Single-pixel optical sensing architecture for compressive hyperspectral imaging
Compressive hyperspectral imaging systems (CSI) capture the threedimensional (3D) information of a scene by measuring two-dimensional (2D) coded projections in a Focal Plane Array (FPA). These projections are then exploited by means of an optimization algorithm to obtain an estimation of the underly...
Ausführliche Beschreibung
Autor*in: |
Hoover Fabián Rueda-Chacón [verfasserIn] Cesar Augusto Vargas-García [verfasserIn] Henry Arguello-Fuentes [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Revista Facultad de Ingeniería Universidad de Antioquia - Universidad de Antioquia, 2023, (2014), 73 |
---|---|
Übergeordnetes Werk: |
year:2014 ; number:73 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.17533/udea.redin.17312 |
---|
Katalog-ID: |
DOAJ08764150X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ08764150X | ||
003 | DE-627 | ||
005 | 20230503144039.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230331s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.17533/udea.redin.17312 |2 doi | |
035 | |a (DE-627)DOAJ08764150X | ||
035 | |a (DE-599)DOAJ33bb2aa56430405785fd0d9f6a3b0d79 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1-2040 | |
100 | 0 | |a Hoover Fabián Rueda-Chacón |e verfasserin |4 aut | |
245 | 1 | 0 | |a Single-pixel optical sensing architecture for compressive hyperspectral imaging |
264 | 1 | |c 2014 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Compressive hyperspectral imaging systems (CSI) capture the threedimensional (3D) information of a scene by measuring two-dimensional (2D) coded projections in a Focal Plane Array (FPA). These projections are then exploited by means of an optimization algorithm to obtain an estimation of the underlying 3D information. The quality of the reconstructions is highly dependent on the resolution of the FPA detector, which cost grows exponentially with the resolution. High-resolution low-cost reconstructions are thus desirable. This paper proposes a Single Pixel Compressive Hyperspectral Imaging Sensor (SPHIS) to capture and reconstruct hyperspectral images. This optical architecture relies on the use of multiple snapshots of two timevarying coded apertures and a dispersive element. Several simulations with two different databases show promising results as the reliable reconstruction of a hyperspectral image can be achieved by using as few as just the 30% of its voxels. | ||
650 | 4 | |a hyperspectral imaging | |
650 | 4 | |a compressive sensing | |
650 | 4 | |a optical imaging | |
650 | 4 | |a coded aperture-based systems | |
650 | 4 | |a single-pixel detector | |
653 | 0 | |a Engineering (General). Civil engineering (General) | |
700 | 0 | |a Cesar Augusto Vargas-García |e verfasserin |4 aut | |
700 | 0 | |a Henry Arguello-Fuentes |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Revista Facultad de Ingeniería Universidad de Antioquia |d Universidad de Antioquia, 2023 |g (2014), 73 |w (DE-627)604939167 |w (DE-600)2505796-0 |x 24222844 |7 nnns |
773 | 1 | 8 | |g year:2014 |g number:73 |
856 | 4 | 0 | |u https://doi.org/10.17533/udea.redin.17312 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/33bb2aa56430405785fd0d9f6a3b0d79 |z kostenfrei |
856 | 4 | 0 | |u https://revistas.udea.edu.co/index.php/ingenieria/article/view/17312 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/0120-6230 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2422-2844 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |j 2014 |e 73 |
author_variant |
h f r c hfrc c a v g cavg h a f haf |
---|---|
matchkey_str |
article:24222844:2014----::igeieotclesnacietrfropesv |
hierarchy_sort_str |
2014 |
callnumber-subject-code |
TA |
publishDate |
2014 |
allfields |
10.17533/udea.redin.17312 doi (DE-627)DOAJ08764150X (DE-599)DOAJ33bb2aa56430405785fd0d9f6a3b0d79 DE-627 ger DE-627 rakwb eng TA1-2040 Hoover Fabián Rueda-Chacón verfasserin aut Single-pixel optical sensing architecture for compressive hyperspectral imaging 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Compressive hyperspectral imaging systems (CSI) capture the threedimensional (3D) information of a scene by measuring two-dimensional (2D) coded projections in a Focal Plane Array (FPA). These projections are then exploited by means of an optimization algorithm to obtain an estimation of the underlying 3D information. The quality of the reconstructions is highly dependent on the resolution of the FPA detector, which cost grows exponentially with the resolution. High-resolution low-cost reconstructions are thus desirable. This paper proposes a Single Pixel Compressive Hyperspectral Imaging Sensor (SPHIS) to capture and reconstruct hyperspectral images. This optical architecture relies on the use of multiple snapshots of two timevarying coded apertures and a dispersive element. Several simulations with two different databases show promising results as the reliable reconstruction of a hyperspectral image can be achieved by using as few as just the 30% of its voxels. hyperspectral imaging compressive sensing optical imaging coded aperture-based systems single-pixel detector Engineering (General). Civil engineering (General) Cesar Augusto Vargas-García verfasserin aut Henry Arguello-Fuentes verfasserin aut In Revista Facultad de Ingeniería Universidad de Antioquia Universidad de Antioquia, 2023 (2014), 73 (DE-627)604939167 (DE-600)2505796-0 24222844 nnns year:2014 number:73 https://doi.org/10.17533/udea.redin.17312 kostenfrei https://doaj.org/article/33bb2aa56430405785fd0d9f6a3b0d79 kostenfrei https://revistas.udea.edu.co/index.php/ingenieria/article/view/17312 kostenfrei https://doaj.org/toc/0120-6230 Journal toc kostenfrei https://doaj.org/toc/2422-2844 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2014 73 |
spelling |
10.17533/udea.redin.17312 doi (DE-627)DOAJ08764150X (DE-599)DOAJ33bb2aa56430405785fd0d9f6a3b0d79 DE-627 ger DE-627 rakwb eng TA1-2040 Hoover Fabián Rueda-Chacón verfasserin aut Single-pixel optical sensing architecture for compressive hyperspectral imaging 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Compressive hyperspectral imaging systems (CSI) capture the threedimensional (3D) information of a scene by measuring two-dimensional (2D) coded projections in a Focal Plane Array (FPA). These projections are then exploited by means of an optimization algorithm to obtain an estimation of the underlying 3D information. The quality of the reconstructions is highly dependent on the resolution of the FPA detector, which cost grows exponentially with the resolution. High-resolution low-cost reconstructions are thus desirable. This paper proposes a Single Pixel Compressive Hyperspectral Imaging Sensor (SPHIS) to capture and reconstruct hyperspectral images. This optical architecture relies on the use of multiple snapshots of two timevarying coded apertures and a dispersive element. Several simulations with two different databases show promising results as the reliable reconstruction of a hyperspectral image can be achieved by using as few as just the 30% of its voxels. hyperspectral imaging compressive sensing optical imaging coded aperture-based systems single-pixel detector Engineering (General). Civil engineering (General) Cesar Augusto Vargas-García verfasserin aut Henry Arguello-Fuentes verfasserin aut In Revista Facultad de Ingeniería Universidad de Antioquia Universidad de Antioquia, 2023 (2014), 73 (DE-627)604939167 (DE-600)2505796-0 24222844 nnns year:2014 number:73 https://doi.org/10.17533/udea.redin.17312 kostenfrei https://doaj.org/article/33bb2aa56430405785fd0d9f6a3b0d79 kostenfrei https://revistas.udea.edu.co/index.php/ingenieria/article/view/17312 kostenfrei https://doaj.org/toc/0120-6230 Journal toc kostenfrei https://doaj.org/toc/2422-2844 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2014 73 |
allfields_unstemmed |
10.17533/udea.redin.17312 doi (DE-627)DOAJ08764150X (DE-599)DOAJ33bb2aa56430405785fd0d9f6a3b0d79 DE-627 ger DE-627 rakwb eng TA1-2040 Hoover Fabián Rueda-Chacón verfasserin aut Single-pixel optical sensing architecture for compressive hyperspectral imaging 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Compressive hyperspectral imaging systems (CSI) capture the threedimensional (3D) information of a scene by measuring two-dimensional (2D) coded projections in a Focal Plane Array (FPA). These projections are then exploited by means of an optimization algorithm to obtain an estimation of the underlying 3D information. The quality of the reconstructions is highly dependent on the resolution of the FPA detector, which cost grows exponentially with the resolution. High-resolution low-cost reconstructions are thus desirable. This paper proposes a Single Pixel Compressive Hyperspectral Imaging Sensor (SPHIS) to capture and reconstruct hyperspectral images. This optical architecture relies on the use of multiple snapshots of two timevarying coded apertures and a dispersive element. Several simulations with two different databases show promising results as the reliable reconstruction of a hyperspectral image can be achieved by using as few as just the 30% of its voxels. hyperspectral imaging compressive sensing optical imaging coded aperture-based systems single-pixel detector Engineering (General). Civil engineering (General) Cesar Augusto Vargas-García verfasserin aut Henry Arguello-Fuentes verfasserin aut In Revista Facultad de Ingeniería Universidad de Antioquia Universidad de Antioquia, 2023 (2014), 73 (DE-627)604939167 (DE-600)2505796-0 24222844 nnns year:2014 number:73 https://doi.org/10.17533/udea.redin.17312 kostenfrei https://doaj.org/article/33bb2aa56430405785fd0d9f6a3b0d79 kostenfrei https://revistas.udea.edu.co/index.php/ingenieria/article/view/17312 kostenfrei https://doaj.org/toc/0120-6230 Journal toc kostenfrei https://doaj.org/toc/2422-2844 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2014 73 |
allfieldsGer |
10.17533/udea.redin.17312 doi (DE-627)DOAJ08764150X (DE-599)DOAJ33bb2aa56430405785fd0d9f6a3b0d79 DE-627 ger DE-627 rakwb eng TA1-2040 Hoover Fabián Rueda-Chacón verfasserin aut Single-pixel optical sensing architecture for compressive hyperspectral imaging 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Compressive hyperspectral imaging systems (CSI) capture the threedimensional (3D) information of a scene by measuring two-dimensional (2D) coded projections in a Focal Plane Array (FPA). These projections are then exploited by means of an optimization algorithm to obtain an estimation of the underlying 3D information. The quality of the reconstructions is highly dependent on the resolution of the FPA detector, which cost grows exponentially with the resolution. High-resolution low-cost reconstructions are thus desirable. This paper proposes a Single Pixel Compressive Hyperspectral Imaging Sensor (SPHIS) to capture and reconstruct hyperspectral images. This optical architecture relies on the use of multiple snapshots of two timevarying coded apertures and a dispersive element. Several simulations with two different databases show promising results as the reliable reconstruction of a hyperspectral image can be achieved by using as few as just the 30% of its voxels. hyperspectral imaging compressive sensing optical imaging coded aperture-based systems single-pixel detector Engineering (General). Civil engineering (General) Cesar Augusto Vargas-García verfasserin aut Henry Arguello-Fuentes verfasserin aut In Revista Facultad de Ingeniería Universidad de Antioquia Universidad de Antioquia, 2023 (2014), 73 (DE-627)604939167 (DE-600)2505796-0 24222844 nnns year:2014 number:73 https://doi.org/10.17533/udea.redin.17312 kostenfrei https://doaj.org/article/33bb2aa56430405785fd0d9f6a3b0d79 kostenfrei https://revistas.udea.edu.co/index.php/ingenieria/article/view/17312 kostenfrei https://doaj.org/toc/0120-6230 Journal toc kostenfrei https://doaj.org/toc/2422-2844 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2014 73 |
allfieldsSound |
10.17533/udea.redin.17312 doi (DE-627)DOAJ08764150X (DE-599)DOAJ33bb2aa56430405785fd0d9f6a3b0d79 DE-627 ger DE-627 rakwb eng TA1-2040 Hoover Fabián Rueda-Chacón verfasserin aut Single-pixel optical sensing architecture for compressive hyperspectral imaging 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Compressive hyperspectral imaging systems (CSI) capture the threedimensional (3D) information of a scene by measuring two-dimensional (2D) coded projections in a Focal Plane Array (FPA). These projections are then exploited by means of an optimization algorithm to obtain an estimation of the underlying 3D information. The quality of the reconstructions is highly dependent on the resolution of the FPA detector, which cost grows exponentially with the resolution. High-resolution low-cost reconstructions are thus desirable. This paper proposes a Single Pixel Compressive Hyperspectral Imaging Sensor (SPHIS) to capture and reconstruct hyperspectral images. This optical architecture relies on the use of multiple snapshots of two timevarying coded apertures and a dispersive element. Several simulations with two different databases show promising results as the reliable reconstruction of a hyperspectral image can be achieved by using as few as just the 30% of its voxels. hyperspectral imaging compressive sensing optical imaging coded aperture-based systems single-pixel detector Engineering (General). Civil engineering (General) Cesar Augusto Vargas-García verfasserin aut Henry Arguello-Fuentes verfasserin aut In Revista Facultad de Ingeniería Universidad de Antioquia Universidad de Antioquia, 2023 (2014), 73 (DE-627)604939167 (DE-600)2505796-0 24222844 nnns year:2014 number:73 https://doi.org/10.17533/udea.redin.17312 kostenfrei https://doaj.org/article/33bb2aa56430405785fd0d9f6a3b0d79 kostenfrei https://revistas.udea.edu.co/index.php/ingenieria/article/view/17312 kostenfrei https://doaj.org/toc/0120-6230 Journal toc kostenfrei https://doaj.org/toc/2422-2844 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2014 73 |
language |
English |
source |
In Revista Facultad de Ingeniería Universidad de Antioquia (2014), 73 year:2014 number:73 |
sourceStr |
In Revista Facultad de Ingeniería Universidad de Antioquia (2014), 73 year:2014 number:73 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
hyperspectral imaging compressive sensing optical imaging coded aperture-based systems single-pixel detector Engineering (General). Civil engineering (General) |
isfreeaccess_bool |
true |
container_title |
Revista Facultad de Ingeniería Universidad de Antioquia |
authorswithroles_txt_mv |
Hoover Fabián Rueda-Chacón @@aut@@ Cesar Augusto Vargas-García @@aut@@ Henry Arguello-Fuentes @@aut@@ |
publishDateDaySort_date |
2014-01-01T00:00:00Z |
hierarchy_top_id |
604939167 |
id |
DOAJ08764150X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ08764150X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503144039.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230331s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.17533/udea.redin.17312</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ08764150X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ33bb2aa56430405785fd0d9f6a3b0d79</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hoover Fabián Rueda-Chacón</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Single-pixel optical sensing architecture for compressive hyperspectral imaging</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Compressive hyperspectral imaging systems (CSI) capture the threedimensional (3D) information of a scene by measuring two-dimensional (2D) coded projections in a Focal Plane Array (FPA). These projections are then exploited by means of an optimization algorithm to obtain an estimation of the underlying 3D information. The quality of the reconstructions is highly dependent on the resolution of the FPA detector, which cost grows exponentially with the resolution. High-resolution low-cost reconstructions are thus desirable. This paper proposes a Single Pixel Compressive Hyperspectral Imaging Sensor (SPHIS) to capture and reconstruct hyperspectral images. This optical architecture relies on the use of multiple snapshots of two timevarying coded apertures and a dispersive element. Several simulations with two different databases show promising results as the reliable reconstruction of a hyperspectral image can be achieved by using as few as just the 30% of its voxels.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hyperspectral imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">compressive sensing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optical imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coded aperture-based systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">single-pixel detector</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cesar Augusto Vargas-García</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Henry Arguello-Fuentes</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Revista Facultad de Ingeniería Universidad de Antioquia</subfield><subfield code="d">Universidad de Antioquia, 2023</subfield><subfield code="g">(2014), 73</subfield><subfield code="w">(DE-627)604939167</subfield><subfield code="w">(DE-600)2505796-0</subfield><subfield code="x">24222844</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2014</subfield><subfield code="g">number:73</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.17533/udea.redin.17312</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/33bb2aa56430405785fd0d9f6a3b0d79</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://revistas.udea.edu.co/index.php/ingenieria/article/view/17312</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0120-6230</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2422-2844</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2014</subfield><subfield code="e">73</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Hoover Fabián Rueda-Chacón |
spellingShingle |
Hoover Fabián Rueda-Chacón misc TA1-2040 misc hyperspectral imaging misc compressive sensing misc optical imaging misc coded aperture-based systems misc single-pixel detector misc Engineering (General). Civil engineering (General) Single-pixel optical sensing architecture for compressive hyperspectral imaging |
authorStr |
Hoover Fabián Rueda-Chacón |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)604939167 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1-2040 |
illustrated |
Not Illustrated |
issn |
24222844 |
topic_title |
TA1-2040 Single-pixel optical sensing architecture for compressive hyperspectral imaging hyperspectral imaging compressive sensing optical imaging coded aperture-based systems single-pixel detector |
topic |
misc TA1-2040 misc hyperspectral imaging misc compressive sensing misc optical imaging misc coded aperture-based systems misc single-pixel detector misc Engineering (General). Civil engineering (General) |
topic_unstemmed |
misc TA1-2040 misc hyperspectral imaging misc compressive sensing misc optical imaging misc coded aperture-based systems misc single-pixel detector misc Engineering (General). Civil engineering (General) |
topic_browse |
misc TA1-2040 misc hyperspectral imaging misc compressive sensing misc optical imaging misc coded aperture-based systems misc single-pixel detector misc Engineering (General). Civil engineering (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Revista Facultad de Ingeniería Universidad de Antioquia |
hierarchy_parent_id |
604939167 |
hierarchy_top_title |
Revista Facultad de Ingeniería Universidad de Antioquia |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)604939167 (DE-600)2505796-0 |
title |
Single-pixel optical sensing architecture for compressive hyperspectral imaging |
ctrlnum |
(DE-627)DOAJ08764150X (DE-599)DOAJ33bb2aa56430405785fd0d9f6a3b0d79 |
title_full |
Single-pixel optical sensing architecture for compressive hyperspectral imaging |
author_sort |
Hoover Fabián Rueda-Chacón |
journal |
Revista Facultad de Ingeniería Universidad de Antioquia |
journalStr |
Revista Facultad de Ingeniería Universidad de Antioquia |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
txt |
author_browse |
Hoover Fabián Rueda-Chacón Cesar Augusto Vargas-García Henry Arguello-Fuentes |
class |
TA1-2040 |
format_se |
Elektronische Aufsätze |
author-letter |
Hoover Fabián Rueda-Chacón |
doi_str_mv |
10.17533/udea.redin.17312 |
author2-role |
verfasserin |
title_sort |
single-pixel optical sensing architecture for compressive hyperspectral imaging |
callnumber |
TA1-2040 |
title_auth |
Single-pixel optical sensing architecture for compressive hyperspectral imaging |
abstract |
Compressive hyperspectral imaging systems (CSI) capture the threedimensional (3D) information of a scene by measuring two-dimensional (2D) coded projections in a Focal Plane Array (FPA). These projections are then exploited by means of an optimization algorithm to obtain an estimation of the underlying 3D information. The quality of the reconstructions is highly dependent on the resolution of the FPA detector, which cost grows exponentially with the resolution. High-resolution low-cost reconstructions are thus desirable. This paper proposes a Single Pixel Compressive Hyperspectral Imaging Sensor (SPHIS) to capture and reconstruct hyperspectral images. This optical architecture relies on the use of multiple snapshots of two timevarying coded apertures and a dispersive element. Several simulations with two different databases show promising results as the reliable reconstruction of a hyperspectral image can be achieved by using as few as just the 30% of its voxels. |
abstractGer |
Compressive hyperspectral imaging systems (CSI) capture the threedimensional (3D) information of a scene by measuring two-dimensional (2D) coded projections in a Focal Plane Array (FPA). These projections are then exploited by means of an optimization algorithm to obtain an estimation of the underlying 3D information. The quality of the reconstructions is highly dependent on the resolution of the FPA detector, which cost grows exponentially with the resolution. High-resolution low-cost reconstructions are thus desirable. This paper proposes a Single Pixel Compressive Hyperspectral Imaging Sensor (SPHIS) to capture and reconstruct hyperspectral images. This optical architecture relies on the use of multiple snapshots of two timevarying coded apertures and a dispersive element. Several simulations with two different databases show promising results as the reliable reconstruction of a hyperspectral image can be achieved by using as few as just the 30% of its voxels. |
abstract_unstemmed |
Compressive hyperspectral imaging systems (CSI) capture the threedimensional (3D) information of a scene by measuring two-dimensional (2D) coded projections in a Focal Plane Array (FPA). These projections are then exploited by means of an optimization algorithm to obtain an estimation of the underlying 3D information. The quality of the reconstructions is highly dependent on the resolution of the FPA detector, which cost grows exponentially with the resolution. High-resolution low-cost reconstructions are thus desirable. This paper proposes a Single Pixel Compressive Hyperspectral Imaging Sensor (SPHIS) to capture and reconstruct hyperspectral images. This optical architecture relies on the use of multiple snapshots of two timevarying coded apertures and a dispersive element. Several simulations with two different databases show promising results as the reliable reconstruction of a hyperspectral image can be achieved by using as few as just the 30% of its voxels. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
73 |
title_short |
Single-pixel optical sensing architecture for compressive hyperspectral imaging |
url |
https://doi.org/10.17533/udea.redin.17312 https://doaj.org/article/33bb2aa56430405785fd0d9f6a3b0d79 https://revistas.udea.edu.co/index.php/ingenieria/article/view/17312 https://doaj.org/toc/0120-6230 https://doaj.org/toc/2422-2844 |
remote_bool |
true |
author2 |
Cesar Augusto Vargas-García Henry Arguello-Fuentes |
author2Str |
Cesar Augusto Vargas-García Henry Arguello-Fuentes |
ppnlink |
604939167 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.17533/udea.redin.17312 |
callnumber-a |
TA1-2040 |
up_date |
2024-07-04T02:26:21.307Z |
_version_ |
1803613614961065984 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ08764150X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503144039.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230331s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.17533/udea.redin.17312</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ08764150X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ33bb2aa56430405785fd0d9f6a3b0d79</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hoover Fabián Rueda-Chacón</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Single-pixel optical sensing architecture for compressive hyperspectral imaging</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Compressive hyperspectral imaging systems (CSI) capture the threedimensional (3D) information of a scene by measuring two-dimensional (2D) coded projections in a Focal Plane Array (FPA). These projections are then exploited by means of an optimization algorithm to obtain an estimation of the underlying 3D information. The quality of the reconstructions is highly dependent on the resolution of the FPA detector, which cost grows exponentially with the resolution. High-resolution low-cost reconstructions are thus desirable. This paper proposes a Single Pixel Compressive Hyperspectral Imaging Sensor (SPHIS) to capture and reconstruct hyperspectral images. This optical architecture relies on the use of multiple snapshots of two timevarying coded apertures and a dispersive element. Several simulations with two different databases show promising results as the reliable reconstruction of a hyperspectral image can be achieved by using as few as just the 30% of its voxels.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hyperspectral imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">compressive sensing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optical imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coded aperture-based systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">single-pixel detector</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cesar Augusto Vargas-García</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Henry Arguello-Fuentes</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Revista Facultad de Ingeniería Universidad de Antioquia</subfield><subfield code="d">Universidad de Antioquia, 2023</subfield><subfield code="g">(2014), 73</subfield><subfield code="w">(DE-627)604939167</subfield><subfield code="w">(DE-600)2505796-0</subfield><subfield code="x">24222844</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2014</subfield><subfield code="g">number:73</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.17533/udea.redin.17312</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/33bb2aa56430405785fd0d9f6a3b0d79</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://revistas.udea.edu.co/index.php/ingenieria/article/view/17312</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0120-6230</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2422-2844</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2014</subfield><subfield code="e">73</subfield></datafield></record></collection>
|
score |
7.4013615 |