A cross-sectional study: a breathomics based pulmonary tuberculosis detection method
Key messages What is already known on this topic—Breath VOC analysis is a potential technology for PTB detection. However, it is still desirable for a real-time, robust, accurate, and simple breath analysis platform for clinical application. What this study adds—An online breath detection for PTB wa...
Ausführliche Beschreibung
Autor*in: |
Liang Fu [verfasserIn] Lei Wang [verfasserIn] Haibo Wang [verfasserIn] Min Yang [verfasserIn] Qianting Yang [verfasserIn] Yi Lin [verfasserIn] Shanyi Guan [verfasserIn] Yongcong Deng [verfasserIn] Lei Liu [verfasserIn] Qingyun Li [verfasserIn] Mengqi He [verfasserIn] Peize Zhang [verfasserIn] Haibin Chen [verfasserIn] Guofang Deng [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: BMC Infectious Diseases - BMC, 2003, 23(2023), 1, Seite 11 |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:2023 ; number:1 ; pages:11 |
Links: |
---|
DOI / URN: |
10.1186/s12879-023-08112-3 |
---|
Katalog-ID: |
DOAJ08777027X |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ08777027X | ||
003 | DE-627 | ||
005 | 20230331020839.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230331s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12879-023-08112-3 |2 doi | |
035 | |a (DE-627)DOAJ08777027X | ||
035 | |a (DE-599)DOAJ19bd7f1429574e9ab6ea7addea9c0028 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a RC109-216 | |
100 | 0 | |a Liang Fu |e verfasserin |4 aut | |
245 | 1 | 2 | |a A cross-sectional study: a breathomics based pulmonary tuberculosis detection method |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Key messages What is already known on this topic—Breath VOC analysis is a potential technology for PTB detection. However, it is still desirable for a real-time, robust, accurate, and simple breath analysis platform for clinical application. What this study adds—An online breath detection for PTB was proposed and demonstrated with high sensitivity and specificity in a large clinical cohort. How this study might affect research, practice, or policy—This study may promote the application of breath detection in clinical TB detection and related biomarker studies. | ||
650 | 4 | |a Pulmonary tuberculosis | |
650 | 4 | |a Machine learning | |
650 | 4 | |a Volatile organic compounds | |
650 | 4 | |a Breathomics | |
653 | 0 | |a Infectious and parasitic diseases | |
700 | 0 | |a Lei Wang |e verfasserin |4 aut | |
700 | 0 | |a Haibo Wang |e verfasserin |4 aut | |
700 | 0 | |a Min Yang |e verfasserin |4 aut | |
700 | 0 | |a Qianting Yang |e verfasserin |4 aut | |
700 | 0 | |a Yi Lin |e verfasserin |4 aut | |
700 | 0 | |a Shanyi Guan |e verfasserin |4 aut | |
700 | 0 | |a Yongcong Deng |e verfasserin |4 aut | |
700 | 0 | |a Lei Liu |e verfasserin |4 aut | |
700 | 0 | |a Qingyun Li |e verfasserin |4 aut | |
700 | 0 | |a Mengqi He |e verfasserin |4 aut | |
700 | 0 | |a Peize Zhang |e verfasserin |4 aut | |
700 | 0 | |a Haibin Chen |e verfasserin |4 aut | |
700 | 0 | |a Guofang Deng |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t BMC Infectious Diseases |d BMC, 2003 |g 23(2023), 1, Seite 11 |w (DE-627)326645381 |w (DE-600)2041550-3 |x 14712334 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2023 |g number:1 |g pages:11 |
856 | 4 | 0 | |u https://doi.org/10.1186/s12879-023-08112-3 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/19bd7f1429574e9ab6ea7addea9c0028 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1186/s12879-023-08112-3 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1471-2334 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 23 |j 2023 |e 1 |h 11 |
author_variant |
l f lf l w lw h w hw m y my q y qy y l yl s g sg y d yd l l ll q l ql m h mh p z pz h c hc g d gd |
---|---|
matchkey_str |
article:14712334:2023----::cosetoasuybetoisaeploayuecl |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
RC |
publishDate |
2023 |
allfields |
10.1186/s12879-023-08112-3 doi (DE-627)DOAJ08777027X (DE-599)DOAJ19bd7f1429574e9ab6ea7addea9c0028 DE-627 ger DE-627 rakwb eng RC109-216 Liang Fu verfasserin aut A cross-sectional study: a breathomics based pulmonary tuberculosis detection method 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Key messages What is already known on this topic—Breath VOC analysis is a potential technology for PTB detection. However, it is still desirable for a real-time, robust, accurate, and simple breath analysis platform for clinical application. What this study adds—An online breath detection for PTB was proposed and demonstrated with high sensitivity and specificity in a large clinical cohort. How this study might affect research, practice, or policy—This study may promote the application of breath detection in clinical TB detection and related biomarker studies. Pulmonary tuberculosis Machine learning Volatile organic compounds Breathomics Infectious and parasitic diseases Lei Wang verfasserin aut Haibo Wang verfasserin aut Min Yang verfasserin aut Qianting Yang verfasserin aut Yi Lin verfasserin aut Shanyi Guan verfasserin aut Yongcong Deng verfasserin aut Lei Liu verfasserin aut Qingyun Li verfasserin aut Mengqi He verfasserin aut Peize Zhang verfasserin aut Haibin Chen verfasserin aut Guofang Deng verfasserin aut In BMC Infectious Diseases BMC, 2003 23(2023), 1, Seite 11 (DE-627)326645381 (DE-600)2041550-3 14712334 nnns volume:23 year:2023 number:1 pages:11 https://doi.org/10.1186/s12879-023-08112-3 kostenfrei https://doaj.org/article/19bd7f1429574e9ab6ea7addea9c0028 kostenfrei https://doi.org/10.1186/s12879-023-08112-3 kostenfrei https://doaj.org/toc/1471-2334 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 1 11 |
spelling |
10.1186/s12879-023-08112-3 doi (DE-627)DOAJ08777027X (DE-599)DOAJ19bd7f1429574e9ab6ea7addea9c0028 DE-627 ger DE-627 rakwb eng RC109-216 Liang Fu verfasserin aut A cross-sectional study: a breathomics based pulmonary tuberculosis detection method 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Key messages What is already known on this topic—Breath VOC analysis is a potential technology for PTB detection. However, it is still desirable for a real-time, robust, accurate, and simple breath analysis platform for clinical application. What this study adds—An online breath detection for PTB was proposed and demonstrated with high sensitivity and specificity in a large clinical cohort. How this study might affect research, practice, or policy—This study may promote the application of breath detection in clinical TB detection and related biomarker studies. Pulmonary tuberculosis Machine learning Volatile organic compounds Breathomics Infectious and parasitic diseases Lei Wang verfasserin aut Haibo Wang verfasserin aut Min Yang verfasserin aut Qianting Yang verfasserin aut Yi Lin verfasserin aut Shanyi Guan verfasserin aut Yongcong Deng verfasserin aut Lei Liu verfasserin aut Qingyun Li verfasserin aut Mengqi He verfasserin aut Peize Zhang verfasserin aut Haibin Chen verfasserin aut Guofang Deng verfasserin aut In BMC Infectious Diseases BMC, 2003 23(2023), 1, Seite 11 (DE-627)326645381 (DE-600)2041550-3 14712334 nnns volume:23 year:2023 number:1 pages:11 https://doi.org/10.1186/s12879-023-08112-3 kostenfrei https://doaj.org/article/19bd7f1429574e9ab6ea7addea9c0028 kostenfrei https://doi.org/10.1186/s12879-023-08112-3 kostenfrei https://doaj.org/toc/1471-2334 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 1 11 |
allfields_unstemmed |
10.1186/s12879-023-08112-3 doi (DE-627)DOAJ08777027X (DE-599)DOAJ19bd7f1429574e9ab6ea7addea9c0028 DE-627 ger DE-627 rakwb eng RC109-216 Liang Fu verfasserin aut A cross-sectional study: a breathomics based pulmonary tuberculosis detection method 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Key messages What is already known on this topic—Breath VOC analysis is a potential technology for PTB detection. However, it is still desirable for a real-time, robust, accurate, and simple breath analysis platform for clinical application. What this study adds—An online breath detection for PTB was proposed and demonstrated with high sensitivity and specificity in a large clinical cohort. How this study might affect research, practice, or policy—This study may promote the application of breath detection in clinical TB detection and related biomarker studies. Pulmonary tuberculosis Machine learning Volatile organic compounds Breathomics Infectious and parasitic diseases Lei Wang verfasserin aut Haibo Wang verfasserin aut Min Yang verfasserin aut Qianting Yang verfasserin aut Yi Lin verfasserin aut Shanyi Guan verfasserin aut Yongcong Deng verfasserin aut Lei Liu verfasserin aut Qingyun Li verfasserin aut Mengqi He verfasserin aut Peize Zhang verfasserin aut Haibin Chen verfasserin aut Guofang Deng verfasserin aut In BMC Infectious Diseases BMC, 2003 23(2023), 1, Seite 11 (DE-627)326645381 (DE-600)2041550-3 14712334 nnns volume:23 year:2023 number:1 pages:11 https://doi.org/10.1186/s12879-023-08112-3 kostenfrei https://doaj.org/article/19bd7f1429574e9ab6ea7addea9c0028 kostenfrei https://doi.org/10.1186/s12879-023-08112-3 kostenfrei https://doaj.org/toc/1471-2334 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 1 11 |
allfieldsGer |
10.1186/s12879-023-08112-3 doi (DE-627)DOAJ08777027X (DE-599)DOAJ19bd7f1429574e9ab6ea7addea9c0028 DE-627 ger DE-627 rakwb eng RC109-216 Liang Fu verfasserin aut A cross-sectional study: a breathomics based pulmonary tuberculosis detection method 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Key messages What is already known on this topic—Breath VOC analysis is a potential technology for PTB detection. However, it is still desirable for a real-time, robust, accurate, and simple breath analysis platform for clinical application. What this study adds—An online breath detection for PTB was proposed and demonstrated with high sensitivity and specificity in a large clinical cohort. How this study might affect research, practice, or policy—This study may promote the application of breath detection in clinical TB detection and related biomarker studies. Pulmonary tuberculosis Machine learning Volatile organic compounds Breathomics Infectious and parasitic diseases Lei Wang verfasserin aut Haibo Wang verfasserin aut Min Yang verfasserin aut Qianting Yang verfasserin aut Yi Lin verfasserin aut Shanyi Guan verfasserin aut Yongcong Deng verfasserin aut Lei Liu verfasserin aut Qingyun Li verfasserin aut Mengqi He verfasserin aut Peize Zhang verfasserin aut Haibin Chen verfasserin aut Guofang Deng verfasserin aut In BMC Infectious Diseases BMC, 2003 23(2023), 1, Seite 11 (DE-627)326645381 (DE-600)2041550-3 14712334 nnns volume:23 year:2023 number:1 pages:11 https://doi.org/10.1186/s12879-023-08112-3 kostenfrei https://doaj.org/article/19bd7f1429574e9ab6ea7addea9c0028 kostenfrei https://doi.org/10.1186/s12879-023-08112-3 kostenfrei https://doaj.org/toc/1471-2334 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 1 11 |
allfieldsSound |
10.1186/s12879-023-08112-3 doi (DE-627)DOAJ08777027X (DE-599)DOAJ19bd7f1429574e9ab6ea7addea9c0028 DE-627 ger DE-627 rakwb eng RC109-216 Liang Fu verfasserin aut A cross-sectional study: a breathomics based pulmonary tuberculosis detection method 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Key messages What is already known on this topic—Breath VOC analysis is a potential technology for PTB detection. However, it is still desirable for a real-time, robust, accurate, and simple breath analysis platform for clinical application. What this study adds—An online breath detection for PTB was proposed and demonstrated with high sensitivity and specificity in a large clinical cohort. How this study might affect research, practice, or policy—This study may promote the application of breath detection in clinical TB detection and related biomarker studies. Pulmonary tuberculosis Machine learning Volatile organic compounds Breathomics Infectious and parasitic diseases Lei Wang verfasserin aut Haibo Wang verfasserin aut Min Yang verfasserin aut Qianting Yang verfasserin aut Yi Lin verfasserin aut Shanyi Guan verfasserin aut Yongcong Deng verfasserin aut Lei Liu verfasserin aut Qingyun Li verfasserin aut Mengqi He verfasserin aut Peize Zhang verfasserin aut Haibin Chen verfasserin aut Guofang Deng verfasserin aut In BMC Infectious Diseases BMC, 2003 23(2023), 1, Seite 11 (DE-627)326645381 (DE-600)2041550-3 14712334 nnns volume:23 year:2023 number:1 pages:11 https://doi.org/10.1186/s12879-023-08112-3 kostenfrei https://doaj.org/article/19bd7f1429574e9ab6ea7addea9c0028 kostenfrei https://doi.org/10.1186/s12879-023-08112-3 kostenfrei https://doaj.org/toc/1471-2334 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 1 11 |
language |
English |
source |
In BMC Infectious Diseases 23(2023), 1, Seite 11 volume:23 year:2023 number:1 pages:11 |
sourceStr |
In BMC Infectious Diseases 23(2023), 1, Seite 11 volume:23 year:2023 number:1 pages:11 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Pulmonary tuberculosis Machine learning Volatile organic compounds Breathomics Infectious and parasitic diseases |
isfreeaccess_bool |
true |
container_title |
BMC Infectious Diseases |
authorswithroles_txt_mv |
Liang Fu @@aut@@ Lei Wang @@aut@@ Haibo Wang @@aut@@ Min Yang @@aut@@ Qianting Yang @@aut@@ Yi Lin @@aut@@ Shanyi Guan @@aut@@ Yongcong Deng @@aut@@ Lei Liu @@aut@@ Qingyun Li @@aut@@ Mengqi He @@aut@@ Peize Zhang @@aut@@ Haibin Chen @@aut@@ Guofang Deng @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
326645381 |
id |
DOAJ08777027X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ08777027X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331020839.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230331s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12879-023-08112-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ08777027X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ19bd7f1429574e9ab6ea7addea9c0028</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC109-216</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Liang Fu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A cross-sectional study: a breathomics based pulmonary tuberculosis detection method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Key messages What is already known on this topic—Breath VOC analysis is a potential technology for PTB detection. However, it is still desirable for a real-time, robust, accurate, and simple breath analysis platform for clinical application. What this study adds—An online breath detection for PTB was proposed and demonstrated with high sensitivity and specificity in a large clinical cohort. How this study might affect research, practice, or policy—This study may promote the application of breath detection in clinical TB detection and related biomarker studies.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pulmonary tuberculosis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Volatile organic compounds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Breathomics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Infectious and parasitic diseases</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lei Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haibo Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Min Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qianting Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yi Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shanyi Guan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yongcong Deng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lei Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qingyun Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mengqi He</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Peize Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haibin Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guofang Deng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">BMC Infectious Diseases</subfield><subfield code="d">BMC, 2003</subfield><subfield code="g">23(2023), 1, Seite 11</subfield><subfield code="w">(DE-627)326645381</subfield><subfield code="w">(DE-600)2041550-3</subfield><subfield code="x">14712334</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s12879-023-08112-3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/19bd7f1429574e9ab6ea7addea9c0028</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s12879-023-08112-3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1471-2334</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="h">11</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Liang Fu |
spellingShingle |
Liang Fu misc RC109-216 misc Pulmonary tuberculosis misc Machine learning misc Volatile organic compounds misc Breathomics misc Infectious and parasitic diseases A cross-sectional study: a breathomics based pulmonary tuberculosis detection method |
authorStr |
Liang Fu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)326645381 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RC109-216 |
illustrated |
Not Illustrated |
issn |
14712334 |
topic_title |
RC109-216 A cross-sectional study: a breathomics based pulmonary tuberculosis detection method Pulmonary tuberculosis Machine learning Volatile organic compounds Breathomics |
topic |
misc RC109-216 misc Pulmonary tuberculosis misc Machine learning misc Volatile organic compounds misc Breathomics misc Infectious and parasitic diseases |
topic_unstemmed |
misc RC109-216 misc Pulmonary tuberculosis misc Machine learning misc Volatile organic compounds misc Breathomics misc Infectious and parasitic diseases |
topic_browse |
misc RC109-216 misc Pulmonary tuberculosis misc Machine learning misc Volatile organic compounds misc Breathomics misc Infectious and parasitic diseases |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC Infectious Diseases |
hierarchy_parent_id |
326645381 |
hierarchy_top_title |
BMC Infectious Diseases |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)326645381 (DE-600)2041550-3 |
title |
A cross-sectional study: a breathomics based pulmonary tuberculosis detection method |
ctrlnum |
(DE-627)DOAJ08777027X (DE-599)DOAJ19bd7f1429574e9ab6ea7addea9c0028 |
title_full |
A cross-sectional study: a breathomics based pulmonary tuberculosis detection method |
author_sort |
Liang Fu |
journal |
BMC Infectious Diseases |
journalStr |
BMC Infectious Diseases |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
11 |
author_browse |
Liang Fu Lei Wang Haibo Wang Min Yang Qianting Yang Yi Lin Shanyi Guan Yongcong Deng Lei Liu Qingyun Li Mengqi He Peize Zhang Haibin Chen Guofang Deng |
container_volume |
23 |
class |
RC109-216 |
format_se |
Elektronische Aufsätze |
author-letter |
Liang Fu |
doi_str_mv |
10.1186/s12879-023-08112-3 |
author2-role |
verfasserin |
title_sort |
cross-sectional study: a breathomics based pulmonary tuberculosis detection method |
callnumber |
RC109-216 |
title_auth |
A cross-sectional study: a breathomics based pulmonary tuberculosis detection method |
abstract |
Key messages What is already known on this topic—Breath VOC analysis is a potential technology for PTB detection. However, it is still desirable for a real-time, robust, accurate, and simple breath analysis platform for clinical application. What this study adds—An online breath detection for PTB was proposed and demonstrated with high sensitivity and specificity in a large clinical cohort. How this study might affect research, practice, or policy—This study may promote the application of breath detection in clinical TB detection and related biomarker studies. |
abstractGer |
Key messages What is already known on this topic—Breath VOC analysis is a potential technology for PTB detection. However, it is still desirable for a real-time, robust, accurate, and simple breath analysis platform for clinical application. What this study adds—An online breath detection for PTB was proposed and demonstrated with high sensitivity and specificity in a large clinical cohort. How this study might affect research, practice, or policy—This study may promote the application of breath detection in clinical TB detection and related biomarker studies. |
abstract_unstemmed |
Key messages What is already known on this topic—Breath VOC analysis is a potential technology for PTB detection. However, it is still desirable for a real-time, robust, accurate, and simple breath analysis platform for clinical application. What this study adds—An online breath detection for PTB was proposed and demonstrated with high sensitivity and specificity in a large clinical cohort. How this study might affect research, practice, or policy—This study may promote the application of breath detection in clinical TB detection and related biomarker studies. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
A cross-sectional study: a breathomics based pulmonary tuberculosis detection method |
url |
https://doi.org/10.1186/s12879-023-08112-3 https://doaj.org/article/19bd7f1429574e9ab6ea7addea9c0028 https://doaj.org/toc/1471-2334 |
remote_bool |
true |
author2 |
Lei Wang Haibo Wang Min Yang Qianting Yang Yi Lin Shanyi Guan Yongcong Deng Lei Liu Qingyun Li Mengqi He Peize Zhang Haibin Chen Guofang Deng |
author2Str |
Lei Wang Haibo Wang Min Yang Qianting Yang Yi Lin Shanyi Guan Yongcong Deng Lei Liu Qingyun Li Mengqi He Peize Zhang Haibin Chen Guofang Deng |
ppnlink |
326645381 |
callnumber-subject |
RC - Internal Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12879-023-08112-3 |
callnumber-a |
RC109-216 |
up_date |
2024-07-03T13:51:51.657Z |
_version_ |
1803566146294644736 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ08777027X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331020839.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230331s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12879-023-08112-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ08777027X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ19bd7f1429574e9ab6ea7addea9c0028</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC109-216</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Liang Fu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A cross-sectional study: a breathomics based pulmonary tuberculosis detection method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Key messages What is already known on this topic—Breath VOC analysis is a potential technology for PTB detection. However, it is still desirable for a real-time, robust, accurate, and simple breath analysis platform for clinical application. What this study adds—An online breath detection for PTB was proposed and demonstrated with high sensitivity and specificity in a large clinical cohort. How this study might affect research, practice, or policy—This study may promote the application of breath detection in clinical TB detection and related biomarker studies.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pulmonary tuberculosis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Volatile organic compounds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Breathomics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Infectious and parasitic diseases</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lei Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haibo Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Min Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qianting Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yi Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shanyi Guan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yongcong Deng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lei Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qingyun Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mengqi He</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Peize Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haibin Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guofang Deng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">BMC Infectious Diseases</subfield><subfield code="d">BMC, 2003</subfield><subfield code="g">23(2023), 1, Seite 11</subfield><subfield code="w">(DE-627)326645381</subfield><subfield code="w">(DE-600)2041550-3</subfield><subfield code="x">14712334</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s12879-023-08112-3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/19bd7f1429574e9ab6ea7addea9c0028</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s12879-023-08112-3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1471-2334</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="h">11</subfield></datafield></record></collection>
|
score |
7.4010057 |