Spatio-Temporal Bayesian Models for Malaria Risk Using Survey and Health Facility Routine Data in Rwanda
Introduction: Malaria is a life-threatening disease ocuring mainly in developing countries. Almost half of the world’s population was at risk of malaria in 2020. Children under five years age are among the population groups at considerably higher risk of contracting malaria and developing severe dis...
Ausführliche Beschreibung
Autor*in: |
Muhammed Semakula [verfasserIn] François Niragire [verfasserIn] Christel Faes [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: International Journal of Environmental Research and Public Health - MDPI AG, 2005, 20(2023), 4283, p 4283 |
---|---|
Übergeordnetes Werk: |
volume:20 ; year:2023 ; number:4283, p 4283 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.3390/ijerph20054283 |
---|
Katalog-ID: |
DOAJ088011682 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ088011682 | ||
003 | DE-627 | ||
005 | 20230501185149.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230410s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/ijerph20054283 |2 doi | |
035 | |a (DE-627)DOAJ088011682 | ||
035 | |a (DE-599)DOAJ5d242df14a0d4a85b099e02b00662a4a | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Muhammed Semakula |e verfasserin |4 aut | |
245 | 1 | 0 | |a Spatio-Temporal Bayesian Models for Malaria Risk Using Survey and Health Facility Routine Data in Rwanda |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Introduction: Malaria is a life-threatening disease ocuring mainly in developing countries. Almost half of the world’s population was at risk of malaria in 2020. Children under five years age are among the population groups at considerably higher risk of contracting malaria and developing severe disease. Most countries use Demographic and Health Survey (DHS) data for health programs and evaluation. However, malaria elimination strategies require a real-time, locally-tailored response based on malaria risk estimates at the lowest administrative levels. In this paper, we propose a two-step modeling framework using survey and routine data to improve estimates of malaria risk incidence in small areas and enable quantifying malaria trends. Methods: To improve estimates, we suggest an alternative approach to modeling malaria relative risk by combining information from survey and routine data through Bayesian spatio-temporal models. We model malaria risk using two steps: (1) fitting a binomial model to the survey data, and (2) extracting fitted values and using them in the Poison model as nonlinear effects in the routine data. We modeled malaria relative risk among under-five-year old children in Rwanda. Results: The estimation of malaria prevalence among children who are under five years old using Rwanda demographic and health survey data for the years 2019–2020 alone showed a higher prevalence in the southwest, central, and northeast of Rwanda than the rest of the country. Combining with routine health facility data, we detected clusters that were undetected based on the survey data alone. The proposed approach enabled spatial and temporal trend effect estimation of relative risk in local/small areas in Rwanda. Conclusions: The findings of this analysis suggest that using DHS combined with routine health services data for active malaria surveillance may provide provide more precise estimates of the malaria burden, which can be used toward malaria elimination targets. We compared findings from geostatistical modeling of malaria prevalence among under-five-year old children using DHS 2019–2020 and findings from malaria relative risk spatio-temporal modeling using both DHS survey 2019–2020 and health facility routine data. The strength of routinely collected data at small scales and high-quality data from the survey contributed to a better understanding of the malaria relative risk at the subnational level in Rwanda. | ||
650 | 4 | |a malaria | |
650 | 4 | |a survey data | |
650 | 4 | |a routine data | |
650 | 4 | |a spatio-temporal models | |
653 | 0 | |a Medicine | |
653 | 0 | |a R | |
700 | 0 | |a François Niragire |e verfasserin |4 aut | |
700 | 0 | |a Christel Faes |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t International Journal of Environmental Research and Public Health |d MDPI AG, 2005 |g 20(2023), 4283, p 4283 |w (DE-627)477992463 |w (DE-600)2175195-X |x 16604601 |7 nnns |
773 | 1 | 8 | |g volume:20 |g year:2023 |g number:4283, p 4283 |
856 | 4 | 0 | |u https://doi.org/10.3390/ijerph20054283 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/5d242df14a0d4a85b099e02b00662a4a |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1660-4601/20/5/4283 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1661-7827 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1660-4601 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 20 |j 2023 |e 4283, p 4283 |
author_variant |
m s ms f n fn c f cf |
---|---|
matchkey_str |
article:16604601:2023----::ptoeprlaeinoesomlraiksnsreadelhai |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.3390/ijerph20054283 doi (DE-627)DOAJ088011682 (DE-599)DOAJ5d242df14a0d4a85b099e02b00662a4a DE-627 ger DE-627 rakwb eng Muhammed Semakula verfasserin aut Spatio-Temporal Bayesian Models for Malaria Risk Using Survey and Health Facility Routine Data in Rwanda 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Introduction: Malaria is a life-threatening disease ocuring mainly in developing countries. Almost half of the world’s population was at risk of malaria in 2020. Children under five years age are among the population groups at considerably higher risk of contracting malaria and developing severe disease. Most countries use Demographic and Health Survey (DHS) data for health programs and evaluation. However, malaria elimination strategies require a real-time, locally-tailored response based on malaria risk estimates at the lowest administrative levels. In this paper, we propose a two-step modeling framework using survey and routine data to improve estimates of malaria risk incidence in small areas and enable quantifying malaria trends. Methods: To improve estimates, we suggest an alternative approach to modeling malaria relative risk by combining information from survey and routine data through Bayesian spatio-temporal models. We model malaria risk using two steps: (1) fitting a binomial model to the survey data, and (2) extracting fitted values and using them in the Poison model as nonlinear effects in the routine data. We modeled malaria relative risk among under-five-year old children in Rwanda. Results: The estimation of malaria prevalence among children who are under five years old using Rwanda demographic and health survey data for the years 2019–2020 alone showed a higher prevalence in the southwest, central, and northeast of Rwanda than the rest of the country. Combining with routine health facility data, we detected clusters that were undetected based on the survey data alone. The proposed approach enabled spatial and temporal trend effect estimation of relative risk in local/small areas in Rwanda. Conclusions: The findings of this analysis suggest that using DHS combined with routine health services data for active malaria surveillance may provide provide more precise estimates of the malaria burden, which can be used toward malaria elimination targets. We compared findings from geostatistical modeling of malaria prevalence among under-five-year old children using DHS 2019–2020 and findings from malaria relative risk spatio-temporal modeling using both DHS survey 2019–2020 and health facility routine data. The strength of routinely collected data at small scales and high-quality data from the survey contributed to a better understanding of the malaria relative risk at the subnational level in Rwanda. malaria survey data routine data spatio-temporal models Medicine R François Niragire verfasserin aut Christel Faes verfasserin aut In International Journal of Environmental Research and Public Health MDPI AG, 2005 20(2023), 4283, p 4283 (DE-627)477992463 (DE-600)2175195-X 16604601 nnns volume:20 year:2023 number:4283, p 4283 https://doi.org/10.3390/ijerph20054283 kostenfrei https://doaj.org/article/5d242df14a0d4a85b099e02b00662a4a kostenfrei https://www.mdpi.com/1660-4601/20/5/4283 kostenfrei https://doaj.org/toc/1661-7827 Journal toc kostenfrei https://doaj.org/toc/1660-4601 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2023 4283, p 4283 |
spelling |
10.3390/ijerph20054283 doi (DE-627)DOAJ088011682 (DE-599)DOAJ5d242df14a0d4a85b099e02b00662a4a DE-627 ger DE-627 rakwb eng Muhammed Semakula verfasserin aut Spatio-Temporal Bayesian Models for Malaria Risk Using Survey and Health Facility Routine Data in Rwanda 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Introduction: Malaria is a life-threatening disease ocuring mainly in developing countries. Almost half of the world’s population was at risk of malaria in 2020. Children under five years age are among the population groups at considerably higher risk of contracting malaria and developing severe disease. Most countries use Demographic and Health Survey (DHS) data for health programs and evaluation. However, malaria elimination strategies require a real-time, locally-tailored response based on malaria risk estimates at the lowest administrative levels. In this paper, we propose a two-step modeling framework using survey and routine data to improve estimates of malaria risk incidence in small areas and enable quantifying malaria trends. Methods: To improve estimates, we suggest an alternative approach to modeling malaria relative risk by combining information from survey and routine data through Bayesian spatio-temporal models. We model malaria risk using two steps: (1) fitting a binomial model to the survey data, and (2) extracting fitted values and using them in the Poison model as nonlinear effects in the routine data. We modeled malaria relative risk among under-five-year old children in Rwanda. Results: The estimation of malaria prevalence among children who are under five years old using Rwanda demographic and health survey data for the years 2019–2020 alone showed a higher prevalence in the southwest, central, and northeast of Rwanda than the rest of the country. Combining with routine health facility data, we detected clusters that were undetected based on the survey data alone. The proposed approach enabled spatial and temporal trend effect estimation of relative risk in local/small areas in Rwanda. Conclusions: The findings of this analysis suggest that using DHS combined with routine health services data for active malaria surveillance may provide provide more precise estimates of the malaria burden, which can be used toward malaria elimination targets. We compared findings from geostatistical modeling of malaria prevalence among under-five-year old children using DHS 2019–2020 and findings from malaria relative risk spatio-temporal modeling using both DHS survey 2019–2020 and health facility routine data. The strength of routinely collected data at small scales and high-quality data from the survey contributed to a better understanding of the malaria relative risk at the subnational level in Rwanda. malaria survey data routine data spatio-temporal models Medicine R François Niragire verfasserin aut Christel Faes verfasserin aut In International Journal of Environmental Research and Public Health MDPI AG, 2005 20(2023), 4283, p 4283 (DE-627)477992463 (DE-600)2175195-X 16604601 nnns volume:20 year:2023 number:4283, p 4283 https://doi.org/10.3390/ijerph20054283 kostenfrei https://doaj.org/article/5d242df14a0d4a85b099e02b00662a4a kostenfrei https://www.mdpi.com/1660-4601/20/5/4283 kostenfrei https://doaj.org/toc/1661-7827 Journal toc kostenfrei https://doaj.org/toc/1660-4601 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2023 4283, p 4283 |
allfields_unstemmed |
10.3390/ijerph20054283 doi (DE-627)DOAJ088011682 (DE-599)DOAJ5d242df14a0d4a85b099e02b00662a4a DE-627 ger DE-627 rakwb eng Muhammed Semakula verfasserin aut Spatio-Temporal Bayesian Models for Malaria Risk Using Survey and Health Facility Routine Data in Rwanda 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Introduction: Malaria is a life-threatening disease ocuring mainly in developing countries. Almost half of the world’s population was at risk of malaria in 2020. Children under five years age are among the population groups at considerably higher risk of contracting malaria and developing severe disease. Most countries use Demographic and Health Survey (DHS) data for health programs and evaluation. However, malaria elimination strategies require a real-time, locally-tailored response based on malaria risk estimates at the lowest administrative levels. In this paper, we propose a two-step modeling framework using survey and routine data to improve estimates of malaria risk incidence in small areas and enable quantifying malaria trends. Methods: To improve estimates, we suggest an alternative approach to modeling malaria relative risk by combining information from survey and routine data through Bayesian spatio-temporal models. We model malaria risk using two steps: (1) fitting a binomial model to the survey data, and (2) extracting fitted values and using them in the Poison model as nonlinear effects in the routine data. We modeled malaria relative risk among under-five-year old children in Rwanda. Results: The estimation of malaria prevalence among children who are under five years old using Rwanda demographic and health survey data for the years 2019–2020 alone showed a higher prevalence in the southwest, central, and northeast of Rwanda than the rest of the country. Combining with routine health facility data, we detected clusters that were undetected based on the survey data alone. The proposed approach enabled spatial and temporal trend effect estimation of relative risk in local/small areas in Rwanda. Conclusions: The findings of this analysis suggest that using DHS combined with routine health services data for active malaria surveillance may provide provide more precise estimates of the malaria burden, which can be used toward malaria elimination targets. We compared findings from geostatistical modeling of malaria prevalence among under-five-year old children using DHS 2019–2020 and findings from malaria relative risk spatio-temporal modeling using both DHS survey 2019–2020 and health facility routine data. The strength of routinely collected data at small scales and high-quality data from the survey contributed to a better understanding of the malaria relative risk at the subnational level in Rwanda. malaria survey data routine data spatio-temporal models Medicine R François Niragire verfasserin aut Christel Faes verfasserin aut In International Journal of Environmental Research and Public Health MDPI AG, 2005 20(2023), 4283, p 4283 (DE-627)477992463 (DE-600)2175195-X 16604601 nnns volume:20 year:2023 number:4283, p 4283 https://doi.org/10.3390/ijerph20054283 kostenfrei https://doaj.org/article/5d242df14a0d4a85b099e02b00662a4a kostenfrei https://www.mdpi.com/1660-4601/20/5/4283 kostenfrei https://doaj.org/toc/1661-7827 Journal toc kostenfrei https://doaj.org/toc/1660-4601 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2023 4283, p 4283 |
allfieldsGer |
10.3390/ijerph20054283 doi (DE-627)DOAJ088011682 (DE-599)DOAJ5d242df14a0d4a85b099e02b00662a4a DE-627 ger DE-627 rakwb eng Muhammed Semakula verfasserin aut Spatio-Temporal Bayesian Models for Malaria Risk Using Survey and Health Facility Routine Data in Rwanda 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Introduction: Malaria is a life-threatening disease ocuring mainly in developing countries. Almost half of the world’s population was at risk of malaria in 2020. Children under five years age are among the population groups at considerably higher risk of contracting malaria and developing severe disease. Most countries use Demographic and Health Survey (DHS) data for health programs and evaluation. However, malaria elimination strategies require a real-time, locally-tailored response based on malaria risk estimates at the lowest administrative levels. In this paper, we propose a two-step modeling framework using survey and routine data to improve estimates of malaria risk incidence in small areas and enable quantifying malaria trends. Methods: To improve estimates, we suggest an alternative approach to modeling malaria relative risk by combining information from survey and routine data through Bayesian spatio-temporal models. We model malaria risk using two steps: (1) fitting a binomial model to the survey data, and (2) extracting fitted values and using them in the Poison model as nonlinear effects in the routine data. We modeled malaria relative risk among under-five-year old children in Rwanda. Results: The estimation of malaria prevalence among children who are under five years old using Rwanda demographic and health survey data for the years 2019–2020 alone showed a higher prevalence in the southwest, central, and northeast of Rwanda than the rest of the country. Combining with routine health facility data, we detected clusters that were undetected based on the survey data alone. The proposed approach enabled spatial and temporal trend effect estimation of relative risk in local/small areas in Rwanda. Conclusions: The findings of this analysis suggest that using DHS combined with routine health services data for active malaria surveillance may provide provide more precise estimates of the malaria burden, which can be used toward malaria elimination targets. We compared findings from geostatistical modeling of malaria prevalence among under-five-year old children using DHS 2019–2020 and findings from malaria relative risk spatio-temporal modeling using both DHS survey 2019–2020 and health facility routine data. The strength of routinely collected data at small scales and high-quality data from the survey contributed to a better understanding of the malaria relative risk at the subnational level in Rwanda. malaria survey data routine data spatio-temporal models Medicine R François Niragire verfasserin aut Christel Faes verfasserin aut In International Journal of Environmental Research and Public Health MDPI AG, 2005 20(2023), 4283, p 4283 (DE-627)477992463 (DE-600)2175195-X 16604601 nnns volume:20 year:2023 number:4283, p 4283 https://doi.org/10.3390/ijerph20054283 kostenfrei https://doaj.org/article/5d242df14a0d4a85b099e02b00662a4a kostenfrei https://www.mdpi.com/1660-4601/20/5/4283 kostenfrei https://doaj.org/toc/1661-7827 Journal toc kostenfrei https://doaj.org/toc/1660-4601 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2023 4283, p 4283 |
allfieldsSound |
10.3390/ijerph20054283 doi (DE-627)DOAJ088011682 (DE-599)DOAJ5d242df14a0d4a85b099e02b00662a4a DE-627 ger DE-627 rakwb eng Muhammed Semakula verfasserin aut Spatio-Temporal Bayesian Models for Malaria Risk Using Survey and Health Facility Routine Data in Rwanda 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Introduction: Malaria is a life-threatening disease ocuring mainly in developing countries. Almost half of the world’s population was at risk of malaria in 2020. Children under five years age are among the population groups at considerably higher risk of contracting malaria and developing severe disease. Most countries use Demographic and Health Survey (DHS) data for health programs and evaluation. However, malaria elimination strategies require a real-time, locally-tailored response based on malaria risk estimates at the lowest administrative levels. In this paper, we propose a two-step modeling framework using survey and routine data to improve estimates of malaria risk incidence in small areas and enable quantifying malaria trends. Methods: To improve estimates, we suggest an alternative approach to modeling malaria relative risk by combining information from survey and routine data through Bayesian spatio-temporal models. We model malaria risk using two steps: (1) fitting a binomial model to the survey data, and (2) extracting fitted values and using them in the Poison model as nonlinear effects in the routine data. We modeled malaria relative risk among under-five-year old children in Rwanda. Results: The estimation of malaria prevalence among children who are under five years old using Rwanda demographic and health survey data for the years 2019–2020 alone showed a higher prevalence in the southwest, central, and northeast of Rwanda than the rest of the country. Combining with routine health facility data, we detected clusters that were undetected based on the survey data alone. The proposed approach enabled spatial and temporal trend effect estimation of relative risk in local/small areas in Rwanda. Conclusions: The findings of this analysis suggest that using DHS combined with routine health services data for active malaria surveillance may provide provide more precise estimates of the malaria burden, which can be used toward malaria elimination targets. We compared findings from geostatistical modeling of malaria prevalence among under-five-year old children using DHS 2019–2020 and findings from malaria relative risk spatio-temporal modeling using both DHS survey 2019–2020 and health facility routine data. The strength of routinely collected data at small scales and high-quality data from the survey contributed to a better understanding of the malaria relative risk at the subnational level in Rwanda. malaria survey data routine data spatio-temporal models Medicine R François Niragire verfasserin aut Christel Faes verfasserin aut In International Journal of Environmental Research and Public Health MDPI AG, 2005 20(2023), 4283, p 4283 (DE-627)477992463 (DE-600)2175195-X 16604601 nnns volume:20 year:2023 number:4283, p 4283 https://doi.org/10.3390/ijerph20054283 kostenfrei https://doaj.org/article/5d242df14a0d4a85b099e02b00662a4a kostenfrei https://www.mdpi.com/1660-4601/20/5/4283 kostenfrei https://doaj.org/toc/1661-7827 Journal toc kostenfrei https://doaj.org/toc/1660-4601 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2023 4283, p 4283 |
language |
English |
source |
In International Journal of Environmental Research and Public Health 20(2023), 4283, p 4283 volume:20 year:2023 number:4283, p 4283 |
sourceStr |
In International Journal of Environmental Research and Public Health 20(2023), 4283, p 4283 volume:20 year:2023 number:4283, p 4283 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
malaria survey data routine data spatio-temporal models Medicine R |
isfreeaccess_bool |
true |
container_title |
International Journal of Environmental Research and Public Health |
authorswithroles_txt_mv |
Muhammed Semakula @@aut@@ François Niragire @@aut@@ Christel Faes @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
477992463 |
id |
DOAJ088011682 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ088011682</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230501185149.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230410s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ijerph20054283</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ088011682</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5d242df14a0d4a85b099e02b00662a4a</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Muhammed Semakula</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spatio-Temporal Bayesian Models for Malaria Risk Using Survey and Health Facility Routine Data in Rwanda</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Introduction: Malaria is a life-threatening disease ocuring mainly in developing countries. Almost half of the world’s population was at risk of malaria in 2020. Children under five years age are among the population groups at considerably higher risk of contracting malaria and developing severe disease. Most countries use Demographic and Health Survey (DHS) data for health programs and evaluation. However, malaria elimination strategies require a real-time, locally-tailored response based on malaria risk estimates at the lowest administrative levels. In this paper, we propose a two-step modeling framework using survey and routine data to improve estimates of malaria risk incidence in small areas and enable quantifying malaria trends. Methods: To improve estimates, we suggest an alternative approach to modeling malaria relative risk by combining information from survey and routine data through Bayesian spatio-temporal models. We model malaria risk using two steps: (1) fitting a binomial model to the survey data, and (2) extracting fitted values and using them in the Poison model as nonlinear effects in the routine data. We modeled malaria relative risk among under-five-year old children in Rwanda. Results: The estimation of malaria prevalence among children who are under five years old using Rwanda demographic and health survey data for the years 2019–2020 alone showed a higher prevalence in the southwest, central, and northeast of Rwanda than the rest of the country. Combining with routine health facility data, we detected clusters that were undetected based on the survey data alone. The proposed approach enabled spatial and temporal trend effect estimation of relative risk in local/small areas in Rwanda. Conclusions: The findings of this analysis suggest that using DHS combined with routine health services data for active malaria surveillance may provide provide more precise estimates of the malaria burden, which can be used toward malaria elimination targets. We compared findings from geostatistical modeling of malaria prevalence among under-five-year old children using DHS 2019–2020 and findings from malaria relative risk spatio-temporal modeling using both DHS survey 2019–2020 and health facility routine data. The strength of routinely collected data at small scales and high-quality data from the survey contributed to a better understanding of the malaria relative risk at the subnational level in Rwanda.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">malaria</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">survey data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">routine data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spatio-temporal models</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">François Niragire</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Christel Faes</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International Journal of Environmental Research and Public Health</subfield><subfield code="d">MDPI AG, 2005</subfield><subfield code="g">20(2023), 4283, p 4283</subfield><subfield code="w">(DE-627)477992463</subfield><subfield code="w">(DE-600)2175195-X</subfield><subfield code="x">16604601</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:4283, p 4283</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ijerph20054283</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5d242df14a0d4a85b099e02b00662a4a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1660-4601/20/5/4283</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1661-7827</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1660-4601</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2023</subfield><subfield code="e">4283, p 4283</subfield></datafield></record></collection>
|
author |
Muhammed Semakula |
spellingShingle |
Muhammed Semakula misc malaria misc survey data misc routine data misc spatio-temporal models misc Medicine misc R Spatio-Temporal Bayesian Models for Malaria Risk Using Survey and Health Facility Routine Data in Rwanda |
authorStr |
Muhammed Semakula |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)477992463 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
16604601 |
topic_title |
Spatio-Temporal Bayesian Models for Malaria Risk Using Survey and Health Facility Routine Data in Rwanda malaria survey data routine data spatio-temporal models |
topic |
misc malaria misc survey data misc routine data misc spatio-temporal models misc Medicine misc R |
topic_unstemmed |
misc malaria misc survey data misc routine data misc spatio-temporal models misc Medicine misc R |
topic_browse |
misc malaria misc survey data misc routine data misc spatio-temporal models misc Medicine misc R |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International Journal of Environmental Research and Public Health |
hierarchy_parent_id |
477992463 |
hierarchy_top_title |
International Journal of Environmental Research and Public Health |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)477992463 (DE-600)2175195-X |
title |
Spatio-Temporal Bayesian Models for Malaria Risk Using Survey and Health Facility Routine Data in Rwanda |
ctrlnum |
(DE-627)DOAJ088011682 (DE-599)DOAJ5d242df14a0d4a85b099e02b00662a4a |
title_full |
Spatio-Temporal Bayesian Models for Malaria Risk Using Survey and Health Facility Routine Data in Rwanda |
author_sort |
Muhammed Semakula |
journal |
International Journal of Environmental Research and Public Health |
journalStr |
International Journal of Environmental Research and Public Health |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Muhammed Semakula François Niragire Christel Faes |
container_volume |
20 |
format_se |
Elektronische Aufsätze |
author-letter |
Muhammed Semakula |
doi_str_mv |
10.3390/ijerph20054283 |
author2-role |
verfasserin |
title_sort |
spatio-temporal bayesian models for malaria risk using survey and health facility routine data in rwanda |
title_auth |
Spatio-Temporal Bayesian Models for Malaria Risk Using Survey and Health Facility Routine Data in Rwanda |
abstract |
Introduction: Malaria is a life-threatening disease ocuring mainly in developing countries. Almost half of the world’s population was at risk of malaria in 2020. Children under five years age are among the population groups at considerably higher risk of contracting malaria and developing severe disease. Most countries use Demographic and Health Survey (DHS) data for health programs and evaluation. However, malaria elimination strategies require a real-time, locally-tailored response based on malaria risk estimates at the lowest administrative levels. In this paper, we propose a two-step modeling framework using survey and routine data to improve estimates of malaria risk incidence in small areas and enable quantifying malaria trends. Methods: To improve estimates, we suggest an alternative approach to modeling malaria relative risk by combining information from survey and routine data through Bayesian spatio-temporal models. We model malaria risk using two steps: (1) fitting a binomial model to the survey data, and (2) extracting fitted values and using them in the Poison model as nonlinear effects in the routine data. We modeled malaria relative risk among under-five-year old children in Rwanda. Results: The estimation of malaria prevalence among children who are under five years old using Rwanda demographic and health survey data for the years 2019–2020 alone showed a higher prevalence in the southwest, central, and northeast of Rwanda than the rest of the country. Combining with routine health facility data, we detected clusters that were undetected based on the survey data alone. The proposed approach enabled spatial and temporal trend effect estimation of relative risk in local/small areas in Rwanda. Conclusions: The findings of this analysis suggest that using DHS combined with routine health services data for active malaria surveillance may provide provide more precise estimates of the malaria burden, which can be used toward malaria elimination targets. We compared findings from geostatistical modeling of malaria prevalence among under-five-year old children using DHS 2019–2020 and findings from malaria relative risk spatio-temporal modeling using both DHS survey 2019–2020 and health facility routine data. The strength of routinely collected data at small scales and high-quality data from the survey contributed to a better understanding of the malaria relative risk at the subnational level in Rwanda. |
abstractGer |
Introduction: Malaria is a life-threatening disease ocuring mainly in developing countries. Almost half of the world’s population was at risk of malaria in 2020. Children under five years age are among the population groups at considerably higher risk of contracting malaria and developing severe disease. Most countries use Demographic and Health Survey (DHS) data for health programs and evaluation. However, malaria elimination strategies require a real-time, locally-tailored response based on malaria risk estimates at the lowest administrative levels. In this paper, we propose a two-step modeling framework using survey and routine data to improve estimates of malaria risk incidence in small areas and enable quantifying malaria trends. Methods: To improve estimates, we suggest an alternative approach to modeling malaria relative risk by combining information from survey and routine data through Bayesian spatio-temporal models. We model malaria risk using two steps: (1) fitting a binomial model to the survey data, and (2) extracting fitted values and using them in the Poison model as nonlinear effects in the routine data. We modeled malaria relative risk among under-five-year old children in Rwanda. Results: The estimation of malaria prevalence among children who are under five years old using Rwanda demographic and health survey data for the years 2019–2020 alone showed a higher prevalence in the southwest, central, and northeast of Rwanda than the rest of the country. Combining with routine health facility data, we detected clusters that were undetected based on the survey data alone. The proposed approach enabled spatial and temporal trend effect estimation of relative risk in local/small areas in Rwanda. Conclusions: The findings of this analysis suggest that using DHS combined with routine health services data for active malaria surveillance may provide provide more precise estimates of the malaria burden, which can be used toward malaria elimination targets. We compared findings from geostatistical modeling of malaria prevalence among under-five-year old children using DHS 2019–2020 and findings from malaria relative risk spatio-temporal modeling using both DHS survey 2019–2020 and health facility routine data. The strength of routinely collected data at small scales and high-quality data from the survey contributed to a better understanding of the malaria relative risk at the subnational level in Rwanda. |
abstract_unstemmed |
Introduction: Malaria is a life-threatening disease ocuring mainly in developing countries. Almost half of the world’s population was at risk of malaria in 2020. Children under five years age are among the population groups at considerably higher risk of contracting malaria and developing severe disease. Most countries use Demographic and Health Survey (DHS) data for health programs and evaluation. However, malaria elimination strategies require a real-time, locally-tailored response based on malaria risk estimates at the lowest administrative levels. In this paper, we propose a two-step modeling framework using survey and routine data to improve estimates of malaria risk incidence in small areas and enable quantifying malaria trends. Methods: To improve estimates, we suggest an alternative approach to modeling malaria relative risk by combining information from survey and routine data through Bayesian spatio-temporal models. We model malaria risk using two steps: (1) fitting a binomial model to the survey data, and (2) extracting fitted values and using them in the Poison model as nonlinear effects in the routine data. We modeled malaria relative risk among under-five-year old children in Rwanda. Results: The estimation of malaria prevalence among children who are under five years old using Rwanda demographic and health survey data for the years 2019–2020 alone showed a higher prevalence in the southwest, central, and northeast of Rwanda than the rest of the country. Combining with routine health facility data, we detected clusters that were undetected based on the survey data alone. The proposed approach enabled spatial and temporal trend effect estimation of relative risk in local/small areas in Rwanda. Conclusions: The findings of this analysis suggest that using DHS combined with routine health services data for active malaria surveillance may provide provide more precise estimates of the malaria burden, which can be used toward malaria elimination targets. We compared findings from geostatistical modeling of malaria prevalence among under-five-year old children using DHS 2019–2020 and findings from malaria relative risk spatio-temporal modeling using both DHS survey 2019–2020 and health facility routine data. The strength of routinely collected data at small scales and high-quality data from the survey contributed to a better understanding of the malaria relative risk at the subnational level in Rwanda. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
4283, p 4283 |
title_short |
Spatio-Temporal Bayesian Models for Malaria Risk Using Survey and Health Facility Routine Data in Rwanda |
url |
https://doi.org/10.3390/ijerph20054283 https://doaj.org/article/5d242df14a0d4a85b099e02b00662a4a https://www.mdpi.com/1660-4601/20/5/4283 https://doaj.org/toc/1661-7827 https://doaj.org/toc/1660-4601 |
remote_bool |
true |
author2 |
François Niragire Christel Faes |
author2Str |
François Niragire Christel Faes |
ppnlink |
477992463 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/ijerph20054283 |
up_date |
2024-07-03T15:16:42.437Z |
_version_ |
1803571484358082560 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ088011682</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230501185149.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230410s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ijerph20054283</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ088011682</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5d242df14a0d4a85b099e02b00662a4a</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Muhammed Semakula</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spatio-Temporal Bayesian Models for Malaria Risk Using Survey and Health Facility Routine Data in Rwanda</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Introduction: Malaria is a life-threatening disease ocuring mainly in developing countries. Almost half of the world’s population was at risk of malaria in 2020. Children under five years age are among the population groups at considerably higher risk of contracting malaria and developing severe disease. Most countries use Demographic and Health Survey (DHS) data for health programs and evaluation. However, malaria elimination strategies require a real-time, locally-tailored response based on malaria risk estimates at the lowest administrative levels. In this paper, we propose a two-step modeling framework using survey and routine data to improve estimates of malaria risk incidence in small areas and enable quantifying malaria trends. Methods: To improve estimates, we suggest an alternative approach to modeling malaria relative risk by combining information from survey and routine data through Bayesian spatio-temporal models. We model malaria risk using two steps: (1) fitting a binomial model to the survey data, and (2) extracting fitted values and using them in the Poison model as nonlinear effects in the routine data. We modeled malaria relative risk among under-five-year old children in Rwanda. Results: The estimation of malaria prevalence among children who are under five years old using Rwanda demographic and health survey data for the years 2019–2020 alone showed a higher prevalence in the southwest, central, and northeast of Rwanda than the rest of the country. Combining with routine health facility data, we detected clusters that were undetected based on the survey data alone. The proposed approach enabled spatial and temporal trend effect estimation of relative risk in local/small areas in Rwanda. Conclusions: The findings of this analysis suggest that using DHS combined with routine health services data for active malaria surveillance may provide provide more precise estimates of the malaria burden, which can be used toward malaria elimination targets. We compared findings from geostatistical modeling of malaria prevalence among under-five-year old children using DHS 2019–2020 and findings from malaria relative risk spatio-temporal modeling using both DHS survey 2019–2020 and health facility routine data. The strength of routinely collected data at small scales and high-quality data from the survey contributed to a better understanding of the malaria relative risk at the subnational level in Rwanda.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">malaria</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">survey data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">routine data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spatio-temporal models</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">François Niragire</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Christel Faes</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International Journal of Environmental Research and Public Health</subfield><subfield code="d">MDPI AG, 2005</subfield><subfield code="g">20(2023), 4283, p 4283</subfield><subfield code="w">(DE-627)477992463</subfield><subfield code="w">(DE-600)2175195-X</subfield><subfield code="x">16604601</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:4283, p 4283</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ijerph20054283</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5d242df14a0d4a85b099e02b00662a4a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1660-4601/20/5/4283</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1661-7827</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1660-4601</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2023</subfield><subfield code="e">4283, p 4283</subfield></datafield></record></collection>
|
score |
7.401573 |