Simulation analysis model of high-speed motorized spindle structure based on thermal load optimization
High-end CNC machine tools' primary transmission mechanism is a high-speed electric spindle. Thermal displacement of the spindle occurs as a result of heat created inside the spindle during transmission, which has an impact on the machining precision of high-end CNC machine tools. Establishing...
Ausführliche Beschreibung
Autor*in: |
Li Zhaolong [verfasserIn] Zhu Wenming [verfasserIn] Zhu Bo [verfasserIn] Wang Baodong [verfasserIn] Wang Qinghai [verfasserIn] Du Junming [verfasserIn] Sun Benchao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
Thermal-solid coupling analysis |
---|
Übergeordnetes Werk: |
In: Case Studies in Thermal Engineering - Elsevier, 2015, 44(2023), Seite 102871- |
---|---|
Übergeordnetes Werk: |
volume:44 ; year:2023 ; pages:102871- |
Links: |
---|
DOI / URN: |
10.1016/j.csite.2023.102871 |
---|
Katalog-ID: |
DOAJ087849496 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ087849496 | ||
003 | DE-627 | ||
005 | 20230503031334.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230331s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.csite.2023.102871 |2 doi | |
035 | |a (DE-627)DOAJ087849496 | ||
035 | |a (DE-599)DOAJ7dde78f124e1419889b5a86f74a14b06 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1-2040 | |
100 | 0 | |a Li Zhaolong |e verfasserin |4 aut | |
245 | 1 | 0 | |a Simulation analysis model of high-speed motorized spindle structure based on thermal load optimization |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a High-end CNC machine tools' primary transmission mechanism is a high-speed electric spindle. Thermal displacement of the spindle occurs as a result of heat created inside the spindle during transmission, which has an impact on the machining precision of high-end CNC machine tools. Establishing a high-precision motorized spindle simulation model is crucial because it serves as a foundation for optimizing and testing the motorized spindle's construction and material, adjusting for thermal errors, and estimating its life. The thermal-solid coupling model of the motorized spindle is created by Ansys based on the experimental data of temperature and thermal displacement of the A02 motorized spindle and in accordance with the boundary conditions. The accuracy of front and rear bearings is 93.42% and 90.52%, respectively, when compared to experimental data, and the accuracy of axial thermal displacement is 95.16%. Finally, the motorized spindle is optimized to extend its service life after the thermal displacement, stress, and strain of the bearing are model. | ||
650 | 4 | |a High-speed electric spindles | |
650 | 4 | |a Finite element modeling | |
650 | 4 | |a Thermal-solid coupling analysis | |
650 | 4 | |a Bearing thermal analysis | |
650 | 4 | |a Spindle thermal characteristics | |
650 | 4 | |a Thermodynamic simulation | |
653 | 0 | |a Engineering (General). Civil engineering (General) | |
700 | 0 | |a Zhu Wenming |e verfasserin |4 aut | |
700 | 0 | |a Zhu Bo |e verfasserin |4 aut | |
700 | 0 | |a Wang Baodong |e verfasserin |4 aut | |
700 | 0 | |a Wang Qinghai |e verfasserin |4 aut | |
700 | 0 | |a Du Junming |e verfasserin |4 aut | |
700 | 0 | |a Sun Benchao |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Case Studies in Thermal Engineering |d Elsevier, 2015 |g 44(2023), Seite 102871- |w (DE-627)76809299X |w (DE-600)2732684-6 |x 2214157X |7 nnns |
773 | 1 | 8 | |g volume:44 |g year:2023 |g pages:102871- |
856 | 4 | 0 | |u https://doi.org/10.1016/j.csite.2023.102871 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/7dde78f124e1419889b5a86f74a14b06 |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S2214157X23001776 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2214-157X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 44 |j 2023 |h 102871- |
author_variant |
l z lz z w zw z b zb w b wb w q wq d j dj s b sb |
---|---|
matchkey_str |
article:2214157X:2023----::iuainnlssoeohgsedooiesidetutrbsdn |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TA |
publishDate |
2023 |
allfields |
10.1016/j.csite.2023.102871 doi (DE-627)DOAJ087849496 (DE-599)DOAJ7dde78f124e1419889b5a86f74a14b06 DE-627 ger DE-627 rakwb eng TA1-2040 Li Zhaolong verfasserin aut Simulation analysis model of high-speed motorized spindle structure based on thermal load optimization 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier High-end CNC machine tools' primary transmission mechanism is a high-speed electric spindle. Thermal displacement of the spindle occurs as a result of heat created inside the spindle during transmission, which has an impact on the machining precision of high-end CNC machine tools. Establishing a high-precision motorized spindle simulation model is crucial because it serves as a foundation for optimizing and testing the motorized spindle's construction and material, adjusting for thermal errors, and estimating its life. The thermal-solid coupling model of the motorized spindle is created by Ansys based on the experimental data of temperature and thermal displacement of the A02 motorized spindle and in accordance with the boundary conditions. The accuracy of front and rear bearings is 93.42% and 90.52%, respectively, when compared to experimental data, and the accuracy of axial thermal displacement is 95.16%. Finally, the motorized spindle is optimized to extend its service life after the thermal displacement, stress, and strain of the bearing are model. High-speed electric spindles Finite element modeling Thermal-solid coupling analysis Bearing thermal analysis Spindle thermal characteristics Thermodynamic simulation Engineering (General). Civil engineering (General) Zhu Wenming verfasserin aut Zhu Bo verfasserin aut Wang Baodong verfasserin aut Wang Qinghai verfasserin aut Du Junming verfasserin aut Sun Benchao verfasserin aut In Case Studies in Thermal Engineering Elsevier, 2015 44(2023), Seite 102871- (DE-627)76809299X (DE-600)2732684-6 2214157X nnns volume:44 year:2023 pages:102871- https://doi.org/10.1016/j.csite.2023.102871 kostenfrei https://doaj.org/article/7dde78f124e1419889b5a86f74a14b06 kostenfrei http://www.sciencedirect.com/science/article/pii/S2214157X23001776 kostenfrei https://doaj.org/toc/2214-157X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 44 2023 102871- |
spelling |
10.1016/j.csite.2023.102871 doi (DE-627)DOAJ087849496 (DE-599)DOAJ7dde78f124e1419889b5a86f74a14b06 DE-627 ger DE-627 rakwb eng TA1-2040 Li Zhaolong verfasserin aut Simulation analysis model of high-speed motorized spindle structure based on thermal load optimization 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier High-end CNC machine tools' primary transmission mechanism is a high-speed electric spindle. Thermal displacement of the spindle occurs as a result of heat created inside the spindle during transmission, which has an impact on the machining precision of high-end CNC machine tools. Establishing a high-precision motorized spindle simulation model is crucial because it serves as a foundation for optimizing and testing the motorized spindle's construction and material, adjusting for thermal errors, and estimating its life. The thermal-solid coupling model of the motorized spindle is created by Ansys based on the experimental data of temperature and thermal displacement of the A02 motorized spindle and in accordance with the boundary conditions. The accuracy of front and rear bearings is 93.42% and 90.52%, respectively, when compared to experimental data, and the accuracy of axial thermal displacement is 95.16%. Finally, the motorized spindle is optimized to extend its service life after the thermal displacement, stress, and strain of the bearing are model. High-speed electric spindles Finite element modeling Thermal-solid coupling analysis Bearing thermal analysis Spindle thermal characteristics Thermodynamic simulation Engineering (General). Civil engineering (General) Zhu Wenming verfasserin aut Zhu Bo verfasserin aut Wang Baodong verfasserin aut Wang Qinghai verfasserin aut Du Junming verfasserin aut Sun Benchao verfasserin aut In Case Studies in Thermal Engineering Elsevier, 2015 44(2023), Seite 102871- (DE-627)76809299X (DE-600)2732684-6 2214157X nnns volume:44 year:2023 pages:102871- https://doi.org/10.1016/j.csite.2023.102871 kostenfrei https://doaj.org/article/7dde78f124e1419889b5a86f74a14b06 kostenfrei http://www.sciencedirect.com/science/article/pii/S2214157X23001776 kostenfrei https://doaj.org/toc/2214-157X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 44 2023 102871- |
allfields_unstemmed |
10.1016/j.csite.2023.102871 doi (DE-627)DOAJ087849496 (DE-599)DOAJ7dde78f124e1419889b5a86f74a14b06 DE-627 ger DE-627 rakwb eng TA1-2040 Li Zhaolong verfasserin aut Simulation analysis model of high-speed motorized spindle structure based on thermal load optimization 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier High-end CNC machine tools' primary transmission mechanism is a high-speed electric spindle. Thermal displacement of the spindle occurs as a result of heat created inside the spindle during transmission, which has an impact on the machining precision of high-end CNC machine tools. Establishing a high-precision motorized spindle simulation model is crucial because it serves as a foundation for optimizing and testing the motorized spindle's construction and material, adjusting for thermal errors, and estimating its life. The thermal-solid coupling model of the motorized spindle is created by Ansys based on the experimental data of temperature and thermal displacement of the A02 motorized spindle and in accordance with the boundary conditions. The accuracy of front and rear bearings is 93.42% and 90.52%, respectively, when compared to experimental data, and the accuracy of axial thermal displacement is 95.16%. Finally, the motorized spindle is optimized to extend its service life after the thermal displacement, stress, and strain of the bearing are model. High-speed electric spindles Finite element modeling Thermal-solid coupling analysis Bearing thermal analysis Spindle thermal characteristics Thermodynamic simulation Engineering (General). Civil engineering (General) Zhu Wenming verfasserin aut Zhu Bo verfasserin aut Wang Baodong verfasserin aut Wang Qinghai verfasserin aut Du Junming verfasserin aut Sun Benchao verfasserin aut In Case Studies in Thermal Engineering Elsevier, 2015 44(2023), Seite 102871- (DE-627)76809299X (DE-600)2732684-6 2214157X nnns volume:44 year:2023 pages:102871- https://doi.org/10.1016/j.csite.2023.102871 kostenfrei https://doaj.org/article/7dde78f124e1419889b5a86f74a14b06 kostenfrei http://www.sciencedirect.com/science/article/pii/S2214157X23001776 kostenfrei https://doaj.org/toc/2214-157X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 44 2023 102871- |
allfieldsGer |
10.1016/j.csite.2023.102871 doi (DE-627)DOAJ087849496 (DE-599)DOAJ7dde78f124e1419889b5a86f74a14b06 DE-627 ger DE-627 rakwb eng TA1-2040 Li Zhaolong verfasserin aut Simulation analysis model of high-speed motorized spindle structure based on thermal load optimization 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier High-end CNC machine tools' primary transmission mechanism is a high-speed electric spindle. Thermal displacement of the spindle occurs as a result of heat created inside the spindle during transmission, which has an impact on the machining precision of high-end CNC machine tools. Establishing a high-precision motorized spindle simulation model is crucial because it serves as a foundation for optimizing and testing the motorized spindle's construction and material, adjusting for thermal errors, and estimating its life. The thermal-solid coupling model of the motorized spindle is created by Ansys based on the experimental data of temperature and thermal displacement of the A02 motorized spindle and in accordance with the boundary conditions. The accuracy of front and rear bearings is 93.42% and 90.52%, respectively, when compared to experimental data, and the accuracy of axial thermal displacement is 95.16%. Finally, the motorized spindle is optimized to extend its service life after the thermal displacement, stress, and strain of the bearing are model. High-speed electric spindles Finite element modeling Thermal-solid coupling analysis Bearing thermal analysis Spindle thermal characteristics Thermodynamic simulation Engineering (General). Civil engineering (General) Zhu Wenming verfasserin aut Zhu Bo verfasserin aut Wang Baodong verfasserin aut Wang Qinghai verfasserin aut Du Junming verfasserin aut Sun Benchao verfasserin aut In Case Studies in Thermal Engineering Elsevier, 2015 44(2023), Seite 102871- (DE-627)76809299X (DE-600)2732684-6 2214157X nnns volume:44 year:2023 pages:102871- https://doi.org/10.1016/j.csite.2023.102871 kostenfrei https://doaj.org/article/7dde78f124e1419889b5a86f74a14b06 kostenfrei http://www.sciencedirect.com/science/article/pii/S2214157X23001776 kostenfrei https://doaj.org/toc/2214-157X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 44 2023 102871- |
allfieldsSound |
10.1016/j.csite.2023.102871 doi (DE-627)DOAJ087849496 (DE-599)DOAJ7dde78f124e1419889b5a86f74a14b06 DE-627 ger DE-627 rakwb eng TA1-2040 Li Zhaolong verfasserin aut Simulation analysis model of high-speed motorized spindle structure based on thermal load optimization 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier High-end CNC machine tools' primary transmission mechanism is a high-speed electric spindle. Thermal displacement of the spindle occurs as a result of heat created inside the spindle during transmission, which has an impact on the machining precision of high-end CNC machine tools. Establishing a high-precision motorized spindle simulation model is crucial because it serves as a foundation for optimizing and testing the motorized spindle's construction and material, adjusting for thermal errors, and estimating its life. The thermal-solid coupling model of the motorized spindle is created by Ansys based on the experimental data of temperature and thermal displacement of the A02 motorized spindle and in accordance with the boundary conditions. The accuracy of front and rear bearings is 93.42% and 90.52%, respectively, when compared to experimental data, and the accuracy of axial thermal displacement is 95.16%. Finally, the motorized spindle is optimized to extend its service life after the thermal displacement, stress, and strain of the bearing are model. High-speed electric spindles Finite element modeling Thermal-solid coupling analysis Bearing thermal analysis Spindle thermal characteristics Thermodynamic simulation Engineering (General). Civil engineering (General) Zhu Wenming verfasserin aut Zhu Bo verfasserin aut Wang Baodong verfasserin aut Wang Qinghai verfasserin aut Du Junming verfasserin aut Sun Benchao verfasserin aut In Case Studies in Thermal Engineering Elsevier, 2015 44(2023), Seite 102871- (DE-627)76809299X (DE-600)2732684-6 2214157X nnns volume:44 year:2023 pages:102871- https://doi.org/10.1016/j.csite.2023.102871 kostenfrei https://doaj.org/article/7dde78f124e1419889b5a86f74a14b06 kostenfrei http://www.sciencedirect.com/science/article/pii/S2214157X23001776 kostenfrei https://doaj.org/toc/2214-157X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 44 2023 102871- |
language |
English |
source |
In Case Studies in Thermal Engineering 44(2023), Seite 102871- volume:44 year:2023 pages:102871- |
sourceStr |
In Case Studies in Thermal Engineering 44(2023), Seite 102871- volume:44 year:2023 pages:102871- |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
High-speed electric spindles Finite element modeling Thermal-solid coupling analysis Bearing thermal analysis Spindle thermal characteristics Thermodynamic simulation Engineering (General). Civil engineering (General) |
isfreeaccess_bool |
true |
container_title |
Case Studies in Thermal Engineering |
authorswithroles_txt_mv |
Li Zhaolong @@aut@@ Zhu Wenming @@aut@@ Zhu Bo @@aut@@ Wang Baodong @@aut@@ Wang Qinghai @@aut@@ Du Junming @@aut@@ Sun Benchao @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
76809299X |
id |
DOAJ087849496 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ087849496</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503031334.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230331s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.csite.2023.102871</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ087849496</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7dde78f124e1419889b5a86f74a14b06</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Li Zhaolong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Simulation analysis model of high-speed motorized spindle structure based on thermal load optimization</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">High-end CNC machine tools' primary transmission mechanism is a high-speed electric spindle. Thermal displacement of the spindle occurs as a result of heat created inside the spindle during transmission, which has an impact on the machining precision of high-end CNC machine tools. Establishing a high-precision motorized spindle simulation model is crucial because it serves as a foundation for optimizing and testing the motorized spindle's construction and material, adjusting for thermal errors, and estimating its life. The thermal-solid coupling model of the motorized spindle is created by Ansys based on the experimental data of temperature and thermal displacement of the A02 motorized spindle and in accordance with the boundary conditions. The accuracy of front and rear bearings is 93.42% and 90.52%, respectively, when compared to experimental data, and the accuracy of axial thermal displacement is 95.16%. Finally, the motorized spindle is optimized to extend its service life after the thermal displacement, stress, and strain of the bearing are model.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High-speed electric spindles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite element modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal-solid coupling analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bearing thermal analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spindle thermal characteristics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermodynamic simulation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhu Wenming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhu Bo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wang Baodong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wang Qinghai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Du Junming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sun Benchao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Case Studies in Thermal Engineering</subfield><subfield code="d">Elsevier, 2015</subfield><subfield code="g">44(2023), Seite 102871-</subfield><subfield code="w">(DE-627)76809299X</subfield><subfield code="w">(DE-600)2732684-6</subfield><subfield code="x">2214157X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:44</subfield><subfield code="g">year:2023</subfield><subfield code="g">pages:102871-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.csite.2023.102871</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7dde78f124e1419889b5a86f74a14b06</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2214157X23001776</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2214-157X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">44</subfield><subfield code="j">2023</subfield><subfield code="h">102871-</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Li Zhaolong |
spellingShingle |
Li Zhaolong misc TA1-2040 misc High-speed electric spindles misc Finite element modeling misc Thermal-solid coupling analysis misc Bearing thermal analysis misc Spindle thermal characteristics misc Thermodynamic simulation misc Engineering (General). Civil engineering (General) Simulation analysis model of high-speed motorized spindle structure based on thermal load optimization |
authorStr |
Li Zhaolong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)76809299X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1-2040 |
illustrated |
Not Illustrated |
issn |
2214157X |
topic_title |
TA1-2040 Simulation analysis model of high-speed motorized spindle structure based on thermal load optimization High-speed electric spindles Finite element modeling Thermal-solid coupling analysis Bearing thermal analysis Spindle thermal characteristics Thermodynamic simulation |
topic |
misc TA1-2040 misc High-speed electric spindles misc Finite element modeling misc Thermal-solid coupling analysis misc Bearing thermal analysis misc Spindle thermal characteristics misc Thermodynamic simulation misc Engineering (General). Civil engineering (General) |
topic_unstemmed |
misc TA1-2040 misc High-speed electric spindles misc Finite element modeling misc Thermal-solid coupling analysis misc Bearing thermal analysis misc Spindle thermal characteristics misc Thermodynamic simulation misc Engineering (General). Civil engineering (General) |
topic_browse |
misc TA1-2040 misc High-speed electric spindles misc Finite element modeling misc Thermal-solid coupling analysis misc Bearing thermal analysis misc Spindle thermal characteristics misc Thermodynamic simulation misc Engineering (General). Civil engineering (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Case Studies in Thermal Engineering |
hierarchy_parent_id |
76809299X |
hierarchy_top_title |
Case Studies in Thermal Engineering |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)76809299X (DE-600)2732684-6 |
title |
Simulation analysis model of high-speed motorized spindle structure based on thermal load optimization |
ctrlnum |
(DE-627)DOAJ087849496 (DE-599)DOAJ7dde78f124e1419889b5a86f74a14b06 |
title_full |
Simulation analysis model of high-speed motorized spindle structure based on thermal load optimization |
author_sort |
Li Zhaolong |
journal |
Case Studies in Thermal Engineering |
journalStr |
Case Studies in Thermal Engineering |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
102871 |
author_browse |
Li Zhaolong Zhu Wenming Zhu Bo Wang Baodong Wang Qinghai Du Junming Sun Benchao |
container_volume |
44 |
class |
TA1-2040 |
format_se |
Elektronische Aufsätze |
author-letter |
Li Zhaolong |
doi_str_mv |
10.1016/j.csite.2023.102871 |
author2-role |
verfasserin |
title_sort |
simulation analysis model of high-speed motorized spindle structure based on thermal load optimization |
callnumber |
TA1-2040 |
title_auth |
Simulation analysis model of high-speed motorized spindle structure based on thermal load optimization |
abstract |
High-end CNC machine tools' primary transmission mechanism is a high-speed electric spindle. Thermal displacement of the spindle occurs as a result of heat created inside the spindle during transmission, which has an impact on the machining precision of high-end CNC machine tools. Establishing a high-precision motorized spindle simulation model is crucial because it serves as a foundation for optimizing and testing the motorized spindle's construction and material, adjusting for thermal errors, and estimating its life. The thermal-solid coupling model of the motorized spindle is created by Ansys based on the experimental data of temperature and thermal displacement of the A02 motorized spindle and in accordance with the boundary conditions. The accuracy of front and rear bearings is 93.42% and 90.52%, respectively, when compared to experimental data, and the accuracy of axial thermal displacement is 95.16%. Finally, the motorized spindle is optimized to extend its service life after the thermal displacement, stress, and strain of the bearing are model. |
abstractGer |
High-end CNC machine tools' primary transmission mechanism is a high-speed electric spindle. Thermal displacement of the spindle occurs as a result of heat created inside the spindle during transmission, which has an impact on the machining precision of high-end CNC machine tools. Establishing a high-precision motorized spindle simulation model is crucial because it serves as a foundation for optimizing and testing the motorized spindle's construction and material, adjusting for thermal errors, and estimating its life. The thermal-solid coupling model of the motorized spindle is created by Ansys based on the experimental data of temperature and thermal displacement of the A02 motorized spindle and in accordance with the boundary conditions. The accuracy of front and rear bearings is 93.42% and 90.52%, respectively, when compared to experimental data, and the accuracy of axial thermal displacement is 95.16%. Finally, the motorized spindle is optimized to extend its service life after the thermal displacement, stress, and strain of the bearing are model. |
abstract_unstemmed |
High-end CNC machine tools' primary transmission mechanism is a high-speed electric spindle. Thermal displacement of the spindle occurs as a result of heat created inside the spindle during transmission, which has an impact on the machining precision of high-end CNC machine tools. Establishing a high-precision motorized spindle simulation model is crucial because it serves as a foundation for optimizing and testing the motorized spindle's construction and material, adjusting for thermal errors, and estimating its life. The thermal-solid coupling model of the motorized spindle is created by Ansys based on the experimental data of temperature and thermal displacement of the A02 motorized spindle and in accordance with the boundary conditions. The accuracy of front and rear bearings is 93.42% and 90.52%, respectively, when compared to experimental data, and the accuracy of axial thermal displacement is 95.16%. Finally, the motorized spindle is optimized to extend its service life after the thermal displacement, stress, and strain of the bearing are model. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Simulation analysis model of high-speed motorized spindle structure based on thermal load optimization |
url |
https://doi.org/10.1016/j.csite.2023.102871 https://doaj.org/article/7dde78f124e1419889b5a86f74a14b06 http://www.sciencedirect.com/science/article/pii/S2214157X23001776 https://doaj.org/toc/2214-157X |
remote_bool |
true |
author2 |
Zhu Wenming Zhu Bo Wang Baodong Wang Qinghai Du Junming Sun Benchao |
author2Str |
Zhu Wenming Zhu Bo Wang Baodong Wang Qinghai Du Junming Sun Benchao |
ppnlink |
76809299X |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.csite.2023.102871 |
callnumber-a |
TA1-2040 |
up_date |
2024-07-03T14:19:55.564Z |
_version_ |
1803567911993868288 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ087849496</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503031334.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230331s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.csite.2023.102871</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ087849496</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7dde78f124e1419889b5a86f74a14b06</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Li Zhaolong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Simulation analysis model of high-speed motorized spindle structure based on thermal load optimization</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">High-end CNC machine tools' primary transmission mechanism is a high-speed electric spindle. Thermal displacement of the spindle occurs as a result of heat created inside the spindle during transmission, which has an impact on the machining precision of high-end CNC machine tools. Establishing a high-precision motorized spindle simulation model is crucial because it serves as a foundation for optimizing and testing the motorized spindle's construction and material, adjusting for thermal errors, and estimating its life. The thermal-solid coupling model of the motorized spindle is created by Ansys based on the experimental data of temperature and thermal displacement of the A02 motorized spindle and in accordance with the boundary conditions. The accuracy of front and rear bearings is 93.42% and 90.52%, respectively, when compared to experimental data, and the accuracy of axial thermal displacement is 95.16%. Finally, the motorized spindle is optimized to extend its service life after the thermal displacement, stress, and strain of the bearing are model.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High-speed electric spindles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite element modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal-solid coupling analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bearing thermal analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spindle thermal characteristics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermodynamic simulation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhu Wenming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhu Bo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wang Baodong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wang Qinghai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Du Junming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sun Benchao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Case Studies in Thermal Engineering</subfield><subfield code="d">Elsevier, 2015</subfield><subfield code="g">44(2023), Seite 102871-</subfield><subfield code="w">(DE-627)76809299X</subfield><subfield code="w">(DE-600)2732684-6</subfield><subfield code="x">2214157X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:44</subfield><subfield code="g">year:2023</subfield><subfield code="g">pages:102871-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.csite.2023.102871</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7dde78f124e1419889b5a86f74a14b06</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2214157X23001776</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2214-157X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">44</subfield><subfield code="j">2023</subfield><subfield code="h">102871-</subfield></datafield></record></collection>
|
score |
7.401189 |