Graph-Based Profiling of Blockchain Oracles
The usage of blockchain technology has been significantly expanded with smart contracts and blockchain oracles. While smart contracts enables to automate the execution of an agreement between untrusted parties, oracles provide smart contracts with data external to a given blockchain, i.e., off-chain...
Ausführliche Beschreibung
Autor*in: |
Khaled Almi'Ani [verfasserIn] Young Choon Lee [verfasserIn] Tawfiq Alrawashdeh [verfasserIn] Amirmohammad Pasdar [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 11(2023), Seite 24995-25007 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2023 ; pages:24995-25007 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2023.3254535 |
---|
Katalog-ID: |
DOAJ08785628X |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ08785628X | ||
003 | DE-627 | ||
005 | 20230410103639.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230410s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2023.3254535 |2 doi | |
035 | |a (DE-627)DOAJ08785628X | ||
035 | |a (DE-599)DOAJfbf4c0d4c16c49459d66f3ac1bfe51a1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Khaled Almi'Ani |e verfasserin |4 aut | |
245 | 1 | 0 | |a Graph-Based Profiling of Blockchain Oracles |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The usage of blockchain technology has been significantly expanded with smart contracts and blockchain oracles. While smart contracts enables to automate the execution of an agreement between untrusted parties, oracles provide smart contracts with data external to a given blockchain, i.e., off-chain data. However, the validity and accuracy of such off-chain data can be questionable that compromises the transparency and immutability chacteristics of blockchain. Despite many studies on the trustworthiness of blockchain oracles, more precisely, off-chain data, their solutions are often ‘short-sighted’ and dependent on binary decisions. In this paper, we present a novel graph-based profiling method to determine the trustworthiness of blockchain oracles. We construct a graph with oracles as nodes and cumulative average discrepancies of validity and accuracy of data as edge weights. Our profiling method continues to update the graph, edge weights in particular, to distinguish trustworthy oracles. Clearly, this discourages the provision of false and inaccurate data. We have conducted an evaluation study to see the effectiveness of our proposed method, in which we have run the experiments utilizing the Ethereum network. Additionally, we have also calculated the cost of running these experiments. Consequently, our experiment results show that the proposed method achieves around 93% accuracy in identifying the trustworthiness of data sources. | ||
650 | 4 | |a The blockchain oracle problem | |
650 | 4 | |a smart contracts | |
650 | 4 | |a distributed ledger technology | |
650 | 4 | |a Ethereum | |
650 | 4 | |a decentralized applications | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Young Choon Lee |e verfasserin |4 aut | |
700 | 0 | |a Tawfiq Alrawashdeh |e verfasserin |4 aut | |
700 | 0 | |a Amirmohammad Pasdar |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 11(2023), Seite 24995-25007 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2023 |g pages:24995-25007 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2023.3254535 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/fbf4c0d4c16c49459d66f3ac1bfe51a1 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/10064295/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2023 |h 24995-25007 |
author_variant |
k a ka y c l ycl t a ta a p ap |
---|---|
matchkey_str |
article:21693536:2023----::rpbsdrflnobok |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TK |
publishDate |
2023 |
allfields |
10.1109/ACCESS.2023.3254535 doi (DE-627)DOAJ08785628X (DE-599)DOAJfbf4c0d4c16c49459d66f3ac1bfe51a1 DE-627 ger DE-627 rakwb eng TK1-9971 Khaled Almi'Ani verfasserin aut Graph-Based Profiling of Blockchain Oracles 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The usage of blockchain technology has been significantly expanded with smart contracts and blockchain oracles. While smart contracts enables to automate the execution of an agreement between untrusted parties, oracles provide smart contracts with data external to a given blockchain, i.e., off-chain data. However, the validity and accuracy of such off-chain data can be questionable that compromises the transparency and immutability chacteristics of blockchain. Despite many studies on the trustworthiness of blockchain oracles, more precisely, off-chain data, their solutions are often ‘short-sighted’ and dependent on binary decisions. In this paper, we present a novel graph-based profiling method to determine the trustworthiness of blockchain oracles. We construct a graph with oracles as nodes and cumulative average discrepancies of validity and accuracy of data as edge weights. Our profiling method continues to update the graph, edge weights in particular, to distinguish trustworthy oracles. Clearly, this discourages the provision of false and inaccurate data. We have conducted an evaluation study to see the effectiveness of our proposed method, in which we have run the experiments utilizing the Ethereum network. Additionally, we have also calculated the cost of running these experiments. Consequently, our experiment results show that the proposed method achieves around 93% accuracy in identifying the trustworthiness of data sources. The blockchain oracle problem smart contracts distributed ledger technology Ethereum decentralized applications Electrical engineering. Electronics. Nuclear engineering Young Choon Lee verfasserin aut Tawfiq Alrawashdeh verfasserin aut Amirmohammad Pasdar verfasserin aut In IEEE Access IEEE, 2014 11(2023), Seite 24995-25007 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:11 year:2023 pages:24995-25007 https://doi.org/10.1109/ACCESS.2023.3254535 kostenfrei https://doaj.org/article/fbf4c0d4c16c49459d66f3ac1bfe51a1 kostenfrei https://ieeexplore.ieee.org/document/10064295/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 24995-25007 |
spelling |
10.1109/ACCESS.2023.3254535 doi (DE-627)DOAJ08785628X (DE-599)DOAJfbf4c0d4c16c49459d66f3ac1bfe51a1 DE-627 ger DE-627 rakwb eng TK1-9971 Khaled Almi'Ani verfasserin aut Graph-Based Profiling of Blockchain Oracles 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The usage of blockchain technology has been significantly expanded with smart contracts and blockchain oracles. While smart contracts enables to automate the execution of an agreement between untrusted parties, oracles provide smart contracts with data external to a given blockchain, i.e., off-chain data. However, the validity and accuracy of such off-chain data can be questionable that compromises the transparency and immutability chacteristics of blockchain. Despite many studies on the trustworthiness of blockchain oracles, more precisely, off-chain data, their solutions are often ‘short-sighted’ and dependent on binary decisions. In this paper, we present a novel graph-based profiling method to determine the trustworthiness of blockchain oracles. We construct a graph with oracles as nodes and cumulative average discrepancies of validity and accuracy of data as edge weights. Our profiling method continues to update the graph, edge weights in particular, to distinguish trustworthy oracles. Clearly, this discourages the provision of false and inaccurate data. We have conducted an evaluation study to see the effectiveness of our proposed method, in which we have run the experiments utilizing the Ethereum network. Additionally, we have also calculated the cost of running these experiments. Consequently, our experiment results show that the proposed method achieves around 93% accuracy in identifying the trustworthiness of data sources. The blockchain oracle problem smart contracts distributed ledger technology Ethereum decentralized applications Electrical engineering. Electronics. Nuclear engineering Young Choon Lee verfasserin aut Tawfiq Alrawashdeh verfasserin aut Amirmohammad Pasdar verfasserin aut In IEEE Access IEEE, 2014 11(2023), Seite 24995-25007 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:11 year:2023 pages:24995-25007 https://doi.org/10.1109/ACCESS.2023.3254535 kostenfrei https://doaj.org/article/fbf4c0d4c16c49459d66f3ac1bfe51a1 kostenfrei https://ieeexplore.ieee.org/document/10064295/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 24995-25007 |
allfields_unstemmed |
10.1109/ACCESS.2023.3254535 doi (DE-627)DOAJ08785628X (DE-599)DOAJfbf4c0d4c16c49459d66f3ac1bfe51a1 DE-627 ger DE-627 rakwb eng TK1-9971 Khaled Almi'Ani verfasserin aut Graph-Based Profiling of Blockchain Oracles 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The usage of blockchain technology has been significantly expanded with smart contracts and blockchain oracles. While smart contracts enables to automate the execution of an agreement between untrusted parties, oracles provide smart contracts with data external to a given blockchain, i.e., off-chain data. However, the validity and accuracy of such off-chain data can be questionable that compromises the transparency and immutability chacteristics of blockchain. Despite many studies on the trustworthiness of blockchain oracles, more precisely, off-chain data, their solutions are often ‘short-sighted’ and dependent on binary decisions. In this paper, we present a novel graph-based profiling method to determine the trustworthiness of blockchain oracles. We construct a graph with oracles as nodes and cumulative average discrepancies of validity and accuracy of data as edge weights. Our profiling method continues to update the graph, edge weights in particular, to distinguish trustworthy oracles. Clearly, this discourages the provision of false and inaccurate data. We have conducted an evaluation study to see the effectiveness of our proposed method, in which we have run the experiments utilizing the Ethereum network. Additionally, we have also calculated the cost of running these experiments. Consequently, our experiment results show that the proposed method achieves around 93% accuracy in identifying the trustworthiness of data sources. The blockchain oracle problem smart contracts distributed ledger technology Ethereum decentralized applications Electrical engineering. Electronics. Nuclear engineering Young Choon Lee verfasserin aut Tawfiq Alrawashdeh verfasserin aut Amirmohammad Pasdar verfasserin aut In IEEE Access IEEE, 2014 11(2023), Seite 24995-25007 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:11 year:2023 pages:24995-25007 https://doi.org/10.1109/ACCESS.2023.3254535 kostenfrei https://doaj.org/article/fbf4c0d4c16c49459d66f3ac1bfe51a1 kostenfrei https://ieeexplore.ieee.org/document/10064295/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 24995-25007 |
allfieldsGer |
10.1109/ACCESS.2023.3254535 doi (DE-627)DOAJ08785628X (DE-599)DOAJfbf4c0d4c16c49459d66f3ac1bfe51a1 DE-627 ger DE-627 rakwb eng TK1-9971 Khaled Almi'Ani verfasserin aut Graph-Based Profiling of Blockchain Oracles 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The usage of blockchain technology has been significantly expanded with smart contracts and blockchain oracles. While smart contracts enables to automate the execution of an agreement between untrusted parties, oracles provide smart contracts with data external to a given blockchain, i.e., off-chain data. However, the validity and accuracy of such off-chain data can be questionable that compromises the transparency and immutability chacteristics of blockchain. Despite many studies on the trustworthiness of blockchain oracles, more precisely, off-chain data, their solutions are often ‘short-sighted’ and dependent on binary decisions. In this paper, we present a novel graph-based profiling method to determine the trustworthiness of blockchain oracles. We construct a graph with oracles as nodes and cumulative average discrepancies of validity and accuracy of data as edge weights. Our profiling method continues to update the graph, edge weights in particular, to distinguish trustworthy oracles. Clearly, this discourages the provision of false and inaccurate data. We have conducted an evaluation study to see the effectiveness of our proposed method, in which we have run the experiments utilizing the Ethereum network. Additionally, we have also calculated the cost of running these experiments. Consequently, our experiment results show that the proposed method achieves around 93% accuracy in identifying the trustworthiness of data sources. The blockchain oracle problem smart contracts distributed ledger technology Ethereum decentralized applications Electrical engineering. Electronics. Nuclear engineering Young Choon Lee verfasserin aut Tawfiq Alrawashdeh verfasserin aut Amirmohammad Pasdar verfasserin aut In IEEE Access IEEE, 2014 11(2023), Seite 24995-25007 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:11 year:2023 pages:24995-25007 https://doi.org/10.1109/ACCESS.2023.3254535 kostenfrei https://doaj.org/article/fbf4c0d4c16c49459d66f3ac1bfe51a1 kostenfrei https://ieeexplore.ieee.org/document/10064295/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 24995-25007 |
allfieldsSound |
10.1109/ACCESS.2023.3254535 doi (DE-627)DOAJ08785628X (DE-599)DOAJfbf4c0d4c16c49459d66f3ac1bfe51a1 DE-627 ger DE-627 rakwb eng TK1-9971 Khaled Almi'Ani verfasserin aut Graph-Based Profiling of Blockchain Oracles 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The usage of blockchain technology has been significantly expanded with smart contracts and blockchain oracles. While smart contracts enables to automate the execution of an agreement between untrusted parties, oracles provide smart contracts with data external to a given blockchain, i.e., off-chain data. However, the validity and accuracy of such off-chain data can be questionable that compromises the transparency and immutability chacteristics of blockchain. Despite many studies on the trustworthiness of blockchain oracles, more precisely, off-chain data, their solutions are often ‘short-sighted’ and dependent on binary decisions. In this paper, we present a novel graph-based profiling method to determine the trustworthiness of blockchain oracles. We construct a graph with oracles as nodes and cumulative average discrepancies of validity and accuracy of data as edge weights. Our profiling method continues to update the graph, edge weights in particular, to distinguish trustworthy oracles. Clearly, this discourages the provision of false and inaccurate data. We have conducted an evaluation study to see the effectiveness of our proposed method, in which we have run the experiments utilizing the Ethereum network. Additionally, we have also calculated the cost of running these experiments. Consequently, our experiment results show that the proposed method achieves around 93% accuracy in identifying the trustworthiness of data sources. The blockchain oracle problem smart contracts distributed ledger technology Ethereum decentralized applications Electrical engineering. Electronics. Nuclear engineering Young Choon Lee verfasserin aut Tawfiq Alrawashdeh verfasserin aut Amirmohammad Pasdar verfasserin aut In IEEE Access IEEE, 2014 11(2023), Seite 24995-25007 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:11 year:2023 pages:24995-25007 https://doi.org/10.1109/ACCESS.2023.3254535 kostenfrei https://doaj.org/article/fbf4c0d4c16c49459d66f3ac1bfe51a1 kostenfrei https://ieeexplore.ieee.org/document/10064295/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 24995-25007 |
language |
English |
source |
In IEEE Access 11(2023), Seite 24995-25007 volume:11 year:2023 pages:24995-25007 |
sourceStr |
In IEEE Access 11(2023), Seite 24995-25007 volume:11 year:2023 pages:24995-25007 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
The blockchain oracle problem smart contracts distributed ledger technology Ethereum decentralized applications Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Khaled Almi'Ani @@aut@@ Young Choon Lee @@aut@@ Tawfiq Alrawashdeh @@aut@@ Amirmohammad Pasdar @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ08785628X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ08785628X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230410103639.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230410s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2023.3254535</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ08785628X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJfbf4c0d4c16c49459d66f3ac1bfe51a1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Khaled Almi'Ani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Graph-Based Profiling of Blockchain Oracles</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The usage of blockchain technology has been significantly expanded with smart contracts and blockchain oracles. While smart contracts enables to automate the execution of an agreement between untrusted parties, oracles provide smart contracts with data external to a given blockchain, i.e., off-chain data. However, the validity and accuracy of such off-chain data can be questionable that compromises the transparency and immutability chacteristics of blockchain. Despite many studies on the trustworthiness of blockchain oracles, more precisely, off-chain data, their solutions are often ‘short-sighted’ and dependent on binary decisions. In this paper, we present a novel graph-based profiling method to determine the trustworthiness of blockchain oracles. We construct a graph with oracles as nodes and cumulative average discrepancies of validity and accuracy of data as edge weights. Our profiling method continues to update the graph, edge weights in particular, to distinguish trustworthy oracles. Clearly, this discourages the provision of false and inaccurate data. We have conducted an evaluation study to see the effectiveness of our proposed method, in which we have run the experiments utilizing the Ethereum network. Additionally, we have also calculated the cost of running these experiments. Consequently, our experiment results show that the proposed method achieves around 93% accuracy in identifying the trustworthiness of data sources.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">The blockchain oracle problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">smart contracts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">distributed ledger technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ethereum</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">decentralized applications</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Young Choon Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tawfiq Alrawashdeh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Amirmohammad Pasdar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">11(2023), Seite 24995-25007</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2023</subfield><subfield code="g">pages:24995-25007</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2023.3254535</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/fbf4c0d4c16c49459d66f3ac1bfe51a1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/10064295/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2023</subfield><subfield code="h">24995-25007</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Khaled Almi'Ani |
spellingShingle |
Khaled Almi'Ani misc TK1-9971 misc The blockchain oracle problem misc smart contracts misc distributed ledger technology misc Ethereum misc decentralized applications misc Electrical engineering. Electronics. Nuclear engineering Graph-Based Profiling of Blockchain Oracles |
authorStr |
Khaled Almi'Ani |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 Graph-Based Profiling of Blockchain Oracles The blockchain oracle problem smart contracts distributed ledger technology Ethereum decentralized applications |
topic |
misc TK1-9971 misc The blockchain oracle problem misc smart contracts misc distributed ledger technology misc Ethereum misc decentralized applications misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc The blockchain oracle problem misc smart contracts misc distributed ledger technology misc Ethereum misc decentralized applications misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc The blockchain oracle problem misc smart contracts misc distributed ledger technology misc Ethereum misc decentralized applications misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
Graph-Based Profiling of Blockchain Oracles |
ctrlnum |
(DE-627)DOAJ08785628X (DE-599)DOAJfbf4c0d4c16c49459d66f3ac1bfe51a1 |
title_full |
Graph-Based Profiling of Blockchain Oracles |
author_sort |
Khaled Almi'Ani |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
24995 |
author_browse |
Khaled Almi'Ani Young Choon Lee Tawfiq Alrawashdeh Amirmohammad Pasdar |
container_volume |
11 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Khaled Almi'Ani |
doi_str_mv |
10.1109/ACCESS.2023.3254535 |
author2-role |
verfasserin |
title_sort |
graph-based profiling of blockchain oracles |
callnumber |
TK1-9971 |
title_auth |
Graph-Based Profiling of Blockchain Oracles |
abstract |
The usage of blockchain technology has been significantly expanded with smart contracts and blockchain oracles. While smart contracts enables to automate the execution of an agreement between untrusted parties, oracles provide smart contracts with data external to a given blockchain, i.e., off-chain data. However, the validity and accuracy of such off-chain data can be questionable that compromises the transparency and immutability chacteristics of blockchain. Despite many studies on the trustworthiness of blockchain oracles, more precisely, off-chain data, their solutions are often ‘short-sighted’ and dependent on binary decisions. In this paper, we present a novel graph-based profiling method to determine the trustworthiness of blockchain oracles. We construct a graph with oracles as nodes and cumulative average discrepancies of validity and accuracy of data as edge weights. Our profiling method continues to update the graph, edge weights in particular, to distinguish trustworthy oracles. Clearly, this discourages the provision of false and inaccurate data. We have conducted an evaluation study to see the effectiveness of our proposed method, in which we have run the experiments utilizing the Ethereum network. Additionally, we have also calculated the cost of running these experiments. Consequently, our experiment results show that the proposed method achieves around 93% accuracy in identifying the trustworthiness of data sources. |
abstractGer |
The usage of blockchain technology has been significantly expanded with smart contracts and blockchain oracles. While smart contracts enables to automate the execution of an agreement between untrusted parties, oracles provide smart contracts with data external to a given blockchain, i.e., off-chain data. However, the validity and accuracy of such off-chain data can be questionable that compromises the transparency and immutability chacteristics of blockchain. Despite many studies on the trustworthiness of blockchain oracles, more precisely, off-chain data, their solutions are often ‘short-sighted’ and dependent on binary decisions. In this paper, we present a novel graph-based profiling method to determine the trustworthiness of blockchain oracles. We construct a graph with oracles as nodes and cumulative average discrepancies of validity and accuracy of data as edge weights. Our profiling method continues to update the graph, edge weights in particular, to distinguish trustworthy oracles. Clearly, this discourages the provision of false and inaccurate data. We have conducted an evaluation study to see the effectiveness of our proposed method, in which we have run the experiments utilizing the Ethereum network. Additionally, we have also calculated the cost of running these experiments. Consequently, our experiment results show that the proposed method achieves around 93% accuracy in identifying the trustworthiness of data sources. |
abstract_unstemmed |
The usage of blockchain technology has been significantly expanded with smart contracts and blockchain oracles. While smart contracts enables to automate the execution of an agreement between untrusted parties, oracles provide smart contracts with data external to a given blockchain, i.e., off-chain data. However, the validity and accuracy of such off-chain data can be questionable that compromises the transparency and immutability chacteristics of blockchain. Despite many studies on the trustworthiness of blockchain oracles, more precisely, off-chain data, their solutions are often ‘short-sighted’ and dependent on binary decisions. In this paper, we present a novel graph-based profiling method to determine the trustworthiness of blockchain oracles. We construct a graph with oracles as nodes and cumulative average discrepancies of validity and accuracy of data as edge weights. Our profiling method continues to update the graph, edge weights in particular, to distinguish trustworthy oracles. Clearly, this discourages the provision of false and inaccurate data. We have conducted an evaluation study to see the effectiveness of our proposed method, in which we have run the experiments utilizing the Ethereum network. Additionally, we have also calculated the cost of running these experiments. Consequently, our experiment results show that the proposed method achieves around 93% accuracy in identifying the trustworthiness of data sources. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Graph-Based Profiling of Blockchain Oracles |
url |
https://doi.org/10.1109/ACCESS.2023.3254535 https://doaj.org/article/fbf4c0d4c16c49459d66f3ac1bfe51a1 https://ieeexplore.ieee.org/document/10064295/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Young Choon Lee Tawfiq Alrawashdeh Amirmohammad Pasdar |
author2Str |
Young Choon Lee Tawfiq Alrawashdeh Amirmohammad Pasdar |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2023.3254535 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T14:22:18.193Z |
_version_ |
1803568061558554624 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ08785628X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230410103639.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230410s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2023.3254535</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ08785628X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJfbf4c0d4c16c49459d66f3ac1bfe51a1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Khaled Almi'Ani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Graph-Based Profiling of Blockchain Oracles</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The usage of blockchain technology has been significantly expanded with smart contracts and blockchain oracles. While smart contracts enables to automate the execution of an agreement between untrusted parties, oracles provide smart contracts with data external to a given blockchain, i.e., off-chain data. However, the validity and accuracy of such off-chain data can be questionable that compromises the transparency and immutability chacteristics of blockchain. Despite many studies on the trustworthiness of blockchain oracles, more precisely, off-chain data, their solutions are often ‘short-sighted’ and dependent on binary decisions. In this paper, we present a novel graph-based profiling method to determine the trustworthiness of blockchain oracles. We construct a graph with oracles as nodes and cumulative average discrepancies of validity and accuracy of data as edge weights. Our profiling method continues to update the graph, edge weights in particular, to distinguish trustworthy oracles. Clearly, this discourages the provision of false and inaccurate data. We have conducted an evaluation study to see the effectiveness of our proposed method, in which we have run the experiments utilizing the Ethereum network. Additionally, we have also calculated the cost of running these experiments. Consequently, our experiment results show that the proposed method achieves around 93% accuracy in identifying the trustworthiness of data sources.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">The blockchain oracle problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">smart contracts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">distributed ledger technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ethereum</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">decentralized applications</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Young Choon Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tawfiq Alrawashdeh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Amirmohammad Pasdar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">11(2023), Seite 24995-25007</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2023</subfield><subfield code="g">pages:24995-25007</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2023.3254535</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/fbf4c0d4c16c49459d66f3ac1bfe51a1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/10064295/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2023</subfield><subfield code="h">24995-25007</subfield></datafield></record></collection>
|
score |
7.4030848 |