with the demand for portable and wearable electronic devices. Aqueous flexible metal–air batteries feature Earth‐abundant materials, environmental friendliness, and operational safety. Each part of one metal–air battery can significantly affect the overall performance. This review starts with the fundamental working principles and the basic battery configurations and then highlights on the common issues and the recent advances in designing high‐performance metal electrodes, solid‐state electrolytes, and air electrodes. Bifunctional oxygen electrocatalysts with high activity and long‐term stability for constructing efficient air electrodes in flexible metal–air batteries are summarized including metal‐free carbon‐based materials and nonprecious Co/Fe‐based materials (alloys, metal oxides, metal sulfites, metal phosphates, metal nitrates, single‐site metal–nitrogen–carbon materials, and composites). Finally, a perspective is provided on the existing challenges and possible future research directions in optimizing the performance and lifetime of the flexible aqueous solid‐state metal–air batteries. activity air electrodes flexible metal–air batteries oxygen electrocatalysts solid‐state electrolytes stability Production of electric energy or power. Powerplants. Central stations Xiaoxuan Luo verfasserin aut Da‐Wei Wang verfasserin aut In Carbon Energy Wiley, 2020 5(2023), 3, Seite n/a-n/a (DE-627)1691003859 (DE-600)3009616-9 26379368 nnns volume:5 year:2023 number:3 pages:n/a-n/a https://doi.org/10.1002/cey2.284 kostenfrei https://doaj.org/article/e3fc1a1de92c42a89d2e1a8f6dfa14a7 kostenfrei https://doi.org/10.1002/cey2.284 kostenfrei https://doaj.org/toc/2637-9368 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2023 3 n/a-n/a |
language |
English |
source |
In Carbon Energy 5(2023), 3, Seite n/a-n/a volume:5 year:2023 number:3 pages:n/a-n/a |
sourceStr |
In Carbon Energy 5(2023), 3, Seite n/a-n/a volume:5 year:2023 number:3 pages:n/a-n/a |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
activity air electrodes flexible metal–air batteries oxygen electrocatalysts solid‐state electrolytes stability Production of electric energy or power. Powerplants. Central stations |
isfreeaccess_bool |
true |
container_title |
Carbon Energy |
authorswithroles_txt_mv |
Lixue Jiang @@aut@@ Xiaoxuan Luo @@aut@@ Da‐Wei Wang @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
1691003859 |
id |
DOAJ087601885 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ087601885</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331015550.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230331s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/cey2.284</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ087601885</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe3fc1a1de92c42a89d2e1a8f6dfa14a7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1001-1841</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Lixue Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A review on system and materials for aqueous flexible metal–air batteries</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The exploration of aqueous flexible metal–air batteries with high energy density and durability has attracted many research efforts with the demand for portable and wearable electronic devices. Aqueous flexible metal–air batteries feature Earth‐abundant materials, environmental friendliness, and operational safety. Each part of one metal–air battery can significantly affect the overall performance. This review starts with the fundamental working principles and the basic battery configurations and then highlights on the common issues and the recent advances in designing high‐performance metal electrodes, solid‐state electrolytes, and air electrodes. Bifunctional oxygen electrocatalysts with high activity and long‐term stability for constructing efficient air electrodes in flexible metal–air batteries are summarized including metal‐free carbon‐based materials and nonprecious Co/Fe‐based materials (alloys, metal oxides, metal sulfites, metal phosphates, metal nitrates, single‐site metal–nitrogen–carbon materials, and composites). Finally, a perspective is provided on the existing challenges and possible future research directions in optimizing the performance and lifetime of the flexible aqueous solid‐state metal–air batteries.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">activity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">air electrodes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flexible metal–air batteries</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">oxygen electrocatalysts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">solid‐state electrolytes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stability</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Production of electric energy or power. Powerplants. Central stations</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaoxuan Luo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Da‐Wei Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Carbon Energy</subfield><subfield code="d">Wiley, 2020</subfield><subfield code="g">5(2023), 3, Seite n/a-n/a</subfield><subfield code="w">(DE-627)1691003859</subfield><subfield code="w">(DE-600)3009616-9</subfield><subfield code="x">26379368</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:n/a-n/a</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/cey2.284</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e3fc1a1de92c42a89d2e1a8f6dfa14a7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/cey2.284</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2637-9368</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2023</subfield><subfield code="e">3</subfield><subfield code="h">n/a-n/a</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Lixue Jiang |
spellingShingle |
Lixue Jiang misc TK1001-1841 misc activity misc air electrodes misc flexible metal–air batteries misc oxygen electrocatalysts misc solid‐state electrolytes misc stability misc Production of electric energy or power. Powerplants. Central stations A review on system and materials for aqueous flexible metal–air batteries |
authorStr |
Lixue Jiang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1691003859 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1001-1841 |
illustrated |
Not Illustrated |
issn |
26379368 |
topic_title |
TK1001-1841 A review on system and materials for aqueous flexible metal–air batteries activity air electrodes flexible metal–air batteries oxygen electrocatalysts solid‐state electrolytes stability |
topic |
misc TK1001-1841 misc activity misc air electrodes misc flexible metal–air batteries misc oxygen electrocatalysts misc solid‐state electrolytes misc stability misc Production of electric energy or power. Powerplants. Central stations |
topic_unstemmed |
misc TK1001-1841 misc activity misc air electrodes misc flexible metal–air batteries misc oxygen electrocatalysts misc solid‐state electrolytes misc stability misc Production of electric energy or power. Powerplants. Central stations |
topic_browse |
misc TK1001-1841 misc activity misc air electrodes misc flexible metal–air batteries misc oxygen electrocatalysts misc solid‐state electrolytes misc stability misc Production of electric energy or power. Powerplants. Central stations |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Carbon Energy |
hierarchy_parent_id |
1691003859 |
hierarchy_top_title |
Carbon Energy |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1691003859 (DE-600)3009616-9 |
title |
A review on system and materials for aqueous flexible metal–air batteries |
ctrlnum |
(DE-627)DOAJ087601885 (DE-599)DOAJe3fc1a1de92c42a89d2e1a8f6dfa14a7 |
title_full |
A review on system and materials for aqueous flexible metal–air batteries |
author_sort |
Lixue Jiang |
journal |
Carbon Energy |
journalStr |
Carbon Energy |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Lixue Jiang Xiaoxuan Luo Da‐Wei Wang |
container_volume |
5 |
class |
TK1001-1841 |
format_se |
Elektronische Aufsätze |
author-letter |
Lixue Jiang |
doi_str_mv |
10.1002/cey2.284 |
author2-role |
verfasserin |
title_sort |
review on system and materials for aqueous flexible metal–air batteries |
callnumber |
TK1001-1841 |
title_auth |
A review on system and materials for aqueous flexible metal–air batteries |
abstract |
Abstract The exploration of aqueous flexible metal–air batteries with high energy density and durability has attracted many research efforts with the demand for portable and wearable electronic devices. Aqueous flexible metal–air batteries feature Earth‐abundant materials, environmental friendliness, and operational safety. Each part of one metal–air battery can significantly affect the overall performance. This review starts with the fundamental working principles and the basic battery configurations and then highlights on the common issues and the recent advances in designing high‐performance metal electrodes, solid‐state electrolytes, and air electrodes. Bifunctional oxygen electrocatalysts with high activity and long‐term stability for constructing efficient air electrodes in flexible metal–air batteries are summarized including metal‐free carbon‐based materials and nonprecious Co/Fe‐based materials (alloys, metal oxides, metal sulfites, metal phosphates, metal nitrates, single‐site metal–nitrogen–carbon materials, and composites). Finally, a perspective is provided on the existing challenges and possible future research directions in optimizing the performance and lifetime of the flexible aqueous solid‐state metal–air batteries. |
abstractGer |
Abstract The exploration of aqueous flexible metal–air batteries with high energy density and durability has attracted many research efforts with the demand for portable and wearable electronic devices. Aqueous flexible metal–air batteries feature Earth‐abundant materials, environmental friendliness, and operational safety. Each part of one metal–air battery can significantly affect the overall performance. This review starts with the fundamental working principles and the basic battery configurations and then highlights on the common issues and the recent advances in designing high‐performance metal electrodes, solid‐state electrolytes, and air electrodes. Bifunctional oxygen electrocatalysts with high activity and long‐term stability for constructing efficient air electrodes in flexible metal–air batteries are summarized including metal‐free carbon‐based materials and nonprecious Co/Fe‐based materials (alloys, metal oxides, metal sulfites, metal phosphates, metal nitrates, single‐site metal–nitrogen–carbon materials, and composites). Finally, a perspective is provided on the existing challenges and possible future research directions in optimizing the performance and lifetime of the flexible aqueous solid‐state metal–air batteries. |
abstract_unstemmed |
Abstract The exploration of aqueous flexible metal–air batteries with high energy density and durability has attracted many research efforts with the demand for portable and wearable electronic devices. Aqueous flexible metal–air batteries feature Earth‐abundant materials, environmental friendliness, and operational safety. Each part of one metal–air battery can significantly affect the overall performance. This review starts with the fundamental working principles and the basic battery configurations and then highlights on the common issues and the recent advances in designing high‐performance metal electrodes, solid‐state electrolytes, and air electrodes. Bifunctional oxygen electrocatalysts with high activity and long‐term stability for constructing efficient air electrodes in flexible metal–air batteries are summarized including metal‐free carbon‐based materials and nonprecious Co/Fe‐based materials (alloys, metal oxides, metal sulfites, metal phosphates, metal nitrates, single‐site metal–nitrogen–carbon materials, and composites). Finally, a perspective is provided on the existing challenges and possible future research directions in optimizing the performance and lifetime of the flexible aqueous solid‐state metal–air batteries. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3 |
title_short |
A review on system and materials for aqueous flexible metal–air batteries |
url |
https://doi.org/10.1002/cey2.284 https://doaj.org/article/e3fc1a1de92c42a89d2e1a8f6dfa14a7 https://doaj.org/toc/2637-9368 |
remote_bool |
true |
author2 |
Xiaoxuan Luo Da‐Wei Wang |
author2Str |
Xiaoxuan Luo Da‐Wei Wang |
ppnlink |
1691003859 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1002/cey2.284 |
callnumber-a |
TK1001-1841 |
up_date |
2024-07-04T02:19:53.663Z |
_version_ |
1803613208488968192 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ087601885</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331015550.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230331s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/cey2.284</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ087601885</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe3fc1a1de92c42a89d2e1a8f6dfa14a7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1001-1841</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Lixue Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A review on system and materials for aqueous flexible metal–air batteries</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The exploration of aqueous flexible metal–air batteries with high energy density and durability has attracted many research efforts with the demand for portable and wearable electronic devices. Aqueous flexible metal–air batteries feature Earth‐abundant materials, environmental friendliness, and operational safety. Each part of one metal–air battery can significantly affect the overall performance. This review starts with the fundamental working principles and the basic battery configurations and then highlights on the common issues and the recent advances in designing high‐performance metal electrodes, solid‐state electrolytes, and air electrodes. Bifunctional oxygen electrocatalysts with high activity and long‐term stability for constructing efficient air electrodes in flexible metal–air batteries are summarized including metal‐free carbon‐based materials and nonprecious Co/Fe‐based materials (alloys, metal oxides, metal sulfites, metal phosphates, metal nitrates, single‐site metal–nitrogen–carbon materials, and composites). Finally, a perspective is provided on the existing challenges and possible future research directions in optimizing the performance and lifetime of the flexible aqueous solid‐state metal–air batteries.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">activity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">air electrodes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flexible metal–air batteries</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">oxygen electrocatalysts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">solid‐state electrolytes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stability</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Production of electric energy or power. Powerplants. Central stations</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaoxuan Luo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Da‐Wei Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Carbon Energy</subfield><subfield code="d">Wiley, 2020</subfield><subfield code="g">5(2023), 3, Seite n/a-n/a</subfield><subfield code="w">(DE-627)1691003859</subfield><subfield code="w">(DE-600)3009616-9</subfield><subfield code="x">26379368</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:n/a-n/a</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/cey2.284</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e3fc1a1de92c42a89d2e1a8f6dfa14a7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/cey2.284</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2637-9368</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2023</subfield><subfield code="e">3</subfield><subfield code="h">n/a-n/a</subfield></datafield></record></collection>
|
score |
7.4022093 |