Optimization of recombinant antibody production based on the vector design and the level of metabolites for generation of Ig- producing stable cell lines
Abstract Background The biopharmaceutical industry is significantly growing worldwide, and the Chinese hamster ovary (CHO) cells are used as a main expression host for the production of recombinant monoclonal antibodies. Various metabolic engineering approaches have been investigated to generate cel...
Ausführliche Beschreibung
Autor*in: |
V. A. Toporova [verfasserIn] V. V. Argentova [verfasserIn] T. K. Aliev [verfasserIn] A. A. Panina [verfasserIn] D. A. Dolgikh [verfasserIn] M. P. Kirpichnikov [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Journal of Genetic Engineering and Biotechnology - Elsevier, 2016, 21(2023), 1, Seite 10 |
---|---|
Übergeordnetes Werk: |
volume:21 ; year:2023 ; number:1 ; pages:10 |
Links: |
---|
DOI / URN: |
10.1186/s43141-023-00474-0 |
---|
Katalog-ID: |
DOAJ087713381 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ087713381 | ||
003 | DE-627 | ||
005 | 20230503025122.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230331s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s43141-023-00474-0 |2 doi | |
035 | |a (DE-627)DOAJ087713381 | ||
035 | |a (DE-599)DOAJ5e688550cea44f9d97a87acd76137fe4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP248.13-248.65 | |
050 | 0 | |a QH426-470 | |
100 | 0 | |a V. A. Toporova |e verfasserin |4 aut | |
245 | 1 | 0 | |a Optimization of recombinant antibody production based on the vector design and the level of metabolites for generation of Ig- producing stable cell lines |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Background The biopharmaceutical industry is significantly growing worldwide, and the Chinese hamster ovary (CHO) cells are used as a main expression host for the production of recombinant monoclonal antibodies. Various metabolic engineering approaches have been investigated to generate cell lines with improved metabolic characteristics for increasing longevity and mAb production. A novel cell culture method based on the 2-stage selection makes it possible to develop a stable cell line with high-quality mAb production. Results We have constructed several design options of mammalian expression vectors for the high production of recombinant human IgG antibodies. Versions for bipromoter and bicistronic expression plasmids different in promoter orientation and cistron arrangements were generated. The aim of the work presented here was to assess a high-throughput mAb production system that integrates the advantages of high-efficiency cloning and stable cell clones to stage strategy selection reducing the time and effort required to express therapeutic monoclonal mAbs. Development of a stable cell line using bicistronic construct with EMCV IRES-long link gave an advantage in high mAb expression and long-term stability. Two-stage selection strategies allowed the elimination of low-producer clones by using metabolic level intensity to estimate the IgG production in the early steps of selection. The practical application of the new method allows to reduce time and costs during stable cell line development. | ||
650 | 4 | |a Bipromoter/bicistronic plasmid | |
650 | 4 | |a Expression vector | |
650 | 4 | |a Level metabolites | |
650 | 4 | |a mAbs production | |
650 | 4 | |a Stable cell lines | |
653 | 0 | |a Biotechnology | |
653 | 0 | |a Genetics | |
700 | 0 | |a V. V. Argentova |e verfasserin |4 aut | |
700 | 0 | |a T. K. Aliev |e verfasserin |4 aut | |
700 | 0 | |a A. A. Panina |e verfasserin |4 aut | |
700 | 0 | |a D. A. Dolgikh |e verfasserin |4 aut | |
700 | 0 | |a M. P. Kirpichnikov |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal of Genetic Engineering and Biotechnology |d Elsevier, 2016 |g 21(2023), 1, Seite 10 |w (DE-627)672802031 |w (DE-600)2637420-1 |x 20905920 |7 nnns |
773 | 1 | 8 | |g volume:21 |g year:2023 |g number:1 |g pages:10 |
856 | 4 | 0 | |u https://doi.org/10.1186/s43141-023-00474-0 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/5e688550cea44f9d97a87acd76137fe4 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1186/s43141-023-00474-0 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2090-5920 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 21 |j 2023 |e 1 |h 10 |
author_variant |
v a t vat v v a vva t k a tka a a p aap d a d dad m p k mpk |
---|---|
matchkey_str |
article:20905920:2023----::piiainfeobnnatbdpoutobsdnhvcodsgadhlvlfeaoiefree |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TP |
publishDate |
2023 |
allfields |
10.1186/s43141-023-00474-0 doi (DE-627)DOAJ087713381 (DE-599)DOAJ5e688550cea44f9d97a87acd76137fe4 DE-627 ger DE-627 rakwb eng TP248.13-248.65 QH426-470 V. A. Toporova verfasserin aut Optimization of recombinant antibody production based on the vector design and the level of metabolites for generation of Ig- producing stable cell lines 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background The biopharmaceutical industry is significantly growing worldwide, and the Chinese hamster ovary (CHO) cells are used as a main expression host for the production of recombinant monoclonal antibodies. Various metabolic engineering approaches have been investigated to generate cell lines with improved metabolic characteristics for increasing longevity and mAb production. A novel cell culture method based on the 2-stage selection makes it possible to develop a stable cell line with high-quality mAb production. Results We have constructed several design options of mammalian expression vectors for the high production of recombinant human IgG antibodies. Versions for bipromoter and bicistronic expression plasmids different in promoter orientation and cistron arrangements were generated. The aim of the work presented here was to assess a high-throughput mAb production system that integrates the advantages of high-efficiency cloning and stable cell clones to stage strategy selection reducing the time and effort required to express therapeutic monoclonal mAbs. Development of a stable cell line using bicistronic construct with EMCV IRES-long link gave an advantage in high mAb expression and long-term stability. Two-stage selection strategies allowed the elimination of low-producer clones by using metabolic level intensity to estimate the IgG production in the early steps of selection. The practical application of the new method allows to reduce time and costs during stable cell line development. Bipromoter/bicistronic plasmid Expression vector Level metabolites mAbs production Stable cell lines Biotechnology Genetics V. V. Argentova verfasserin aut T. K. Aliev verfasserin aut A. A. Panina verfasserin aut D. A. Dolgikh verfasserin aut M. P. Kirpichnikov verfasserin aut In Journal of Genetic Engineering and Biotechnology Elsevier, 2016 21(2023), 1, Seite 10 (DE-627)672802031 (DE-600)2637420-1 20905920 nnns volume:21 year:2023 number:1 pages:10 https://doi.org/10.1186/s43141-023-00474-0 kostenfrei https://doaj.org/article/5e688550cea44f9d97a87acd76137fe4 kostenfrei https://doi.org/10.1186/s43141-023-00474-0 kostenfrei https://doaj.org/toc/2090-5920 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2023 1 10 |
spelling |
10.1186/s43141-023-00474-0 doi (DE-627)DOAJ087713381 (DE-599)DOAJ5e688550cea44f9d97a87acd76137fe4 DE-627 ger DE-627 rakwb eng TP248.13-248.65 QH426-470 V. A. Toporova verfasserin aut Optimization of recombinant antibody production based on the vector design and the level of metabolites for generation of Ig- producing stable cell lines 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background The biopharmaceutical industry is significantly growing worldwide, and the Chinese hamster ovary (CHO) cells are used as a main expression host for the production of recombinant monoclonal antibodies. Various metabolic engineering approaches have been investigated to generate cell lines with improved metabolic characteristics for increasing longevity and mAb production. A novel cell culture method based on the 2-stage selection makes it possible to develop a stable cell line with high-quality mAb production. Results We have constructed several design options of mammalian expression vectors for the high production of recombinant human IgG antibodies. Versions for bipromoter and bicistronic expression plasmids different in promoter orientation and cistron arrangements were generated. The aim of the work presented here was to assess a high-throughput mAb production system that integrates the advantages of high-efficiency cloning and stable cell clones to stage strategy selection reducing the time and effort required to express therapeutic monoclonal mAbs. Development of a stable cell line using bicistronic construct with EMCV IRES-long link gave an advantage in high mAb expression and long-term stability. Two-stage selection strategies allowed the elimination of low-producer clones by using metabolic level intensity to estimate the IgG production in the early steps of selection. The practical application of the new method allows to reduce time and costs during stable cell line development. Bipromoter/bicistronic plasmid Expression vector Level metabolites mAbs production Stable cell lines Biotechnology Genetics V. V. Argentova verfasserin aut T. K. Aliev verfasserin aut A. A. Panina verfasserin aut D. A. Dolgikh verfasserin aut M. P. Kirpichnikov verfasserin aut In Journal of Genetic Engineering and Biotechnology Elsevier, 2016 21(2023), 1, Seite 10 (DE-627)672802031 (DE-600)2637420-1 20905920 nnns volume:21 year:2023 number:1 pages:10 https://doi.org/10.1186/s43141-023-00474-0 kostenfrei https://doaj.org/article/5e688550cea44f9d97a87acd76137fe4 kostenfrei https://doi.org/10.1186/s43141-023-00474-0 kostenfrei https://doaj.org/toc/2090-5920 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2023 1 10 |
allfields_unstemmed |
10.1186/s43141-023-00474-0 doi (DE-627)DOAJ087713381 (DE-599)DOAJ5e688550cea44f9d97a87acd76137fe4 DE-627 ger DE-627 rakwb eng TP248.13-248.65 QH426-470 V. A. Toporova verfasserin aut Optimization of recombinant antibody production based on the vector design and the level of metabolites for generation of Ig- producing stable cell lines 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background The biopharmaceutical industry is significantly growing worldwide, and the Chinese hamster ovary (CHO) cells are used as a main expression host for the production of recombinant monoclonal antibodies. Various metabolic engineering approaches have been investigated to generate cell lines with improved metabolic characteristics for increasing longevity and mAb production. A novel cell culture method based on the 2-stage selection makes it possible to develop a stable cell line with high-quality mAb production. Results We have constructed several design options of mammalian expression vectors for the high production of recombinant human IgG antibodies. Versions for bipromoter and bicistronic expression plasmids different in promoter orientation and cistron arrangements were generated. The aim of the work presented here was to assess a high-throughput mAb production system that integrates the advantages of high-efficiency cloning and stable cell clones to stage strategy selection reducing the time and effort required to express therapeutic monoclonal mAbs. Development of a stable cell line using bicistronic construct with EMCV IRES-long link gave an advantage in high mAb expression and long-term stability. Two-stage selection strategies allowed the elimination of low-producer clones by using metabolic level intensity to estimate the IgG production in the early steps of selection. The practical application of the new method allows to reduce time and costs during stable cell line development. Bipromoter/bicistronic plasmid Expression vector Level metabolites mAbs production Stable cell lines Biotechnology Genetics V. V. Argentova verfasserin aut T. K. Aliev verfasserin aut A. A. Panina verfasserin aut D. A. Dolgikh verfasserin aut M. P. Kirpichnikov verfasserin aut In Journal of Genetic Engineering and Biotechnology Elsevier, 2016 21(2023), 1, Seite 10 (DE-627)672802031 (DE-600)2637420-1 20905920 nnns volume:21 year:2023 number:1 pages:10 https://doi.org/10.1186/s43141-023-00474-0 kostenfrei https://doaj.org/article/5e688550cea44f9d97a87acd76137fe4 kostenfrei https://doi.org/10.1186/s43141-023-00474-0 kostenfrei https://doaj.org/toc/2090-5920 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2023 1 10 |
allfieldsGer |
10.1186/s43141-023-00474-0 doi (DE-627)DOAJ087713381 (DE-599)DOAJ5e688550cea44f9d97a87acd76137fe4 DE-627 ger DE-627 rakwb eng TP248.13-248.65 QH426-470 V. A. Toporova verfasserin aut Optimization of recombinant antibody production based on the vector design and the level of metabolites for generation of Ig- producing stable cell lines 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background The biopharmaceutical industry is significantly growing worldwide, and the Chinese hamster ovary (CHO) cells are used as a main expression host for the production of recombinant monoclonal antibodies. Various metabolic engineering approaches have been investigated to generate cell lines with improved metabolic characteristics for increasing longevity and mAb production. A novel cell culture method based on the 2-stage selection makes it possible to develop a stable cell line with high-quality mAb production. Results We have constructed several design options of mammalian expression vectors for the high production of recombinant human IgG antibodies. Versions for bipromoter and bicistronic expression plasmids different in promoter orientation and cistron arrangements were generated. The aim of the work presented here was to assess a high-throughput mAb production system that integrates the advantages of high-efficiency cloning and stable cell clones to stage strategy selection reducing the time and effort required to express therapeutic monoclonal mAbs. Development of a stable cell line using bicistronic construct with EMCV IRES-long link gave an advantage in high mAb expression and long-term stability. Two-stage selection strategies allowed the elimination of low-producer clones by using metabolic level intensity to estimate the IgG production in the early steps of selection. The practical application of the new method allows to reduce time and costs during stable cell line development. Bipromoter/bicistronic plasmid Expression vector Level metabolites mAbs production Stable cell lines Biotechnology Genetics V. V. Argentova verfasserin aut T. K. Aliev verfasserin aut A. A. Panina verfasserin aut D. A. Dolgikh verfasserin aut M. P. Kirpichnikov verfasserin aut In Journal of Genetic Engineering and Biotechnology Elsevier, 2016 21(2023), 1, Seite 10 (DE-627)672802031 (DE-600)2637420-1 20905920 nnns volume:21 year:2023 number:1 pages:10 https://doi.org/10.1186/s43141-023-00474-0 kostenfrei https://doaj.org/article/5e688550cea44f9d97a87acd76137fe4 kostenfrei https://doi.org/10.1186/s43141-023-00474-0 kostenfrei https://doaj.org/toc/2090-5920 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2023 1 10 |
allfieldsSound |
10.1186/s43141-023-00474-0 doi (DE-627)DOAJ087713381 (DE-599)DOAJ5e688550cea44f9d97a87acd76137fe4 DE-627 ger DE-627 rakwb eng TP248.13-248.65 QH426-470 V. A. Toporova verfasserin aut Optimization of recombinant antibody production based on the vector design and the level of metabolites for generation of Ig- producing stable cell lines 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background The biopharmaceutical industry is significantly growing worldwide, and the Chinese hamster ovary (CHO) cells are used as a main expression host for the production of recombinant monoclonal antibodies. Various metabolic engineering approaches have been investigated to generate cell lines with improved metabolic characteristics for increasing longevity and mAb production. A novel cell culture method based on the 2-stage selection makes it possible to develop a stable cell line with high-quality mAb production. Results We have constructed several design options of mammalian expression vectors for the high production of recombinant human IgG antibodies. Versions for bipromoter and bicistronic expression plasmids different in promoter orientation and cistron arrangements were generated. The aim of the work presented here was to assess a high-throughput mAb production system that integrates the advantages of high-efficiency cloning and stable cell clones to stage strategy selection reducing the time and effort required to express therapeutic monoclonal mAbs. Development of a stable cell line using bicistronic construct with EMCV IRES-long link gave an advantage in high mAb expression and long-term stability. Two-stage selection strategies allowed the elimination of low-producer clones by using metabolic level intensity to estimate the IgG production in the early steps of selection. The practical application of the new method allows to reduce time and costs during stable cell line development. Bipromoter/bicistronic plasmid Expression vector Level metabolites mAbs production Stable cell lines Biotechnology Genetics V. V. Argentova verfasserin aut T. K. Aliev verfasserin aut A. A. Panina verfasserin aut D. A. Dolgikh verfasserin aut M. P. Kirpichnikov verfasserin aut In Journal of Genetic Engineering and Biotechnology Elsevier, 2016 21(2023), 1, Seite 10 (DE-627)672802031 (DE-600)2637420-1 20905920 nnns volume:21 year:2023 number:1 pages:10 https://doi.org/10.1186/s43141-023-00474-0 kostenfrei https://doaj.org/article/5e688550cea44f9d97a87acd76137fe4 kostenfrei https://doi.org/10.1186/s43141-023-00474-0 kostenfrei https://doaj.org/toc/2090-5920 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2023 1 10 |
language |
English |
source |
In Journal of Genetic Engineering and Biotechnology 21(2023), 1, Seite 10 volume:21 year:2023 number:1 pages:10 |
sourceStr |
In Journal of Genetic Engineering and Biotechnology 21(2023), 1, Seite 10 volume:21 year:2023 number:1 pages:10 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Bipromoter/bicistronic plasmid Expression vector Level metabolites mAbs production Stable cell lines Biotechnology Genetics |
isfreeaccess_bool |
true |
container_title |
Journal of Genetic Engineering and Biotechnology |
authorswithroles_txt_mv |
V. A. Toporova @@aut@@ V. V. Argentova @@aut@@ T. K. Aliev @@aut@@ A. A. Panina @@aut@@ D. A. Dolgikh @@aut@@ M. P. Kirpichnikov @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
672802031 |
id |
DOAJ087713381 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ087713381</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503025122.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230331s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s43141-023-00474-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ087713381</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5e688550cea44f9d97a87acd76137fe4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP248.13-248.65</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH426-470</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">V. A. Toporova</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimization of recombinant antibody production based on the vector design and the level of metabolites for generation of Ig- producing stable cell lines</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Background The biopharmaceutical industry is significantly growing worldwide, and the Chinese hamster ovary (CHO) cells are used as a main expression host for the production of recombinant monoclonal antibodies. Various metabolic engineering approaches have been investigated to generate cell lines with improved metabolic characteristics for increasing longevity and mAb production. A novel cell culture method based on the 2-stage selection makes it possible to develop a stable cell line with high-quality mAb production. Results We have constructed several design options of mammalian expression vectors for the high production of recombinant human IgG antibodies. Versions for bipromoter and bicistronic expression plasmids different in promoter orientation and cistron arrangements were generated. The aim of the work presented here was to assess a high-throughput mAb production system that integrates the advantages of high-efficiency cloning and stable cell clones to stage strategy selection reducing the time and effort required to express therapeutic monoclonal mAbs. Development of a stable cell line using bicistronic construct with EMCV IRES-long link gave an advantage in high mAb expression and long-term stability. Two-stage selection strategies allowed the elimination of low-producer clones by using metabolic level intensity to estimate the IgG production in the early steps of selection. The practical application of the new method allows to reduce time and costs during stable cell line development.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bipromoter/bicistronic plasmid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Expression vector</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Level metabolites</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mAbs production</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stable cell lines</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biotechnology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Genetics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">V. V. Argentova</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">T. K. Aliev</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">A. A. Panina</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">D. A. Dolgikh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">M. P. Kirpichnikov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Genetic Engineering and Biotechnology</subfield><subfield code="d">Elsevier, 2016</subfield><subfield code="g">21(2023), 1, Seite 10</subfield><subfield code="w">(DE-627)672802031</subfield><subfield code="w">(DE-600)2637420-1</subfield><subfield code="x">20905920</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s43141-023-00474-0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5e688550cea44f9d97a87acd76137fe4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s43141-023-00474-0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2090-5920</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="h">10</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
V. A. Toporova |
spellingShingle |
V. A. Toporova misc TP248.13-248.65 misc QH426-470 misc Bipromoter/bicistronic plasmid misc Expression vector misc Level metabolites misc mAbs production misc Stable cell lines misc Biotechnology misc Genetics Optimization of recombinant antibody production based on the vector design and the level of metabolites for generation of Ig- producing stable cell lines |
authorStr |
V. A. Toporova |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)672802031 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP248 |
illustrated |
Not Illustrated |
issn |
20905920 |
topic_title |
TP248.13-248.65 QH426-470 Optimization of recombinant antibody production based on the vector design and the level of metabolites for generation of Ig- producing stable cell lines Bipromoter/bicistronic plasmid Expression vector Level metabolites mAbs production Stable cell lines |
topic |
misc TP248.13-248.65 misc QH426-470 misc Bipromoter/bicistronic plasmid misc Expression vector misc Level metabolites misc mAbs production misc Stable cell lines misc Biotechnology misc Genetics |
topic_unstemmed |
misc TP248.13-248.65 misc QH426-470 misc Bipromoter/bicistronic plasmid misc Expression vector misc Level metabolites misc mAbs production misc Stable cell lines misc Biotechnology misc Genetics |
topic_browse |
misc TP248.13-248.65 misc QH426-470 misc Bipromoter/bicistronic plasmid misc Expression vector misc Level metabolites misc mAbs production misc Stable cell lines misc Biotechnology misc Genetics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Genetic Engineering and Biotechnology |
hierarchy_parent_id |
672802031 |
hierarchy_top_title |
Journal of Genetic Engineering and Biotechnology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)672802031 (DE-600)2637420-1 |
title |
Optimization of recombinant antibody production based on the vector design and the level of metabolites for generation of Ig- producing stable cell lines |
ctrlnum |
(DE-627)DOAJ087713381 (DE-599)DOAJ5e688550cea44f9d97a87acd76137fe4 |
title_full |
Optimization of recombinant antibody production based on the vector design and the level of metabolites for generation of Ig- producing stable cell lines |
author_sort |
V. A. Toporova |
journal |
Journal of Genetic Engineering and Biotechnology |
journalStr |
Journal of Genetic Engineering and Biotechnology |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
10 |
author_browse |
V. A. Toporova V. V. Argentova T. K. Aliev A. A. Panina D. A. Dolgikh M. P. Kirpichnikov |
container_volume |
21 |
class |
TP248.13-248.65 QH426-470 |
format_se |
Elektronische Aufsätze |
author-letter |
V. A. Toporova |
doi_str_mv |
10.1186/s43141-023-00474-0 |
author2-role |
verfasserin |
title_sort |
optimization of recombinant antibody production based on the vector design and the level of metabolites for generation of ig- producing stable cell lines |
callnumber |
TP248.13-248.65 |
title_auth |
Optimization of recombinant antibody production based on the vector design and the level of metabolites for generation of Ig- producing stable cell lines |
abstract |
Abstract Background The biopharmaceutical industry is significantly growing worldwide, and the Chinese hamster ovary (CHO) cells are used as a main expression host for the production of recombinant monoclonal antibodies. Various metabolic engineering approaches have been investigated to generate cell lines with improved metabolic characteristics for increasing longevity and mAb production. A novel cell culture method based on the 2-stage selection makes it possible to develop a stable cell line with high-quality mAb production. Results We have constructed several design options of mammalian expression vectors for the high production of recombinant human IgG antibodies. Versions for bipromoter and bicistronic expression plasmids different in promoter orientation and cistron arrangements were generated. The aim of the work presented here was to assess a high-throughput mAb production system that integrates the advantages of high-efficiency cloning and stable cell clones to stage strategy selection reducing the time and effort required to express therapeutic monoclonal mAbs. Development of a stable cell line using bicistronic construct with EMCV IRES-long link gave an advantage in high mAb expression and long-term stability. Two-stage selection strategies allowed the elimination of low-producer clones by using metabolic level intensity to estimate the IgG production in the early steps of selection. The practical application of the new method allows to reduce time and costs during stable cell line development. |
abstractGer |
Abstract Background The biopharmaceutical industry is significantly growing worldwide, and the Chinese hamster ovary (CHO) cells are used as a main expression host for the production of recombinant monoclonal antibodies. Various metabolic engineering approaches have been investigated to generate cell lines with improved metabolic characteristics for increasing longevity and mAb production. A novel cell culture method based on the 2-stage selection makes it possible to develop a stable cell line with high-quality mAb production. Results We have constructed several design options of mammalian expression vectors for the high production of recombinant human IgG antibodies. Versions for bipromoter and bicistronic expression plasmids different in promoter orientation and cistron arrangements were generated. The aim of the work presented here was to assess a high-throughput mAb production system that integrates the advantages of high-efficiency cloning and stable cell clones to stage strategy selection reducing the time and effort required to express therapeutic monoclonal mAbs. Development of a stable cell line using bicistronic construct with EMCV IRES-long link gave an advantage in high mAb expression and long-term stability. Two-stage selection strategies allowed the elimination of low-producer clones by using metabolic level intensity to estimate the IgG production in the early steps of selection. The practical application of the new method allows to reduce time and costs during stable cell line development. |
abstract_unstemmed |
Abstract Background The biopharmaceutical industry is significantly growing worldwide, and the Chinese hamster ovary (CHO) cells are used as a main expression host for the production of recombinant monoclonal antibodies. Various metabolic engineering approaches have been investigated to generate cell lines with improved metabolic characteristics for increasing longevity and mAb production. A novel cell culture method based on the 2-stage selection makes it possible to develop a stable cell line with high-quality mAb production. Results We have constructed several design options of mammalian expression vectors for the high production of recombinant human IgG antibodies. Versions for bipromoter and bicistronic expression plasmids different in promoter orientation and cistron arrangements were generated. The aim of the work presented here was to assess a high-throughput mAb production system that integrates the advantages of high-efficiency cloning and stable cell clones to stage strategy selection reducing the time and effort required to express therapeutic monoclonal mAbs. Development of a stable cell line using bicistronic construct with EMCV IRES-long link gave an advantage in high mAb expression and long-term stability. Two-stage selection strategies allowed the elimination of low-producer clones by using metabolic level intensity to estimate the IgG production in the early steps of selection. The practical application of the new method allows to reduce time and costs during stable cell line development. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Optimization of recombinant antibody production based on the vector design and the level of metabolites for generation of Ig- producing stable cell lines |
url |
https://doi.org/10.1186/s43141-023-00474-0 https://doaj.org/article/5e688550cea44f9d97a87acd76137fe4 https://doaj.org/toc/2090-5920 |
remote_bool |
true |
author2 |
V. V. Argentova T. K. Aliev A. A. Panina D. A. Dolgikh M. P. Kirpichnikov |
author2Str |
V. V. Argentova T. K. Aliev A. A. Panina D. A. Dolgikh M. P. Kirpichnikov |
ppnlink |
672802031 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s43141-023-00474-0 |
callnumber-a |
TP248.13-248.65 |
up_date |
2024-07-03T13:28:18.526Z |
_version_ |
1803564664520441856 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ087713381</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503025122.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230331s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s43141-023-00474-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ087713381</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5e688550cea44f9d97a87acd76137fe4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP248.13-248.65</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH426-470</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">V. A. Toporova</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimization of recombinant antibody production based on the vector design and the level of metabolites for generation of Ig- producing stable cell lines</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Background The biopharmaceutical industry is significantly growing worldwide, and the Chinese hamster ovary (CHO) cells are used as a main expression host for the production of recombinant monoclonal antibodies. Various metabolic engineering approaches have been investigated to generate cell lines with improved metabolic characteristics for increasing longevity and mAb production. A novel cell culture method based on the 2-stage selection makes it possible to develop a stable cell line with high-quality mAb production. Results We have constructed several design options of mammalian expression vectors for the high production of recombinant human IgG antibodies. Versions for bipromoter and bicistronic expression plasmids different in promoter orientation and cistron arrangements were generated. The aim of the work presented here was to assess a high-throughput mAb production system that integrates the advantages of high-efficiency cloning and stable cell clones to stage strategy selection reducing the time and effort required to express therapeutic monoclonal mAbs. Development of a stable cell line using bicistronic construct with EMCV IRES-long link gave an advantage in high mAb expression and long-term stability. Two-stage selection strategies allowed the elimination of low-producer clones by using metabolic level intensity to estimate the IgG production in the early steps of selection. The practical application of the new method allows to reduce time and costs during stable cell line development.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bipromoter/bicistronic plasmid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Expression vector</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Level metabolites</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mAbs production</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stable cell lines</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biotechnology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Genetics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">V. V. Argentova</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">T. K. Aliev</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">A. A. Panina</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">D. A. Dolgikh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">M. P. Kirpichnikov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Genetic Engineering and Biotechnology</subfield><subfield code="d">Elsevier, 2016</subfield><subfield code="g">21(2023), 1, Seite 10</subfield><subfield code="w">(DE-627)672802031</subfield><subfield code="w">(DE-600)2637420-1</subfield><subfield code="x">20905920</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s43141-023-00474-0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5e688550cea44f9d97a87acd76137fe4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s43141-023-00474-0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2090-5920</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="h">10</subfield></datafield></record></collection>
|
score |
7.402958 |