Sensitivity optical non-linear measurement based on wide-band phase objects
On the basic that the phase object (PO) is the key optical device in the 4f imaging system, a modified high sensitivity optical nonlinear measurement technique with an absorptive homemade phase object (HPO) is reported in order to characterize the value of weak nonlinear refraction material. The abs...
Ausführliche Beschreibung
Autor*in: |
Zhangyang Shao [verfasserIn] Yong Yang [verfasserIn] Junyi Yang [verfasserIn] Wenfa Zhou [verfasserIn] Kun Liu [verfasserIn] Zhongguo Li [verfasserIn] Yu Fang [verfasserIn] Xingzhi Wu [verfasserIn] Yinglin Song [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Frontiers in Materials - Frontiers Media S.A., 2014, 10(2023) |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2023 |
Links: |
---|
DOI / URN: |
10.3389/fmats.2023.1144236 |
---|
Katalog-ID: |
DOAJ087795469 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ087795469 | ||
003 | DE-627 | ||
005 | 20230331021051.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230331s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3389/fmats.2023.1144236 |2 doi | |
035 | |a (DE-627)DOAJ087795469 | ||
035 | |a (DE-599)DOAJb82ae7773c3c4402beee1a29f08c8715 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Zhangyang Shao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Sensitivity optical non-linear measurement based on wide-band phase objects |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a On the basic that the phase object (PO) is the key optical device in the 4f imaging system, a modified high sensitivity optical nonlinear measurement technique with an absorptive homemade phase object (HPO) is reported in order to characterize the value of weak nonlinear refraction material. The absorptive HPO used in this technique is two transparent glass plates on which a liquid film between two pieces of transparent glasses is deposited and added a rotating object at the below HPO to modulate the phase of a PO. The measuring sensitivity can be improved by changing the transmittance of the absorptive HPO. Meanwhile, because the phase retardation of HPO can be continuously adjustable by modulate the rotating object, it makes the sensitivity of measurement at different wavelengths of laser optimal. Results show that the measuring sensitivity is improved 2-4 times compare with the conventional 4f imaging technique. Furthermore, the modified technique can be used to measure the spectrum of nonlinear refraction coefficients of materials at the continuous wavelength. This method further expands the 4f phase coherent imaging measurement technology, not only solves the deficiencies of the conventional phase object, but also improves the accuracy of the measurement. Experiment and theoretical analysis results are presented to validate our technique. | ||
650 | 4 | |a non-linear optical | |
650 | 4 | |a phase object | |
650 | 4 | |a 4f imaging | |
650 | 4 | |a non-linear refractive | |
650 | 4 | |a measure sensitivity | |
650 | 4 | |a continue wavelength | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
700 | 0 | |a Yong Yang |e verfasserin |4 aut | |
700 | 0 | |a Junyi Yang |e verfasserin |4 aut | |
700 | 0 | |a Wenfa Zhou |e verfasserin |4 aut | |
700 | 0 | |a Kun Liu |e verfasserin |4 aut | |
700 | 0 | |a Zhongguo Li |e verfasserin |4 aut | |
700 | 0 | |a Yu Fang |e verfasserin |4 aut | |
700 | 0 | |a Xingzhi Wu |e verfasserin |4 aut | |
700 | 0 | |a Yinglin Song |e verfasserin |4 aut | |
700 | 0 | |a Yinglin Song |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Frontiers in Materials |d Frontiers Media S.A., 2014 |g 10(2023) |w (DE-627)779920716 |w (DE-600)2759394-0 |x 22968016 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2023 |
856 | 4 | 0 | |u https://doi.org/10.3389/fmats.2023.1144236 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/b82ae7773c3c4402beee1a29f08c8715 |z kostenfrei |
856 | 4 | 0 | |u https://www.frontiersin.org/articles/10.3389/fmats.2023.1144236/full |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2296-8016 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2023 |
author_variant |
z s zs y y yy j y jy w z wz k l kl z l zl y f yf x w xw y s ys y s ys |
---|---|
matchkey_str |
article:22968016:2023----::estvtotclolnamaueetaeowd |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.3389/fmats.2023.1144236 doi (DE-627)DOAJ087795469 (DE-599)DOAJb82ae7773c3c4402beee1a29f08c8715 DE-627 ger DE-627 rakwb eng Zhangyang Shao verfasserin aut Sensitivity optical non-linear measurement based on wide-band phase objects 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier On the basic that the phase object (PO) is the key optical device in the 4f imaging system, a modified high sensitivity optical nonlinear measurement technique with an absorptive homemade phase object (HPO) is reported in order to characterize the value of weak nonlinear refraction material. The absorptive HPO used in this technique is two transparent glass plates on which a liquid film between two pieces of transparent glasses is deposited and added a rotating object at the below HPO to modulate the phase of a PO. The measuring sensitivity can be improved by changing the transmittance of the absorptive HPO. Meanwhile, because the phase retardation of HPO can be continuously adjustable by modulate the rotating object, it makes the sensitivity of measurement at different wavelengths of laser optimal. Results show that the measuring sensitivity is improved 2-4 times compare with the conventional 4f imaging technique. Furthermore, the modified technique can be used to measure the spectrum of nonlinear refraction coefficients of materials at the continuous wavelength. This method further expands the 4f phase coherent imaging measurement technology, not only solves the deficiencies of the conventional phase object, but also improves the accuracy of the measurement. Experiment and theoretical analysis results are presented to validate our technique. non-linear optical phase object 4f imaging non-linear refractive measure sensitivity continue wavelength Technology T Yong Yang verfasserin aut Junyi Yang verfasserin aut Wenfa Zhou verfasserin aut Kun Liu verfasserin aut Zhongguo Li verfasserin aut Yu Fang verfasserin aut Xingzhi Wu verfasserin aut Yinglin Song verfasserin aut Yinglin Song verfasserin aut In Frontiers in Materials Frontiers Media S.A., 2014 10(2023) (DE-627)779920716 (DE-600)2759394-0 22968016 nnns volume:10 year:2023 https://doi.org/10.3389/fmats.2023.1144236 kostenfrei https://doaj.org/article/b82ae7773c3c4402beee1a29f08c8715 kostenfrei https://www.frontiersin.org/articles/10.3389/fmats.2023.1144236/full kostenfrei https://doaj.org/toc/2296-8016 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2023 |
spelling |
10.3389/fmats.2023.1144236 doi (DE-627)DOAJ087795469 (DE-599)DOAJb82ae7773c3c4402beee1a29f08c8715 DE-627 ger DE-627 rakwb eng Zhangyang Shao verfasserin aut Sensitivity optical non-linear measurement based on wide-band phase objects 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier On the basic that the phase object (PO) is the key optical device in the 4f imaging system, a modified high sensitivity optical nonlinear measurement technique with an absorptive homemade phase object (HPO) is reported in order to characterize the value of weak nonlinear refraction material. The absorptive HPO used in this technique is two transparent glass plates on which a liquid film between two pieces of transparent glasses is deposited and added a rotating object at the below HPO to modulate the phase of a PO. The measuring sensitivity can be improved by changing the transmittance of the absorptive HPO. Meanwhile, because the phase retardation of HPO can be continuously adjustable by modulate the rotating object, it makes the sensitivity of measurement at different wavelengths of laser optimal. Results show that the measuring sensitivity is improved 2-4 times compare with the conventional 4f imaging technique. Furthermore, the modified technique can be used to measure the spectrum of nonlinear refraction coefficients of materials at the continuous wavelength. This method further expands the 4f phase coherent imaging measurement technology, not only solves the deficiencies of the conventional phase object, but also improves the accuracy of the measurement. Experiment and theoretical analysis results are presented to validate our technique. non-linear optical phase object 4f imaging non-linear refractive measure sensitivity continue wavelength Technology T Yong Yang verfasserin aut Junyi Yang verfasserin aut Wenfa Zhou verfasserin aut Kun Liu verfasserin aut Zhongguo Li verfasserin aut Yu Fang verfasserin aut Xingzhi Wu verfasserin aut Yinglin Song verfasserin aut Yinglin Song verfasserin aut In Frontiers in Materials Frontiers Media S.A., 2014 10(2023) (DE-627)779920716 (DE-600)2759394-0 22968016 nnns volume:10 year:2023 https://doi.org/10.3389/fmats.2023.1144236 kostenfrei https://doaj.org/article/b82ae7773c3c4402beee1a29f08c8715 kostenfrei https://www.frontiersin.org/articles/10.3389/fmats.2023.1144236/full kostenfrei https://doaj.org/toc/2296-8016 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2023 |
allfields_unstemmed |
10.3389/fmats.2023.1144236 doi (DE-627)DOAJ087795469 (DE-599)DOAJb82ae7773c3c4402beee1a29f08c8715 DE-627 ger DE-627 rakwb eng Zhangyang Shao verfasserin aut Sensitivity optical non-linear measurement based on wide-band phase objects 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier On the basic that the phase object (PO) is the key optical device in the 4f imaging system, a modified high sensitivity optical nonlinear measurement technique with an absorptive homemade phase object (HPO) is reported in order to characterize the value of weak nonlinear refraction material. The absorptive HPO used in this technique is two transparent glass plates on which a liquid film between two pieces of transparent glasses is deposited and added a rotating object at the below HPO to modulate the phase of a PO. The measuring sensitivity can be improved by changing the transmittance of the absorptive HPO. Meanwhile, because the phase retardation of HPO can be continuously adjustable by modulate the rotating object, it makes the sensitivity of measurement at different wavelengths of laser optimal. Results show that the measuring sensitivity is improved 2-4 times compare with the conventional 4f imaging technique. Furthermore, the modified technique can be used to measure the spectrum of nonlinear refraction coefficients of materials at the continuous wavelength. This method further expands the 4f phase coherent imaging measurement technology, not only solves the deficiencies of the conventional phase object, but also improves the accuracy of the measurement. Experiment and theoretical analysis results are presented to validate our technique. non-linear optical phase object 4f imaging non-linear refractive measure sensitivity continue wavelength Technology T Yong Yang verfasserin aut Junyi Yang verfasserin aut Wenfa Zhou verfasserin aut Kun Liu verfasserin aut Zhongguo Li verfasserin aut Yu Fang verfasserin aut Xingzhi Wu verfasserin aut Yinglin Song verfasserin aut Yinglin Song verfasserin aut In Frontiers in Materials Frontiers Media S.A., 2014 10(2023) (DE-627)779920716 (DE-600)2759394-0 22968016 nnns volume:10 year:2023 https://doi.org/10.3389/fmats.2023.1144236 kostenfrei https://doaj.org/article/b82ae7773c3c4402beee1a29f08c8715 kostenfrei https://www.frontiersin.org/articles/10.3389/fmats.2023.1144236/full kostenfrei https://doaj.org/toc/2296-8016 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2023 |
allfieldsGer |
10.3389/fmats.2023.1144236 doi (DE-627)DOAJ087795469 (DE-599)DOAJb82ae7773c3c4402beee1a29f08c8715 DE-627 ger DE-627 rakwb eng Zhangyang Shao verfasserin aut Sensitivity optical non-linear measurement based on wide-band phase objects 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier On the basic that the phase object (PO) is the key optical device in the 4f imaging system, a modified high sensitivity optical nonlinear measurement technique with an absorptive homemade phase object (HPO) is reported in order to characterize the value of weak nonlinear refraction material. The absorptive HPO used in this technique is two transparent glass plates on which a liquid film between two pieces of transparent glasses is deposited and added a rotating object at the below HPO to modulate the phase of a PO. The measuring sensitivity can be improved by changing the transmittance of the absorptive HPO. Meanwhile, because the phase retardation of HPO can be continuously adjustable by modulate the rotating object, it makes the sensitivity of measurement at different wavelengths of laser optimal. Results show that the measuring sensitivity is improved 2-4 times compare with the conventional 4f imaging technique. Furthermore, the modified technique can be used to measure the spectrum of nonlinear refraction coefficients of materials at the continuous wavelength. This method further expands the 4f phase coherent imaging measurement technology, not only solves the deficiencies of the conventional phase object, but also improves the accuracy of the measurement. Experiment and theoretical analysis results are presented to validate our technique. non-linear optical phase object 4f imaging non-linear refractive measure sensitivity continue wavelength Technology T Yong Yang verfasserin aut Junyi Yang verfasserin aut Wenfa Zhou verfasserin aut Kun Liu verfasserin aut Zhongguo Li verfasserin aut Yu Fang verfasserin aut Xingzhi Wu verfasserin aut Yinglin Song verfasserin aut Yinglin Song verfasserin aut In Frontiers in Materials Frontiers Media S.A., 2014 10(2023) (DE-627)779920716 (DE-600)2759394-0 22968016 nnns volume:10 year:2023 https://doi.org/10.3389/fmats.2023.1144236 kostenfrei https://doaj.org/article/b82ae7773c3c4402beee1a29f08c8715 kostenfrei https://www.frontiersin.org/articles/10.3389/fmats.2023.1144236/full kostenfrei https://doaj.org/toc/2296-8016 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2023 |
allfieldsSound |
10.3389/fmats.2023.1144236 doi (DE-627)DOAJ087795469 (DE-599)DOAJb82ae7773c3c4402beee1a29f08c8715 DE-627 ger DE-627 rakwb eng Zhangyang Shao verfasserin aut Sensitivity optical non-linear measurement based on wide-band phase objects 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier On the basic that the phase object (PO) is the key optical device in the 4f imaging system, a modified high sensitivity optical nonlinear measurement technique with an absorptive homemade phase object (HPO) is reported in order to characterize the value of weak nonlinear refraction material. The absorptive HPO used in this technique is two transparent glass plates on which a liquid film between two pieces of transparent glasses is deposited and added a rotating object at the below HPO to modulate the phase of a PO. The measuring sensitivity can be improved by changing the transmittance of the absorptive HPO. Meanwhile, because the phase retardation of HPO can be continuously adjustable by modulate the rotating object, it makes the sensitivity of measurement at different wavelengths of laser optimal. Results show that the measuring sensitivity is improved 2-4 times compare with the conventional 4f imaging technique. Furthermore, the modified technique can be used to measure the spectrum of nonlinear refraction coefficients of materials at the continuous wavelength. This method further expands the 4f phase coherent imaging measurement technology, not only solves the deficiencies of the conventional phase object, but also improves the accuracy of the measurement. Experiment and theoretical analysis results are presented to validate our technique. non-linear optical phase object 4f imaging non-linear refractive measure sensitivity continue wavelength Technology T Yong Yang verfasserin aut Junyi Yang verfasserin aut Wenfa Zhou verfasserin aut Kun Liu verfasserin aut Zhongguo Li verfasserin aut Yu Fang verfasserin aut Xingzhi Wu verfasserin aut Yinglin Song verfasserin aut Yinglin Song verfasserin aut In Frontiers in Materials Frontiers Media S.A., 2014 10(2023) (DE-627)779920716 (DE-600)2759394-0 22968016 nnns volume:10 year:2023 https://doi.org/10.3389/fmats.2023.1144236 kostenfrei https://doaj.org/article/b82ae7773c3c4402beee1a29f08c8715 kostenfrei https://www.frontiersin.org/articles/10.3389/fmats.2023.1144236/full kostenfrei https://doaj.org/toc/2296-8016 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2023 |
language |
English |
source |
In Frontiers in Materials 10(2023) volume:10 year:2023 |
sourceStr |
In Frontiers in Materials 10(2023) volume:10 year:2023 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
non-linear optical phase object 4f imaging non-linear refractive measure sensitivity continue wavelength Technology T |
isfreeaccess_bool |
true |
container_title |
Frontiers in Materials |
authorswithroles_txt_mv |
Zhangyang Shao @@aut@@ Yong Yang @@aut@@ Junyi Yang @@aut@@ Wenfa Zhou @@aut@@ Kun Liu @@aut@@ Zhongguo Li @@aut@@ Yu Fang @@aut@@ Xingzhi Wu @@aut@@ Yinglin Song @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
779920716 |
id |
DOAJ087795469 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ087795469</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331021051.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230331s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fmats.2023.1144236</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ087795469</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb82ae7773c3c4402beee1a29f08c8715</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Zhangyang Shao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sensitivity optical non-linear measurement based on wide-band phase objects</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">On the basic that the phase object (PO) is the key optical device in the 4f imaging system, a modified high sensitivity optical nonlinear measurement technique with an absorptive homemade phase object (HPO) is reported in order to characterize the value of weak nonlinear refraction material. The absorptive HPO used in this technique is two transparent glass plates on which a liquid film between two pieces of transparent glasses is deposited and added a rotating object at the below HPO to modulate the phase of a PO. The measuring sensitivity can be improved by changing the transmittance of the absorptive HPO. Meanwhile, because the phase retardation of HPO can be continuously adjustable by modulate the rotating object, it makes the sensitivity of measurement at different wavelengths of laser optimal. Results show that the measuring sensitivity is improved 2-4 times compare with the conventional 4f imaging technique. Furthermore, the modified technique can be used to measure the spectrum of nonlinear refraction coefficients of materials at the continuous wavelength. This method further expands the 4f phase coherent imaging measurement technology, not only solves the deficiencies of the conventional phase object, but also improves the accuracy of the measurement. Experiment and theoretical analysis results are presented to validate our technique.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">non-linear optical</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phase object</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">4f imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">non-linear refractive</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">measure sensitivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">continue wavelength</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yong Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Junyi Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenfa Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kun Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhongguo Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yu Fang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xingzhi Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yinglin Song</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yinglin Song</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Materials</subfield><subfield code="d">Frontiers Media S.A., 2014</subfield><subfield code="g">10(2023)</subfield><subfield code="w">(DE-627)779920716</subfield><subfield code="w">(DE-600)2759394-0</subfield><subfield code="x">22968016</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2023</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fmats.2023.1144236</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b82ae7773c3c4402beee1a29f08c8715</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/fmats.2023.1144236/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2296-8016</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2023</subfield></datafield></record></collection>
|
author |
Zhangyang Shao |
spellingShingle |
Zhangyang Shao misc non-linear optical misc phase object misc 4f imaging misc non-linear refractive misc measure sensitivity misc continue wavelength misc Technology misc T Sensitivity optical non-linear measurement based on wide-band phase objects |
authorStr |
Zhangyang Shao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)779920716 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
22968016 |
topic_title |
Sensitivity optical non-linear measurement based on wide-band phase objects non-linear optical phase object 4f imaging non-linear refractive measure sensitivity continue wavelength |
topic |
misc non-linear optical misc phase object misc 4f imaging misc non-linear refractive misc measure sensitivity misc continue wavelength misc Technology misc T |
topic_unstemmed |
misc non-linear optical misc phase object misc 4f imaging misc non-linear refractive misc measure sensitivity misc continue wavelength misc Technology misc T |
topic_browse |
misc non-linear optical misc phase object misc 4f imaging misc non-linear refractive misc measure sensitivity misc continue wavelength misc Technology misc T |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Frontiers in Materials |
hierarchy_parent_id |
779920716 |
hierarchy_top_title |
Frontiers in Materials |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)779920716 (DE-600)2759394-0 |
title |
Sensitivity optical non-linear measurement based on wide-band phase objects |
ctrlnum |
(DE-627)DOAJ087795469 (DE-599)DOAJb82ae7773c3c4402beee1a29f08c8715 |
title_full |
Sensitivity optical non-linear measurement based on wide-band phase objects |
author_sort |
Zhangyang Shao |
journal |
Frontiers in Materials |
journalStr |
Frontiers in Materials |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Zhangyang Shao Yong Yang Junyi Yang Wenfa Zhou Kun Liu Zhongguo Li Yu Fang Xingzhi Wu Yinglin Song |
container_volume |
10 |
format_se |
Elektronische Aufsätze |
author-letter |
Zhangyang Shao |
doi_str_mv |
10.3389/fmats.2023.1144236 |
author2-role |
verfasserin |
title_sort |
sensitivity optical non-linear measurement based on wide-band phase objects |
title_auth |
Sensitivity optical non-linear measurement based on wide-band phase objects |
abstract |
On the basic that the phase object (PO) is the key optical device in the 4f imaging system, a modified high sensitivity optical nonlinear measurement technique with an absorptive homemade phase object (HPO) is reported in order to characterize the value of weak nonlinear refraction material. The absorptive HPO used in this technique is two transparent glass plates on which a liquid film between two pieces of transparent glasses is deposited and added a rotating object at the below HPO to modulate the phase of a PO. The measuring sensitivity can be improved by changing the transmittance of the absorptive HPO. Meanwhile, because the phase retardation of HPO can be continuously adjustable by modulate the rotating object, it makes the sensitivity of measurement at different wavelengths of laser optimal. Results show that the measuring sensitivity is improved 2-4 times compare with the conventional 4f imaging technique. Furthermore, the modified technique can be used to measure the spectrum of nonlinear refraction coefficients of materials at the continuous wavelength. This method further expands the 4f phase coherent imaging measurement technology, not only solves the deficiencies of the conventional phase object, but also improves the accuracy of the measurement. Experiment and theoretical analysis results are presented to validate our technique. |
abstractGer |
On the basic that the phase object (PO) is the key optical device in the 4f imaging system, a modified high sensitivity optical nonlinear measurement technique with an absorptive homemade phase object (HPO) is reported in order to characterize the value of weak nonlinear refraction material. The absorptive HPO used in this technique is two transparent glass plates on which a liquid film between two pieces of transparent glasses is deposited and added a rotating object at the below HPO to modulate the phase of a PO. The measuring sensitivity can be improved by changing the transmittance of the absorptive HPO. Meanwhile, because the phase retardation of HPO can be continuously adjustable by modulate the rotating object, it makes the sensitivity of measurement at different wavelengths of laser optimal. Results show that the measuring sensitivity is improved 2-4 times compare with the conventional 4f imaging technique. Furthermore, the modified technique can be used to measure the spectrum of nonlinear refraction coefficients of materials at the continuous wavelength. This method further expands the 4f phase coherent imaging measurement technology, not only solves the deficiencies of the conventional phase object, but also improves the accuracy of the measurement. Experiment and theoretical analysis results are presented to validate our technique. |
abstract_unstemmed |
On the basic that the phase object (PO) is the key optical device in the 4f imaging system, a modified high sensitivity optical nonlinear measurement technique with an absorptive homemade phase object (HPO) is reported in order to characterize the value of weak nonlinear refraction material. The absorptive HPO used in this technique is two transparent glass plates on which a liquid film between two pieces of transparent glasses is deposited and added a rotating object at the below HPO to modulate the phase of a PO. The measuring sensitivity can be improved by changing the transmittance of the absorptive HPO. Meanwhile, because the phase retardation of HPO can be continuously adjustable by modulate the rotating object, it makes the sensitivity of measurement at different wavelengths of laser optimal. Results show that the measuring sensitivity is improved 2-4 times compare with the conventional 4f imaging technique. Furthermore, the modified technique can be used to measure the spectrum of nonlinear refraction coefficients of materials at the continuous wavelength. This method further expands the 4f phase coherent imaging measurement technology, not only solves the deficiencies of the conventional phase object, but also improves the accuracy of the measurement. Experiment and theoretical analysis results are presented to validate our technique. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Sensitivity optical non-linear measurement based on wide-band phase objects |
url |
https://doi.org/10.3389/fmats.2023.1144236 https://doaj.org/article/b82ae7773c3c4402beee1a29f08c8715 https://www.frontiersin.org/articles/10.3389/fmats.2023.1144236/full https://doaj.org/toc/2296-8016 |
remote_bool |
true |
author2 |
Yong Yang Junyi Yang Wenfa Zhou Kun Liu Zhongguo Li Yu Fang Xingzhi Wu Yinglin Song |
author2Str |
Yong Yang Junyi Yang Wenfa Zhou Kun Liu Zhongguo Li Yu Fang Xingzhi Wu Yinglin Song |
ppnlink |
779920716 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3389/fmats.2023.1144236 |
up_date |
2024-07-03T14:01:20.060Z |
_version_ |
1803566742312583168 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ087795469</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331021051.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230331s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fmats.2023.1144236</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ087795469</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb82ae7773c3c4402beee1a29f08c8715</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Zhangyang Shao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sensitivity optical non-linear measurement based on wide-band phase objects</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">On the basic that the phase object (PO) is the key optical device in the 4f imaging system, a modified high sensitivity optical nonlinear measurement technique with an absorptive homemade phase object (HPO) is reported in order to characterize the value of weak nonlinear refraction material. The absorptive HPO used in this technique is two transparent glass plates on which a liquid film between two pieces of transparent glasses is deposited and added a rotating object at the below HPO to modulate the phase of a PO. The measuring sensitivity can be improved by changing the transmittance of the absorptive HPO. Meanwhile, because the phase retardation of HPO can be continuously adjustable by modulate the rotating object, it makes the sensitivity of measurement at different wavelengths of laser optimal. Results show that the measuring sensitivity is improved 2-4 times compare with the conventional 4f imaging technique. Furthermore, the modified technique can be used to measure the spectrum of nonlinear refraction coefficients of materials at the continuous wavelength. This method further expands the 4f phase coherent imaging measurement technology, not only solves the deficiencies of the conventional phase object, but also improves the accuracy of the measurement. Experiment and theoretical analysis results are presented to validate our technique.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">non-linear optical</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phase object</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">4f imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">non-linear refractive</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">measure sensitivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">continue wavelength</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yong Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Junyi Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenfa Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kun Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhongguo Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yu Fang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xingzhi Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yinglin Song</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yinglin Song</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Materials</subfield><subfield code="d">Frontiers Media S.A., 2014</subfield><subfield code="g">10(2023)</subfield><subfield code="w">(DE-627)779920716</subfield><subfield code="w">(DE-600)2759394-0</subfield><subfield code="x">22968016</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2023</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fmats.2023.1144236</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b82ae7773c3c4402beee1a29f08c8715</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/fmats.2023.1144236/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2296-8016</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2023</subfield></datafield></record></collection>
|
score |
7.4009056 |