Accurate carbon accounting based on industrial metabolism for the lean management of carbon emission
The carbon accounting plays a critical role in the lean carbon management and the policy formulation for industrial entities. The carbon accounting method based on emission factors offered by IPCC usually leads significant errors on the micro-level of the enterprise. For implementing a bottom-up lea...
Ausführliche Beschreibung
Autor*in: |
Shujun Yu [verfasserIn] Fangjia Lin [verfasserIn] Gang Zhao [verfasserIn] Junwen Chen [verfasserIn] Zequan Zhang [verfasserIn] Hua Zhang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Energy Reports - Elsevier, 2016, 9(2023), Seite 3872-3880 |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2023 ; pages:3872-3880 |
Links: |
---|
DOI / URN: |
10.1016/j.egyr.2023.02.081 |
---|
Katalog-ID: |
DOAJ088070743 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ088070743 | ||
003 | DE-627 | ||
005 | 20230502203909.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230410s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.egyr.2023.02.081 |2 doi | |
035 | |a (DE-627)DOAJ088070743 | ||
035 | |a (DE-599)DOAJ78a56434ba73412286d561b117ca746a | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Shujun Yu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Accurate carbon accounting based on industrial metabolism for the lean management of carbon emission |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The carbon accounting plays a critical role in the lean carbon management and the policy formulation for industrial entities. The carbon accounting method based on emission factors offered by IPCC usually leads significant errors on the micro-level of the enterprise. For implementing a bottom-up lean carbon management with higher accounting accuracy, an accurate carbon accounting model based on the industrial metabolism analysis is established on a S-system of dynamics with using the approximation method of power law and Michaelis–Menten law. It is used to predict the amounts of various resources and output products at the process nodes under predetermined simulation conditions. In the case study on a blast furnace ironmaking environment, it succeeds in accurately predicting the amounts of products including carbon emissions depending on the massive variables of materials and fuels. Further study on the residual analysis shows that mean errors of the CO2 and CO emissions are respectively 5.23% and 6.77% while using the industrial metabolism based carbon accounting model. This method better addresses the challenge of severely overestimation on carbon emissions in the carbon accounting of the ironmaking industrial environment. It offers a prospective and accurate carbon accounting method for further formulating more targeted policies. It facilitates the lean management of carbon emission at a micro-level of enterprise so that the climate change is mitigated from bottom to top. | ||
650 | 4 | |a Carbon management | |
650 | 4 | |a Carbon accounting | |
650 | 4 | |a Industrial metabolism | |
650 | 4 | |a S-system | |
650 | 4 | |a Power law approximation | |
650 | 4 | |a Michaelis–Menten law | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Fangjia Lin |e verfasserin |4 aut | |
700 | 0 | |a Gang Zhao |e verfasserin |4 aut | |
700 | 0 | |a Junwen Chen |e verfasserin |4 aut | |
700 | 0 | |a Zequan Zhang |e verfasserin |4 aut | |
700 | 0 | |a Hua Zhang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Energy Reports |d Elsevier, 2016 |g 9(2023), Seite 3872-3880 |w (DE-627)820689033 |w (DE-600)2814795-9 |x 23524847 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2023 |g pages:3872-3880 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.egyr.2023.02.081 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/78a56434ba73412286d561b117ca746a |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S2352484723002275 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2352-4847 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2023 |h 3872-3880 |
author_variant |
s y sy f l fl g z gz j c jc z z zz h z hz |
---|---|
matchkey_str |
article:23524847:2023----::cuaeabnconigaeoidsramtblsfrhlam |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TK |
publishDate |
2023 |
allfields |
10.1016/j.egyr.2023.02.081 doi (DE-627)DOAJ088070743 (DE-599)DOAJ78a56434ba73412286d561b117ca746a DE-627 ger DE-627 rakwb eng TK1-9971 Shujun Yu verfasserin aut Accurate carbon accounting based on industrial metabolism for the lean management of carbon emission 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The carbon accounting plays a critical role in the lean carbon management and the policy formulation for industrial entities. The carbon accounting method based on emission factors offered by IPCC usually leads significant errors on the micro-level of the enterprise. For implementing a bottom-up lean carbon management with higher accounting accuracy, an accurate carbon accounting model based on the industrial metabolism analysis is established on a S-system of dynamics with using the approximation method of power law and Michaelis–Menten law. It is used to predict the amounts of various resources and output products at the process nodes under predetermined simulation conditions. In the case study on a blast furnace ironmaking environment, it succeeds in accurately predicting the amounts of products including carbon emissions depending on the massive variables of materials and fuels. Further study on the residual analysis shows that mean errors of the CO2 and CO emissions are respectively 5.23% and 6.77% while using the industrial metabolism based carbon accounting model. This method better addresses the challenge of severely overestimation on carbon emissions in the carbon accounting of the ironmaking industrial environment. It offers a prospective and accurate carbon accounting method for further formulating more targeted policies. It facilitates the lean management of carbon emission at a micro-level of enterprise so that the climate change is mitigated from bottom to top. Carbon management Carbon accounting Industrial metabolism S-system Power law approximation Michaelis–Menten law Electrical engineering. Electronics. Nuclear engineering Fangjia Lin verfasserin aut Gang Zhao verfasserin aut Junwen Chen verfasserin aut Zequan Zhang verfasserin aut Hua Zhang verfasserin aut In Energy Reports Elsevier, 2016 9(2023), Seite 3872-3880 (DE-627)820689033 (DE-600)2814795-9 23524847 nnns volume:9 year:2023 pages:3872-3880 https://doi.org/10.1016/j.egyr.2023.02.081 kostenfrei https://doaj.org/article/78a56434ba73412286d561b117ca746a kostenfrei http://www.sciencedirect.com/science/article/pii/S2352484723002275 kostenfrei https://doaj.org/toc/2352-4847 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 9 2023 3872-3880 |
spelling |
10.1016/j.egyr.2023.02.081 doi (DE-627)DOAJ088070743 (DE-599)DOAJ78a56434ba73412286d561b117ca746a DE-627 ger DE-627 rakwb eng TK1-9971 Shujun Yu verfasserin aut Accurate carbon accounting based on industrial metabolism for the lean management of carbon emission 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The carbon accounting plays a critical role in the lean carbon management and the policy formulation for industrial entities. The carbon accounting method based on emission factors offered by IPCC usually leads significant errors on the micro-level of the enterprise. For implementing a bottom-up lean carbon management with higher accounting accuracy, an accurate carbon accounting model based on the industrial metabolism analysis is established on a S-system of dynamics with using the approximation method of power law and Michaelis–Menten law. It is used to predict the amounts of various resources and output products at the process nodes under predetermined simulation conditions. In the case study on a blast furnace ironmaking environment, it succeeds in accurately predicting the amounts of products including carbon emissions depending on the massive variables of materials and fuels. Further study on the residual analysis shows that mean errors of the CO2 and CO emissions are respectively 5.23% and 6.77% while using the industrial metabolism based carbon accounting model. This method better addresses the challenge of severely overestimation on carbon emissions in the carbon accounting of the ironmaking industrial environment. It offers a prospective and accurate carbon accounting method for further formulating more targeted policies. It facilitates the lean management of carbon emission at a micro-level of enterprise so that the climate change is mitigated from bottom to top. Carbon management Carbon accounting Industrial metabolism S-system Power law approximation Michaelis–Menten law Electrical engineering. Electronics. Nuclear engineering Fangjia Lin verfasserin aut Gang Zhao verfasserin aut Junwen Chen verfasserin aut Zequan Zhang verfasserin aut Hua Zhang verfasserin aut In Energy Reports Elsevier, 2016 9(2023), Seite 3872-3880 (DE-627)820689033 (DE-600)2814795-9 23524847 nnns volume:9 year:2023 pages:3872-3880 https://doi.org/10.1016/j.egyr.2023.02.081 kostenfrei https://doaj.org/article/78a56434ba73412286d561b117ca746a kostenfrei http://www.sciencedirect.com/science/article/pii/S2352484723002275 kostenfrei https://doaj.org/toc/2352-4847 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 9 2023 3872-3880 |
allfields_unstemmed |
10.1016/j.egyr.2023.02.081 doi (DE-627)DOAJ088070743 (DE-599)DOAJ78a56434ba73412286d561b117ca746a DE-627 ger DE-627 rakwb eng TK1-9971 Shujun Yu verfasserin aut Accurate carbon accounting based on industrial metabolism for the lean management of carbon emission 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The carbon accounting plays a critical role in the lean carbon management and the policy formulation for industrial entities. The carbon accounting method based on emission factors offered by IPCC usually leads significant errors on the micro-level of the enterprise. For implementing a bottom-up lean carbon management with higher accounting accuracy, an accurate carbon accounting model based on the industrial metabolism analysis is established on a S-system of dynamics with using the approximation method of power law and Michaelis–Menten law. It is used to predict the amounts of various resources and output products at the process nodes under predetermined simulation conditions. In the case study on a blast furnace ironmaking environment, it succeeds in accurately predicting the amounts of products including carbon emissions depending on the massive variables of materials and fuels. Further study on the residual analysis shows that mean errors of the CO2 and CO emissions are respectively 5.23% and 6.77% while using the industrial metabolism based carbon accounting model. This method better addresses the challenge of severely overestimation on carbon emissions in the carbon accounting of the ironmaking industrial environment. It offers a prospective and accurate carbon accounting method for further formulating more targeted policies. It facilitates the lean management of carbon emission at a micro-level of enterprise so that the climate change is mitigated from bottom to top. Carbon management Carbon accounting Industrial metabolism S-system Power law approximation Michaelis–Menten law Electrical engineering. Electronics. Nuclear engineering Fangjia Lin verfasserin aut Gang Zhao verfasserin aut Junwen Chen verfasserin aut Zequan Zhang verfasserin aut Hua Zhang verfasserin aut In Energy Reports Elsevier, 2016 9(2023), Seite 3872-3880 (DE-627)820689033 (DE-600)2814795-9 23524847 nnns volume:9 year:2023 pages:3872-3880 https://doi.org/10.1016/j.egyr.2023.02.081 kostenfrei https://doaj.org/article/78a56434ba73412286d561b117ca746a kostenfrei http://www.sciencedirect.com/science/article/pii/S2352484723002275 kostenfrei https://doaj.org/toc/2352-4847 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 9 2023 3872-3880 |
allfieldsGer |
10.1016/j.egyr.2023.02.081 doi (DE-627)DOAJ088070743 (DE-599)DOAJ78a56434ba73412286d561b117ca746a DE-627 ger DE-627 rakwb eng TK1-9971 Shujun Yu verfasserin aut Accurate carbon accounting based on industrial metabolism for the lean management of carbon emission 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The carbon accounting plays a critical role in the lean carbon management and the policy formulation for industrial entities. The carbon accounting method based on emission factors offered by IPCC usually leads significant errors on the micro-level of the enterprise. For implementing a bottom-up lean carbon management with higher accounting accuracy, an accurate carbon accounting model based on the industrial metabolism analysis is established on a S-system of dynamics with using the approximation method of power law and Michaelis–Menten law. It is used to predict the amounts of various resources and output products at the process nodes under predetermined simulation conditions. In the case study on a blast furnace ironmaking environment, it succeeds in accurately predicting the amounts of products including carbon emissions depending on the massive variables of materials and fuels. Further study on the residual analysis shows that mean errors of the CO2 and CO emissions are respectively 5.23% and 6.77% while using the industrial metabolism based carbon accounting model. This method better addresses the challenge of severely overestimation on carbon emissions in the carbon accounting of the ironmaking industrial environment. It offers a prospective and accurate carbon accounting method for further formulating more targeted policies. It facilitates the lean management of carbon emission at a micro-level of enterprise so that the climate change is mitigated from bottom to top. Carbon management Carbon accounting Industrial metabolism S-system Power law approximation Michaelis–Menten law Electrical engineering. Electronics. Nuclear engineering Fangjia Lin verfasserin aut Gang Zhao verfasserin aut Junwen Chen verfasserin aut Zequan Zhang verfasserin aut Hua Zhang verfasserin aut In Energy Reports Elsevier, 2016 9(2023), Seite 3872-3880 (DE-627)820689033 (DE-600)2814795-9 23524847 nnns volume:9 year:2023 pages:3872-3880 https://doi.org/10.1016/j.egyr.2023.02.081 kostenfrei https://doaj.org/article/78a56434ba73412286d561b117ca746a kostenfrei http://www.sciencedirect.com/science/article/pii/S2352484723002275 kostenfrei https://doaj.org/toc/2352-4847 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 9 2023 3872-3880 |
allfieldsSound |
10.1016/j.egyr.2023.02.081 doi (DE-627)DOAJ088070743 (DE-599)DOAJ78a56434ba73412286d561b117ca746a DE-627 ger DE-627 rakwb eng TK1-9971 Shujun Yu verfasserin aut Accurate carbon accounting based on industrial metabolism for the lean management of carbon emission 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The carbon accounting plays a critical role in the lean carbon management and the policy formulation for industrial entities. The carbon accounting method based on emission factors offered by IPCC usually leads significant errors on the micro-level of the enterprise. For implementing a bottom-up lean carbon management with higher accounting accuracy, an accurate carbon accounting model based on the industrial metabolism analysis is established on a S-system of dynamics with using the approximation method of power law and Michaelis–Menten law. It is used to predict the amounts of various resources and output products at the process nodes under predetermined simulation conditions. In the case study on a blast furnace ironmaking environment, it succeeds in accurately predicting the amounts of products including carbon emissions depending on the massive variables of materials and fuels. Further study on the residual analysis shows that mean errors of the CO2 and CO emissions are respectively 5.23% and 6.77% while using the industrial metabolism based carbon accounting model. This method better addresses the challenge of severely overestimation on carbon emissions in the carbon accounting of the ironmaking industrial environment. It offers a prospective and accurate carbon accounting method for further formulating more targeted policies. It facilitates the lean management of carbon emission at a micro-level of enterprise so that the climate change is mitigated from bottom to top. Carbon management Carbon accounting Industrial metabolism S-system Power law approximation Michaelis–Menten law Electrical engineering. Electronics. Nuclear engineering Fangjia Lin verfasserin aut Gang Zhao verfasserin aut Junwen Chen verfasserin aut Zequan Zhang verfasserin aut Hua Zhang verfasserin aut In Energy Reports Elsevier, 2016 9(2023), Seite 3872-3880 (DE-627)820689033 (DE-600)2814795-9 23524847 nnns volume:9 year:2023 pages:3872-3880 https://doi.org/10.1016/j.egyr.2023.02.081 kostenfrei https://doaj.org/article/78a56434ba73412286d561b117ca746a kostenfrei http://www.sciencedirect.com/science/article/pii/S2352484723002275 kostenfrei https://doaj.org/toc/2352-4847 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 9 2023 3872-3880 |
language |
English |
source |
In Energy Reports 9(2023), Seite 3872-3880 volume:9 year:2023 pages:3872-3880 |
sourceStr |
In Energy Reports 9(2023), Seite 3872-3880 volume:9 year:2023 pages:3872-3880 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Carbon management Carbon accounting Industrial metabolism S-system Power law approximation Michaelis–Menten law Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
Energy Reports |
authorswithroles_txt_mv |
Shujun Yu @@aut@@ Fangjia Lin @@aut@@ Gang Zhao @@aut@@ Junwen Chen @@aut@@ Zequan Zhang @@aut@@ Hua Zhang @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
820689033 |
id |
DOAJ088070743 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ088070743</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502203909.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230410s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.egyr.2023.02.081</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ088070743</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ78a56434ba73412286d561b117ca746a</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Shujun Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Accurate carbon accounting based on industrial metabolism for the lean management of carbon emission</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The carbon accounting plays a critical role in the lean carbon management and the policy formulation for industrial entities. The carbon accounting method based on emission factors offered by IPCC usually leads significant errors on the micro-level of the enterprise. For implementing a bottom-up lean carbon management with higher accounting accuracy, an accurate carbon accounting model based on the industrial metabolism analysis is established on a S-system of dynamics with using the approximation method of power law and Michaelis–Menten law. It is used to predict the amounts of various resources and output products at the process nodes under predetermined simulation conditions. In the case study on a blast furnace ironmaking environment, it succeeds in accurately predicting the amounts of products including carbon emissions depending on the massive variables of materials and fuels. Further study on the residual analysis shows that mean errors of the CO2 and CO emissions are respectively 5.23% and 6.77% while using the industrial metabolism based carbon accounting model. This method better addresses the challenge of severely overestimation on carbon emissions in the carbon accounting of the ironmaking industrial environment. It offers a prospective and accurate carbon accounting method for further formulating more targeted policies. It facilitates the lean management of carbon emission at a micro-level of enterprise so that the climate change is mitigated from bottom to top.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon accounting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Industrial metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">S-system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Power law approximation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Michaelis–Menten law</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fangjia Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gang Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Junwen Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zequan Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hua Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energy Reports</subfield><subfield code="d">Elsevier, 2016</subfield><subfield code="g">9(2023), Seite 3872-3880</subfield><subfield code="w">(DE-627)820689033</subfield><subfield code="w">(DE-600)2814795-9</subfield><subfield code="x">23524847</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2023</subfield><subfield code="g">pages:3872-3880</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.egyr.2023.02.081</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/78a56434ba73412286d561b117ca746a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2352484723002275</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2352-4847</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2023</subfield><subfield code="h">3872-3880</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Shujun Yu |
spellingShingle |
Shujun Yu misc TK1-9971 misc Carbon management misc Carbon accounting misc Industrial metabolism misc S-system misc Power law approximation misc Michaelis–Menten law misc Electrical engineering. Electronics. Nuclear engineering Accurate carbon accounting based on industrial metabolism for the lean management of carbon emission |
authorStr |
Shujun Yu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)820689033 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
23524847 |
topic_title |
TK1-9971 Accurate carbon accounting based on industrial metabolism for the lean management of carbon emission Carbon management Carbon accounting Industrial metabolism S-system Power law approximation Michaelis–Menten law |
topic |
misc TK1-9971 misc Carbon management misc Carbon accounting misc Industrial metabolism misc S-system misc Power law approximation misc Michaelis–Menten law misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Carbon management misc Carbon accounting misc Industrial metabolism misc S-system misc Power law approximation misc Michaelis–Menten law misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Carbon management misc Carbon accounting misc Industrial metabolism misc S-system misc Power law approximation misc Michaelis–Menten law misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Energy Reports |
hierarchy_parent_id |
820689033 |
hierarchy_top_title |
Energy Reports |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)820689033 (DE-600)2814795-9 |
title |
Accurate carbon accounting based on industrial metabolism for the lean management of carbon emission |
ctrlnum |
(DE-627)DOAJ088070743 (DE-599)DOAJ78a56434ba73412286d561b117ca746a |
title_full |
Accurate carbon accounting based on industrial metabolism for the lean management of carbon emission |
author_sort |
Shujun Yu |
journal |
Energy Reports |
journalStr |
Energy Reports |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
3872 |
author_browse |
Shujun Yu Fangjia Lin Gang Zhao Junwen Chen Zequan Zhang Hua Zhang |
container_volume |
9 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Shujun Yu |
doi_str_mv |
10.1016/j.egyr.2023.02.081 |
author2-role |
verfasserin |
title_sort |
accurate carbon accounting based on industrial metabolism for the lean management of carbon emission |
callnumber |
TK1-9971 |
title_auth |
Accurate carbon accounting based on industrial metabolism for the lean management of carbon emission |
abstract |
The carbon accounting plays a critical role in the lean carbon management and the policy formulation for industrial entities. The carbon accounting method based on emission factors offered by IPCC usually leads significant errors on the micro-level of the enterprise. For implementing a bottom-up lean carbon management with higher accounting accuracy, an accurate carbon accounting model based on the industrial metabolism analysis is established on a S-system of dynamics with using the approximation method of power law and Michaelis–Menten law. It is used to predict the amounts of various resources and output products at the process nodes under predetermined simulation conditions. In the case study on a blast furnace ironmaking environment, it succeeds in accurately predicting the amounts of products including carbon emissions depending on the massive variables of materials and fuels. Further study on the residual analysis shows that mean errors of the CO2 and CO emissions are respectively 5.23% and 6.77% while using the industrial metabolism based carbon accounting model. This method better addresses the challenge of severely overestimation on carbon emissions in the carbon accounting of the ironmaking industrial environment. It offers a prospective and accurate carbon accounting method for further formulating more targeted policies. It facilitates the lean management of carbon emission at a micro-level of enterprise so that the climate change is mitigated from bottom to top. |
abstractGer |
The carbon accounting plays a critical role in the lean carbon management and the policy formulation for industrial entities. The carbon accounting method based on emission factors offered by IPCC usually leads significant errors on the micro-level of the enterprise. For implementing a bottom-up lean carbon management with higher accounting accuracy, an accurate carbon accounting model based on the industrial metabolism analysis is established on a S-system of dynamics with using the approximation method of power law and Michaelis–Menten law. It is used to predict the amounts of various resources and output products at the process nodes under predetermined simulation conditions. In the case study on a blast furnace ironmaking environment, it succeeds in accurately predicting the amounts of products including carbon emissions depending on the massive variables of materials and fuels. Further study on the residual analysis shows that mean errors of the CO2 and CO emissions are respectively 5.23% and 6.77% while using the industrial metabolism based carbon accounting model. This method better addresses the challenge of severely overestimation on carbon emissions in the carbon accounting of the ironmaking industrial environment. It offers a prospective and accurate carbon accounting method for further formulating more targeted policies. It facilitates the lean management of carbon emission at a micro-level of enterprise so that the climate change is mitigated from bottom to top. |
abstract_unstemmed |
The carbon accounting plays a critical role in the lean carbon management and the policy formulation for industrial entities. The carbon accounting method based on emission factors offered by IPCC usually leads significant errors on the micro-level of the enterprise. For implementing a bottom-up lean carbon management with higher accounting accuracy, an accurate carbon accounting model based on the industrial metabolism analysis is established on a S-system of dynamics with using the approximation method of power law and Michaelis–Menten law. It is used to predict the amounts of various resources and output products at the process nodes under predetermined simulation conditions. In the case study on a blast furnace ironmaking environment, it succeeds in accurately predicting the amounts of products including carbon emissions depending on the massive variables of materials and fuels. Further study on the residual analysis shows that mean errors of the CO2 and CO emissions are respectively 5.23% and 6.77% while using the industrial metabolism based carbon accounting model. This method better addresses the challenge of severely overestimation on carbon emissions in the carbon accounting of the ironmaking industrial environment. It offers a prospective and accurate carbon accounting method for further formulating more targeted policies. It facilitates the lean management of carbon emission at a micro-level of enterprise so that the climate change is mitigated from bottom to top. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Accurate carbon accounting based on industrial metabolism for the lean management of carbon emission |
url |
https://doi.org/10.1016/j.egyr.2023.02.081 https://doaj.org/article/78a56434ba73412286d561b117ca746a http://www.sciencedirect.com/science/article/pii/S2352484723002275 https://doaj.org/toc/2352-4847 |
remote_bool |
true |
author2 |
Fangjia Lin Gang Zhao Junwen Chen Zequan Zhang Hua Zhang |
author2Str |
Fangjia Lin Gang Zhao Junwen Chen Zequan Zhang Hua Zhang |
ppnlink |
820689033 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.egyr.2023.02.081 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T15:39:13.402Z |
_version_ |
1803572900951752704 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ088070743</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502203909.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230410s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.egyr.2023.02.081</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ088070743</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ78a56434ba73412286d561b117ca746a</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Shujun Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Accurate carbon accounting based on industrial metabolism for the lean management of carbon emission</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The carbon accounting plays a critical role in the lean carbon management and the policy formulation for industrial entities. The carbon accounting method based on emission factors offered by IPCC usually leads significant errors on the micro-level of the enterprise. For implementing a bottom-up lean carbon management with higher accounting accuracy, an accurate carbon accounting model based on the industrial metabolism analysis is established on a S-system of dynamics with using the approximation method of power law and Michaelis–Menten law. It is used to predict the amounts of various resources and output products at the process nodes under predetermined simulation conditions. In the case study on a blast furnace ironmaking environment, it succeeds in accurately predicting the amounts of products including carbon emissions depending on the massive variables of materials and fuels. Further study on the residual analysis shows that mean errors of the CO2 and CO emissions are respectively 5.23% and 6.77% while using the industrial metabolism based carbon accounting model. This method better addresses the challenge of severely overestimation on carbon emissions in the carbon accounting of the ironmaking industrial environment. It offers a prospective and accurate carbon accounting method for further formulating more targeted policies. It facilitates the lean management of carbon emission at a micro-level of enterprise so that the climate change is mitigated from bottom to top.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon accounting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Industrial metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">S-system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Power law approximation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Michaelis–Menten law</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fangjia Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gang Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Junwen Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zequan Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hua Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energy Reports</subfield><subfield code="d">Elsevier, 2016</subfield><subfield code="g">9(2023), Seite 3872-3880</subfield><subfield code="w">(DE-627)820689033</subfield><subfield code="w">(DE-600)2814795-9</subfield><subfield code="x">23524847</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2023</subfield><subfield code="g">pages:3872-3880</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.egyr.2023.02.081</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/78a56434ba73412286d561b117ca746a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2352484723002275</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2352-4847</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2023</subfield><subfield code="h">3872-3880</subfield></datafield></record></collection>
|
score |
7.4032135 |