Visualization of small-angle X-ray scattering datasets and processing-structure mapping of isotactic polypropylene films by machine learning
With the rapid development of the synchrotron radiation X-ray characterization techniques, the preprocessing of large small-angle X-ray scattering (SAXS) datasets and the data mining become urgent requirements for researchers. In this work, we apply the variational autoencoder (VAE) and the conditio...
Ausführliche Beschreibung
Autor*in: |
Chenhao Zhao [verfasserIn] Wancheng Yu [verfasserIn] Liangbin Li [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Übergeordnetes Werk: |
In: Materials & Design - Elsevier, 2019, 228(2023), Seite 111828- |
---|---|
Übergeordnetes Werk: |
volume:228 ; year:2023 ; pages:111828- |
Links: |
---|
DOI / URN: |
10.1016/j.matdes.2023.111828 |
---|
Katalog-ID: |
DOAJ087666758 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ087666758 | ||
003 | DE-627 | ||
005 | 20230505015221.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230331s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.matdes.2023.111828 |2 doi | |
035 | |a (DE-627)DOAJ087666758 | ||
035 | |a (DE-599)DOAJ754b59957af0427aae5756fcf2953fbd | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA401-492 | |
100 | 0 | |a Chenhao Zhao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Visualization of small-angle X-ray scattering datasets and processing-structure mapping of isotactic polypropylene films by machine learning |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a With the rapid development of the synchrotron radiation X-ray characterization techniques, the preprocessing of large small-angle X-ray scattering (SAXS) datasets and the data mining become urgent requirements for researchers. In this work, we apply the variational autoencoder (VAE) and the conditional variational autoencoder (cVAE) to visualize a large SAXS dataset of hard-elastic isotactic polypropylene (iPP) films in 2- and 1-dimensional latent spaces. The low-dimensional representations enable us to capture key features of the dataset rapidly, such as the similarity among SAXS patterns and the structural evolution trends. The preprocessing of the dataset points out the further direction of data analysis so that researchers can focus on the most valued regions in the dataset. Then, we develop a hybrid VAE-multilayer perceptron (MLP) neural network to realize the processing-structure mapping of iPP films. The robustness of the hybrid VAE-MLP network is verified. Finally, SAXS patterns in the temperature-strain space are generated, which allows us to explore the processing parameter space not involved by previous experiments. These capabilities indicate that the developed machine-learning methods are valuable artificial intelligence toolset to assist in the preprocessing of large-scale SAXS datasets and the establishment of comprehensive processing-structure relationship of hard-elastic iPP films. | ||
653 | 0 | |a Materials of engineering and construction. Mechanics of materials | |
700 | 0 | |a Wancheng Yu |e verfasserin |4 aut | |
700 | 0 | |a Liangbin Li |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Materials & Design |d Elsevier, 2019 |g 228(2023), Seite 111828- |w (DE-627)32052857X |w (DE-600)2015480-X |x 18734197 |7 nnns |
773 | 1 | 8 | |g volume:228 |g year:2023 |g pages:111828- |
856 | 4 | 0 | |u https://doi.org/10.1016/j.matdes.2023.111828 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/754b59957af0427aae5756fcf2953fbd |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S0264127523002435 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/0264-1275 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_165 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 228 |j 2023 |h 111828- |
author_variant |
c z cz w y wy l l ll |
---|---|
matchkey_str |
article:18734197:2023----::iulztoosalnlxasatrndtstadrcsigtutrmpigfstcipl |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TA |
publishDate |
2023 |
allfields |
10.1016/j.matdes.2023.111828 doi (DE-627)DOAJ087666758 (DE-599)DOAJ754b59957af0427aae5756fcf2953fbd DE-627 ger DE-627 rakwb eng TA401-492 Chenhao Zhao verfasserin aut Visualization of small-angle X-ray scattering datasets and processing-structure mapping of isotactic polypropylene films by machine learning 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With the rapid development of the synchrotron radiation X-ray characterization techniques, the preprocessing of large small-angle X-ray scattering (SAXS) datasets and the data mining become urgent requirements for researchers. In this work, we apply the variational autoencoder (VAE) and the conditional variational autoencoder (cVAE) to visualize a large SAXS dataset of hard-elastic isotactic polypropylene (iPP) films in 2- and 1-dimensional latent spaces. The low-dimensional representations enable us to capture key features of the dataset rapidly, such as the similarity among SAXS patterns and the structural evolution trends. The preprocessing of the dataset points out the further direction of data analysis so that researchers can focus on the most valued regions in the dataset. Then, we develop a hybrid VAE-multilayer perceptron (MLP) neural network to realize the processing-structure mapping of iPP films. The robustness of the hybrid VAE-MLP network is verified. Finally, SAXS patterns in the temperature-strain space are generated, which allows us to explore the processing parameter space not involved by previous experiments. These capabilities indicate that the developed machine-learning methods are valuable artificial intelligence toolset to assist in the preprocessing of large-scale SAXS datasets and the establishment of comprehensive processing-structure relationship of hard-elastic iPP films. Materials of engineering and construction. Mechanics of materials Wancheng Yu verfasserin aut Liangbin Li verfasserin aut In Materials & Design Elsevier, 2019 228(2023), Seite 111828- (DE-627)32052857X (DE-600)2015480-X 18734197 nnns volume:228 year:2023 pages:111828- https://doi.org/10.1016/j.matdes.2023.111828 kostenfrei https://doaj.org/article/754b59957af0427aae5756fcf2953fbd kostenfrei http://www.sciencedirect.com/science/article/pii/S0264127523002435 kostenfrei https://doaj.org/toc/0264-1275 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 228 2023 111828- |
spelling |
10.1016/j.matdes.2023.111828 doi (DE-627)DOAJ087666758 (DE-599)DOAJ754b59957af0427aae5756fcf2953fbd DE-627 ger DE-627 rakwb eng TA401-492 Chenhao Zhao verfasserin aut Visualization of small-angle X-ray scattering datasets and processing-structure mapping of isotactic polypropylene films by machine learning 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With the rapid development of the synchrotron radiation X-ray characterization techniques, the preprocessing of large small-angle X-ray scattering (SAXS) datasets and the data mining become urgent requirements for researchers. In this work, we apply the variational autoencoder (VAE) and the conditional variational autoencoder (cVAE) to visualize a large SAXS dataset of hard-elastic isotactic polypropylene (iPP) films in 2- and 1-dimensional latent spaces. The low-dimensional representations enable us to capture key features of the dataset rapidly, such as the similarity among SAXS patterns and the structural evolution trends. The preprocessing of the dataset points out the further direction of data analysis so that researchers can focus on the most valued regions in the dataset. Then, we develop a hybrid VAE-multilayer perceptron (MLP) neural network to realize the processing-structure mapping of iPP films. The robustness of the hybrid VAE-MLP network is verified. Finally, SAXS patterns in the temperature-strain space are generated, which allows us to explore the processing parameter space not involved by previous experiments. These capabilities indicate that the developed machine-learning methods are valuable artificial intelligence toolset to assist in the preprocessing of large-scale SAXS datasets and the establishment of comprehensive processing-structure relationship of hard-elastic iPP films. Materials of engineering and construction. Mechanics of materials Wancheng Yu verfasserin aut Liangbin Li verfasserin aut In Materials & Design Elsevier, 2019 228(2023), Seite 111828- (DE-627)32052857X (DE-600)2015480-X 18734197 nnns volume:228 year:2023 pages:111828- https://doi.org/10.1016/j.matdes.2023.111828 kostenfrei https://doaj.org/article/754b59957af0427aae5756fcf2953fbd kostenfrei http://www.sciencedirect.com/science/article/pii/S0264127523002435 kostenfrei https://doaj.org/toc/0264-1275 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 228 2023 111828- |
allfields_unstemmed |
10.1016/j.matdes.2023.111828 doi (DE-627)DOAJ087666758 (DE-599)DOAJ754b59957af0427aae5756fcf2953fbd DE-627 ger DE-627 rakwb eng TA401-492 Chenhao Zhao verfasserin aut Visualization of small-angle X-ray scattering datasets and processing-structure mapping of isotactic polypropylene films by machine learning 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With the rapid development of the synchrotron radiation X-ray characterization techniques, the preprocessing of large small-angle X-ray scattering (SAXS) datasets and the data mining become urgent requirements for researchers. In this work, we apply the variational autoencoder (VAE) and the conditional variational autoencoder (cVAE) to visualize a large SAXS dataset of hard-elastic isotactic polypropylene (iPP) films in 2- and 1-dimensional latent spaces. The low-dimensional representations enable us to capture key features of the dataset rapidly, such as the similarity among SAXS patterns and the structural evolution trends. The preprocessing of the dataset points out the further direction of data analysis so that researchers can focus on the most valued regions in the dataset. Then, we develop a hybrid VAE-multilayer perceptron (MLP) neural network to realize the processing-structure mapping of iPP films. The robustness of the hybrid VAE-MLP network is verified. Finally, SAXS patterns in the temperature-strain space are generated, which allows us to explore the processing parameter space not involved by previous experiments. These capabilities indicate that the developed machine-learning methods are valuable artificial intelligence toolset to assist in the preprocessing of large-scale SAXS datasets and the establishment of comprehensive processing-structure relationship of hard-elastic iPP films. Materials of engineering and construction. Mechanics of materials Wancheng Yu verfasserin aut Liangbin Li verfasserin aut In Materials & Design Elsevier, 2019 228(2023), Seite 111828- (DE-627)32052857X (DE-600)2015480-X 18734197 nnns volume:228 year:2023 pages:111828- https://doi.org/10.1016/j.matdes.2023.111828 kostenfrei https://doaj.org/article/754b59957af0427aae5756fcf2953fbd kostenfrei http://www.sciencedirect.com/science/article/pii/S0264127523002435 kostenfrei https://doaj.org/toc/0264-1275 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 228 2023 111828- |
allfieldsGer |
10.1016/j.matdes.2023.111828 doi (DE-627)DOAJ087666758 (DE-599)DOAJ754b59957af0427aae5756fcf2953fbd DE-627 ger DE-627 rakwb eng TA401-492 Chenhao Zhao verfasserin aut Visualization of small-angle X-ray scattering datasets and processing-structure mapping of isotactic polypropylene films by machine learning 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With the rapid development of the synchrotron radiation X-ray characterization techniques, the preprocessing of large small-angle X-ray scattering (SAXS) datasets and the data mining become urgent requirements for researchers. In this work, we apply the variational autoencoder (VAE) and the conditional variational autoencoder (cVAE) to visualize a large SAXS dataset of hard-elastic isotactic polypropylene (iPP) films in 2- and 1-dimensional latent spaces. The low-dimensional representations enable us to capture key features of the dataset rapidly, such as the similarity among SAXS patterns and the structural evolution trends. The preprocessing of the dataset points out the further direction of data analysis so that researchers can focus on the most valued regions in the dataset. Then, we develop a hybrid VAE-multilayer perceptron (MLP) neural network to realize the processing-structure mapping of iPP films. The robustness of the hybrid VAE-MLP network is verified. Finally, SAXS patterns in the temperature-strain space are generated, which allows us to explore the processing parameter space not involved by previous experiments. These capabilities indicate that the developed machine-learning methods are valuable artificial intelligence toolset to assist in the preprocessing of large-scale SAXS datasets and the establishment of comprehensive processing-structure relationship of hard-elastic iPP films. Materials of engineering and construction. Mechanics of materials Wancheng Yu verfasserin aut Liangbin Li verfasserin aut In Materials & Design Elsevier, 2019 228(2023), Seite 111828- (DE-627)32052857X (DE-600)2015480-X 18734197 nnns volume:228 year:2023 pages:111828- https://doi.org/10.1016/j.matdes.2023.111828 kostenfrei https://doaj.org/article/754b59957af0427aae5756fcf2953fbd kostenfrei http://www.sciencedirect.com/science/article/pii/S0264127523002435 kostenfrei https://doaj.org/toc/0264-1275 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 228 2023 111828- |
allfieldsSound |
10.1016/j.matdes.2023.111828 doi (DE-627)DOAJ087666758 (DE-599)DOAJ754b59957af0427aae5756fcf2953fbd DE-627 ger DE-627 rakwb eng TA401-492 Chenhao Zhao verfasserin aut Visualization of small-angle X-ray scattering datasets and processing-structure mapping of isotactic polypropylene films by machine learning 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With the rapid development of the synchrotron radiation X-ray characterization techniques, the preprocessing of large small-angle X-ray scattering (SAXS) datasets and the data mining become urgent requirements for researchers. In this work, we apply the variational autoencoder (VAE) and the conditional variational autoencoder (cVAE) to visualize a large SAXS dataset of hard-elastic isotactic polypropylene (iPP) films in 2- and 1-dimensional latent spaces. The low-dimensional representations enable us to capture key features of the dataset rapidly, such as the similarity among SAXS patterns and the structural evolution trends. The preprocessing of the dataset points out the further direction of data analysis so that researchers can focus on the most valued regions in the dataset. Then, we develop a hybrid VAE-multilayer perceptron (MLP) neural network to realize the processing-structure mapping of iPP films. The robustness of the hybrid VAE-MLP network is verified. Finally, SAXS patterns in the temperature-strain space are generated, which allows us to explore the processing parameter space not involved by previous experiments. These capabilities indicate that the developed machine-learning methods are valuable artificial intelligence toolset to assist in the preprocessing of large-scale SAXS datasets and the establishment of comprehensive processing-structure relationship of hard-elastic iPP films. Materials of engineering and construction. Mechanics of materials Wancheng Yu verfasserin aut Liangbin Li verfasserin aut In Materials & Design Elsevier, 2019 228(2023), Seite 111828- (DE-627)32052857X (DE-600)2015480-X 18734197 nnns volume:228 year:2023 pages:111828- https://doi.org/10.1016/j.matdes.2023.111828 kostenfrei https://doaj.org/article/754b59957af0427aae5756fcf2953fbd kostenfrei http://www.sciencedirect.com/science/article/pii/S0264127523002435 kostenfrei https://doaj.org/toc/0264-1275 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 228 2023 111828- |
language |
English |
source |
In Materials & Design 228(2023), Seite 111828- volume:228 year:2023 pages:111828- |
sourceStr |
In Materials & Design 228(2023), Seite 111828- volume:228 year:2023 pages:111828- |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Materials of engineering and construction. Mechanics of materials |
isfreeaccess_bool |
true |
container_title |
Materials & Design |
authorswithroles_txt_mv |
Chenhao Zhao @@aut@@ Wancheng Yu @@aut@@ Liangbin Li @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
32052857X |
id |
DOAJ087666758 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ087666758</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505015221.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230331s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.matdes.2023.111828</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ087666758</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ754b59957af0427aae5756fcf2953fbd</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA401-492</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Chenhao Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Visualization of small-angle X-ray scattering datasets and processing-structure mapping of isotactic polypropylene films by machine learning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">With the rapid development of the synchrotron radiation X-ray characterization techniques, the preprocessing of large small-angle X-ray scattering (SAXS) datasets and the data mining become urgent requirements for researchers. In this work, we apply the variational autoencoder (VAE) and the conditional variational autoencoder (cVAE) to visualize a large SAXS dataset of hard-elastic isotactic polypropylene (iPP) films in 2- and 1-dimensional latent spaces. The low-dimensional representations enable us to capture key features of the dataset rapidly, such as the similarity among SAXS patterns and the structural evolution trends. The preprocessing of the dataset points out the further direction of data analysis so that researchers can focus on the most valued regions in the dataset. Then, we develop a hybrid VAE-multilayer perceptron (MLP) neural network to realize the processing-structure mapping of iPP films. The robustness of the hybrid VAE-MLP network is verified. Finally, SAXS patterns in the temperature-strain space are generated, which allows us to explore the processing parameter space not involved by previous experiments. These capabilities indicate that the developed machine-learning methods are valuable artificial intelligence toolset to assist in the preprocessing of large-scale SAXS datasets and the establishment of comprehensive processing-structure relationship of hard-elastic iPP films.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Materials of engineering and construction. Mechanics of materials</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wancheng Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Liangbin Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Materials & Design</subfield><subfield code="d">Elsevier, 2019</subfield><subfield code="g">228(2023), Seite 111828-</subfield><subfield code="w">(DE-627)32052857X</subfield><subfield code="w">(DE-600)2015480-X</subfield><subfield code="x">18734197</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:228</subfield><subfield code="g">year:2023</subfield><subfield code="g">pages:111828-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.matdes.2023.111828</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/754b59957af0427aae5756fcf2953fbd</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S0264127523002435</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0264-1275</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">228</subfield><subfield code="j">2023</subfield><subfield code="h">111828-</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Chenhao Zhao |
spellingShingle |
Chenhao Zhao misc TA401-492 misc Materials of engineering and construction. Mechanics of materials Visualization of small-angle X-ray scattering datasets and processing-structure mapping of isotactic polypropylene films by machine learning |
authorStr |
Chenhao Zhao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)32052857X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA401-492 |
illustrated |
Not Illustrated |
issn |
18734197 |
topic_title |
TA401-492 Visualization of small-angle X-ray scattering datasets and processing-structure mapping of isotactic polypropylene films by machine learning |
topic |
misc TA401-492 misc Materials of engineering and construction. Mechanics of materials |
topic_unstemmed |
misc TA401-492 misc Materials of engineering and construction. Mechanics of materials |
topic_browse |
misc TA401-492 misc Materials of engineering and construction. Mechanics of materials |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Materials & Design |
hierarchy_parent_id |
32052857X |
hierarchy_top_title |
Materials & Design |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)32052857X (DE-600)2015480-X |
title |
Visualization of small-angle X-ray scattering datasets and processing-structure mapping of isotactic polypropylene films by machine learning |
ctrlnum |
(DE-627)DOAJ087666758 (DE-599)DOAJ754b59957af0427aae5756fcf2953fbd |
title_full |
Visualization of small-angle X-ray scattering datasets and processing-structure mapping of isotactic polypropylene films by machine learning |
author_sort |
Chenhao Zhao |
journal |
Materials & Design |
journalStr |
Materials & Design |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
111828 |
author_browse |
Chenhao Zhao Wancheng Yu Liangbin Li |
container_volume |
228 |
class |
TA401-492 |
format_se |
Elektronische Aufsätze |
author-letter |
Chenhao Zhao |
doi_str_mv |
10.1016/j.matdes.2023.111828 |
author2-role |
verfasserin |
title_sort |
visualization of small-angle x-ray scattering datasets and processing-structure mapping of isotactic polypropylene films by machine learning |
callnumber |
TA401-492 |
title_auth |
Visualization of small-angle X-ray scattering datasets and processing-structure mapping of isotactic polypropylene films by machine learning |
abstract |
With the rapid development of the synchrotron radiation X-ray characterization techniques, the preprocessing of large small-angle X-ray scattering (SAXS) datasets and the data mining become urgent requirements for researchers. In this work, we apply the variational autoencoder (VAE) and the conditional variational autoencoder (cVAE) to visualize a large SAXS dataset of hard-elastic isotactic polypropylene (iPP) films in 2- and 1-dimensional latent spaces. The low-dimensional representations enable us to capture key features of the dataset rapidly, such as the similarity among SAXS patterns and the structural evolution trends. The preprocessing of the dataset points out the further direction of data analysis so that researchers can focus on the most valued regions in the dataset. Then, we develop a hybrid VAE-multilayer perceptron (MLP) neural network to realize the processing-structure mapping of iPP films. The robustness of the hybrid VAE-MLP network is verified. Finally, SAXS patterns in the temperature-strain space are generated, which allows us to explore the processing parameter space not involved by previous experiments. These capabilities indicate that the developed machine-learning methods are valuable artificial intelligence toolset to assist in the preprocessing of large-scale SAXS datasets and the establishment of comprehensive processing-structure relationship of hard-elastic iPP films. |
abstractGer |
With the rapid development of the synchrotron radiation X-ray characterization techniques, the preprocessing of large small-angle X-ray scattering (SAXS) datasets and the data mining become urgent requirements for researchers. In this work, we apply the variational autoencoder (VAE) and the conditional variational autoencoder (cVAE) to visualize a large SAXS dataset of hard-elastic isotactic polypropylene (iPP) films in 2- and 1-dimensional latent spaces. The low-dimensional representations enable us to capture key features of the dataset rapidly, such as the similarity among SAXS patterns and the structural evolution trends. The preprocessing of the dataset points out the further direction of data analysis so that researchers can focus on the most valued regions in the dataset. Then, we develop a hybrid VAE-multilayer perceptron (MLP) neural network to realize the processing-structure mapping of iPP films. The robustness of the hybrid VAE-MLP network is verified. Finally, SAXS patterns in the temperature-strain space are generated, which allows us to explore the processing parameter space not involved by previous experiments. These capabilities indicate that the developed machine-learning methods are valuable artificial intelligence toolset to assist in the preprocessing of large-scale SAXS datasets and the establishment of comprehensive processing-structure relationship of hard-elastic iPP films. |
abstract_unstemmed |
With the rapid development of the synchrotron radiation X-ray characterization techniques, the preprocessing of large small-angle X-ray scattering (SAXS) datasets and the data mining become urgent requirements for researchers. In this work, we apply the variational autoencoder (VAE) and the conditional variational autoencoder (cVAE) to visualize a large SAXS dataset of hard-elastic isotactic polypropylene (iPP) films in 2- and 1-dimensional latent spaces. The low-dimensional representations enable us to capture key features of the dataset rapidly, such as the similarity among SAXS patterns and the structural evolution trends. The preprocessing of the dataset points out the further direction of data analysis so that researchers can focus on the most valued regions in the dataset. Then, we develop a hybrid VAE-multilayer perceptron (MLP) neural network to realize the processing-structure mapping of iPP films. The robustness of the hybrid VAE-MLP network is verified. Finally, SAXS patterns in the temperature-strain space are generated, which allows us to explore the processing parameter space not involved by previous experiments. These capabilities indicate that the developed machine-learning methods are valuable artificial intelligence toolset to assist in the preprocessing of large-scale SAXS datasets and the establishment of comprehensive processing-structure relationship of hard-elastic iPP films. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Visualization of small-angle X-ray scattering datasets and processing-structure mapping of isotactic polypropylene films by machine learning |
url |
https://doi.org/10.1016/j.matdes.2023.111828 https://doaj.org/article/754b59957af0427aae5756fcf2953fbd http://www.sciencedirect.com/science/article/pii/S0264127523002435 https://doaj.org/toc/0264-1275 |
remote_bool |
true |
author2 |
Wancheng Yu Liangbin Li |
author2Str |
Wancheng Yu Liangbin Li |
ppnlink |
32052857X |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.matdes.2023.111828 |
callnumber-a |
TA401-492 |
up_date |
2024-07-04T02:31:26.258Z |
_version_ |
1803613934726414336 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ087666758</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505015221.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230331s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.matdes.2023.111828</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ087666758</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ754b59957af0427aae5756fcf2953fbd</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA401-492</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Chenhao Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Visualization of small-angle X-ray scattering datasets and processing-structure mapping of isotactic polypropylene films by machine learning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">With the rapid development of the synchrotron radiation X-ray characterization techniques, the preprocessing of large small-angle X-ray scattering (SAXS) datasets and the data mining become urgent requirements for researchers. In this work, we apply the variational autoencoder (VAE) and the conditional variational autoencoder (cVAE) to visualize a large SAXS dataset of hard-elastic isotactic polypropylene (iPP) films in 2- and 1-dimensional latent spaces. The low-dimensional representations enable us to capture key features of the dataset rapidly, such as the similarity among SAXS patterns and the structural evolution trends. The preprocessing of the dataset points out the further direction of data analysis so that researchers can focus on the most valued regions in the dataset. Then, we develop a hybrid VAE-multilayer perceptron (MLP) neural network to realize the processing-structure mapping of iPP films. The robustness of the hybrid VAE-MLP network is verified. Finally, SAXS patterns in the temperature-strain space are generated, which allows us to explore the processing parameter space not involved by previous experiments. These capabilities indicate that the developed machine-learning methods are valuable artificial intelligence toolset to assist in the preprocessing of large-scale SAXS datasets and the establishment of comprehensive processing-structure relationship of hard-elastic iPP films.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Materials of engineering and construction. Mechanics of materials</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wancheng Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Liangbin Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Materials & Design</subfield><subfield code="d">Elsevier, 2019</subfield><subfield code="g">228(2023), Seite 111828-</subfield><subfield code="w">(DE-627)32052857X</subfield><subfield code="w">(DE-600)2015480-X</subfield><subfield code="x">18734197</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:228</subfield><subfield code="g">year:2023</subfield><subfield code="g">pages:111828-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.matdes.2023.111828</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/754b59957af0427aae5756fcf2953fbd</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S0264127523002435</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0264-1275</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">228</subfield><subfield code="j">2023</subfield><subfield code="h">111828-</subfield></datafield></record></collection>
|
score |
7.40131 |