Stable anisotropic minimal hypersurfaces in $\mathbf {R}^{4}$
We show that a complete, two-sided, stable immersed anisotropic minimal hypersurface in $\mathbf {R}^4$ has intrinsic cubic volume growth, provided the parametric elliptic integral is $C^2$ -close to the area functional. We also obtain an interior volume upper bound for stable anisotropic...
Ausführliche Beschreibung
Autor*in: |
Otis Chodosh [verfasserIn] Chao Li [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Forum of Mathematics, Pi - Cambridge University Press, 2017, 11(2023) |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2023 |
Links: |
---|
DOI / URN: |
10.1017/fmp.2023.1 |
---|
Katalog-ID: |
DOAJ088111857 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ088111857 | ||
003 | DE-627 | ||
005 | 20230503024013.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230410s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1017/fmp.2023.1 |2 doi | |
035 | |a (DE-627)DOAJ088111857 | ||
035 | |a (DE-599)DOAJb74c876d146f4476aec343bd794c943e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA1-939 | |
100 | 0 | |a Otis Chodosh |e verfasserin |4 aut | |
245 | 1 | 0 | |a Stable anisotropic minimal hypersurfaces in $\mathbf {R}^{4}$ |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a We show that a complete, two-sided, stable immersed anisotropic minimal hypersurface in $\mathbf {R}^4$ has intrinsic cubic volume growth, provided the parametric elliptic integral is $C^2$ -close to the area functional. We also obtain an interior volume upper bound for stable anisotropic minimal hypersurfaces in the unit ball. We can estimate the constants explicitly in all of our results. In particular, this paper gives an alternative proof of our recent stable Bernstein theorem for minimal hypersurfaces in $\mathbf {R}^4$ . The new proof is more closely related to techniques from the study of strictly positive scalar curvature. | ||
650 | 4 | |a 53C42 | |
650 | 4 | |a 35J50 | |
650 | 4 | |a 53A10 | |
650 | 4 | |a 49F10 | |
653 | 0 | |a Mathematics | |
700 | 0 | |a Chao Li |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Forum of Mathematics, Pi |d Cambridge University Press, 2017 |g 11(2023) |w (DE-627)751861073 |w (DE-600)2723153-7 |x 20505086 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2023 |
856 | 4 | 0 | |u https://doi.org/10.1017/fmp.2023.1 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/b74c876d146f4476aec343bd794c943e |z kostenfrei |
856 | 4 | 0 | |u https://www.cambridge.org/core/product/identifier/S205050862300001X/type/journal_article |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2050-5086 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_374 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2023 |
author_variant |
o c oc c l cl |
---|---|
matchkey_str |
article:20505086:2023----::tbenstoimnmlyesr |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QA |
publishDate |
2023 |
allfields |
10.1017/fmp.2023.1 doi (DE-627)DOAJ088111857 (DE-599)DOAJb74c876d146f4476aec343bd794c943e DE-627 ger DE-627 rakwb eng QA1-939 Otis Chodosh verfasserin aut Stable anisotropic minimal hypersurfaces in $\mathbf {R}^{4}$ 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We show that a complete, two-sided, stable immersed anisotropic minimal hypersurface in $\mathbf {R}^4$ has intrinsic cubic volume growth, provided the parametric elliptic integral is $C^2$ -close to the area functional. We also obtain an interior volume upper bound for stable anisotropic minimal hypersurfaces in the unit ball. We can estimate the constants explicitly in all of our results. In particular, this paper gives an alternative proof of our recent stable Bernstein theorem for minimal hypersurfaces in $\mathbf {R}^4$ . The new proof is more closely related to techniques from the study of strictly positive scalar curvature. 53C42 35J50 53A10 49F10 Mathematics Chao Li verfasserin aut In Forum of Mathematics, Pi Cambridge University Press, 2017 11(2023) (DE-627)751861073 (DE-600)2723153-7 20505086 nnns volume:11 year:2023 https://doi.org/10.1017/fmp.2023.1 kostenfrei https://doaj.org/article/b74c876d146f4476aec343bd794c943e kostenfrei https://www.cambridge.org/core/product/identifier/S205050862300001X/type/journal_article kostenfrei https://doaj.org/toc/2050-5086 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 |
spelling |
10.1017/fmp.2023.1 doi (DE-627)DOAJ088111857 (DE-599)DOAJb74c876d146f4476aec343bd794c943e DE-627 ger DE-627 rakwb eng QA1-939 Otis Chodosh verfasserin aut Stable anisotropic minimal hypersurfaces in $\mathbf {R}^{4}$ 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We show that a complete, two-sided, stable immersed anisotropic minimal hypersurface in $\mathbf {R}^4$ has intrinsic cubic volume growth, provided the parametric elliptic integral is $C^2$ -close to the area functional. We also obtain an interior volume upper bound for stable anisotropic minimal hypersurfaces in the unit ball. We can estimate the constants explicitly in all of our results. In particular, this paper gives an alternative proof of our recent stable Bernstein theorem for minimal hypersurfaces in $\mathbf {R}^4$ . The new proof is more closely related to techniques from the study of strictly positive scalar curvature. 53C42 35J50 53A10 49F10 Mathematics Chao Li verfasserin aut In Forum of Mathematics, Pi Cambridge University Press, 2017 11(2023) (DE-627)751861073 (DE-600)2723153-7 20505086 nnns volume:11 year:2023 https://doi.org/10.1017/fmp.2023.1 kostenfrei https://doaj.org/article/b74c876d146f4476aec343bd794c943e kostenfrei https://www.cambridge.org/core/product/identifier/S205050862300001X/type/journal_article kostenfrei https://doaj.org/toc/2050-5086 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 |
allfields_unstemmed |
10.1017/fmp.2023.1 doi (DE-627)DOAJ088111857 (DE-599)DOAJb74c876d146f4476aec343bd794c943e DE-627 ger DE-627 rakwb eng QA1-939 Otis Chodosh verfasserin aut Stable anisotropic minimal hypersurfaces in $\mathbf {R}^{4}$ 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We show that a complete, two-sided, stable immersed anisotropic minimal hypersurface in $\mathbf {R}^4$ has intrinsic cubic volume growth, provided the parametric elliptic integral is $C^2$ -close to the area functional. We also obtain an interior volume upper bound for stable anisotropic minimal hypersurfaces in the unit ball. We can estimate the constants explicitly in all of our results. In particular, this paper gives an alternative proof of our recent stable Bernstein theorem for minimal hypersurfaces in $\mathbf {R}^4$ . The new proof is more closely related to techniques from the study of strictly positive scalar curvature. 53C42 35J50 53A10 49F10 Mathematics Chao Li verfasserin aut In Forum of Mathematics, Pi Cambridge University Press, 2017 11(2023) (DE-627)751861073 (DE-600)2723153-7 20505086 nnns volume:11 year:2023 https://doi.org/10.1017/fmp.2023.1 kostenfrei https://doaj.org/article/b74c876d146f4476aec343bd794c943e kostenfrei https://www.cambridge.org/core/product/identifier/S205050862300001X/type/journal_article kostenfrei https://doaj.org/toc/2050-5086 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 |
allfieldsGer |
10.1017/fmp.2023.1 doi (DE-627)DOAJ088111857 (DE-599)DOAJb74c876d146f4476aec343bd794c943e DE-627 ger DE-627 rakwb eng QA1-939 Otis Chodosh verfasserin aut Stable anisotropic minimal hypersurfaces in $\mathbf {R}^{4}$ 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We show that a complete, two-sided, stable immersed anisotropic minimal hypersurface in $\mathbf {R}^4$ has intrinsic cubic volume growth, provided the parametric elliptic integral is $C^2$ -close to the area functional. We also obtain an interior volume upper bound for stable anisotropic minimal hypersurfaces in the unit ball. We can estimate the constants explicitly in all of our results. In particular, this paper gives an alternative proof of our recent stable Bernstein theorem for minimal hypersurfaces in $\mathbf {R}^4$ . The new proof is more closely related to techniques from the study of strictly positive scalar curvature. 53C42 35J50 53A10 49F10 Mathematics Chao Li verfasserin aut In Forum of Mathematics, Pi Cambridge University Press, 2017 11(2023) (DE-627)751861073 (DE-600)2723153-7 20505086 nnns volume:11 year:2023 https://doi.org/10.1017/fmp.2023.1 kostenfrei https://doaj.org/article/b74c876d146f4476aec343bd794c943e kostenfrei https://www.cambridge.org/core/product/identifier/S205050862300001X/type/journal_article kostenfrei https://doaj.org/toc/2050-5086 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 |
allfieldsSound |
10.1017/fmp.2023.1 doi (DE-627)DOAJ088111857 (DE-599)DOAJb74c876d146f4476aec343bd794c943e DE-627 ger DE-627 rakwb eng QA1-939 Otis Chodosh verfasserin aut Stable anisotropic minimal hypersurfaces in $\mathbf {R}^{4}$ 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We show that a complete, two-sided, stable immersed anisotropic minimal hypersurface in $\mathbf {R}^4$ has intrinsic cubic volume growth, provided the parametric elliptic integral is $C^2$ -close to the area functional. We also obtain an interior volume upper bound for stable anisotropic minimal hypersurfaces in the unit ball. We can estimate the constants explicitly in all of our results. In particular, this paper gives an alternative proof of our recent stable Bernstein theorem for minimal hypersurfaces in $\mathbf {R}^4$ . The new proof is more closely related to techniques from the study of strictly positive scalar curvature. 53C42 35J50 53A10 49F10 Mathematics Chao Li verfasserin aut In Forum of Mathematics, Pi Cambridge University Press, 2017 11(2023) (DE-627)751861073 (DE-600)2723153-7 20505086 nnns volume:11 year:2023 https://doi.org/10.1017/fmp.2023.1 kostenfrei https://doaj.org/article/b74c876d146f4476aec343bd794c943e kostenfrei https://www.cambridge.org/core/product/identifier/S205050862300001X/type/journal_article kostenfrei https://doaj.org/toc/2050-5086 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 |
language |
English |
source |
In Forum of Mathematics, Pi 11(2023) volume:11 year:2023 |
sourceStr |
In Forum of Mathematics, Pi 11(2023) volume:11 year:2023 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
53C42 35J50 53A10 49F10 Mathematics |
isfreeaccess_bool |
true |
container_title |
Forum of Mathematics, Pi |
authorswithroles_txt_mv |
Otis Chodosh @@aut@@ Chao Li @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
751861073 |
id |
DOAJ088111857 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ088111857</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503024013.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230410s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/fmp.2023.1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ088111857</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb74c876d146f4476aec343bd794c943e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Otis Chodosh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stable anisotropic minimal hypersurfaces in $\mathbf {R}^{4}$</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We show that a complete, two-sided, stable immersed anisotropic minimal hypersurface in $\mathbf {R}^4$ has intrinsic cubic volume growth, provided the parametric elliptic integral is $C^2$ -close to the area functional. We also obtain an interior volume upper bound for stable anisotropic minimal hypersurfaces in the unit ball. We can estimate the constants explicitly in all of our results. In particular, this paper gives an alternative proof of our recent stable Bernstein theorem for minimal hypersurfaces in $\mathbf {R}^4$ . The new proof is more closely related to techniques from the study of strictly positive scalar curvature.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">53C42</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">35J50</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">53A10</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">49F10</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chao Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Forum of Mathematics, Pi</subfield><subfield code="d">Cambridge University Press, 2017</subfield><subfield code="g">11(2023)</subfield><subfield code="w">(DE-627)751861073</subfield><subfield code="w">(DE-600)2723153-7</subfield><subfield code="x">20505086</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2023</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/fmp.2023.1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b74c876d146f4476aec343bd794c943e</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.cambridge.org/core/product/identifier/S205050862300001X/type/journal_article</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2050-5086</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_374</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2023</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Otis Chodosh |
spellingShingle |
Otis Chodosh misc QA1-939 misc 53C42 misc 35J50 misc 53A10 misc 49F10 misc Mathematics Stable anisotropic minimal hypersurfaces in $\mathbf {R}^{4}$ |
authorStr |
Otis Chodosh |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)751861073 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA1-939 |
illustrated |
Not Illustrated |
issn |
20505086 |
topic_title |
QA1-939 Stable anisotropic minimal hypersurfaces in $\mathbf {R}^{4}$ 53C42 35J50 53A10 49F10 |
topic |
misc QA1-939 misc 53C42 misc 35J50 misc 53A10 misc 49F10 misc Mathematics |
topic_unstemmed |
misc QA1-939 misc 53C42 misc 35J50 misc 53A10 misc 49F10 misc Mathematics |
topic_browse |
misc QA1-939 misc 53C42 misc 35J50 misc 53A10 misc 49F10 misc Mathematics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Forum of Mathematics, Pi |
hierarchy_parent_id |
751861073 |
hierarchy_top_title |
Forum of Mathematics, Pi |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)751861073 (DE-600)2723153-7 |
title |
Stable anisotropic minimal hypersurfaces in $\mathbf {R}^{4}$ |
ctrlnum |
(DE-627)DOAJ088111857 (DE-599)DOAJb74c876d146f4476aec343bd794c943e |
title_full |
Stable anisotropic minimal hypersurfaces in $\mathbf {R}^{4}$ |
author_sort |
Otis Chodosh |
journal |
Forum of Mathematics, Pi |
journalStr |
Forum of Mathematics, Pi |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Otis Chodosh Chao Li |
container_volume |
11 |
class |
QA1-939 |
format_se |
Elektronische Aufsätze |
author-letter |
Otis Chodosh |
doi_str_mv |
10.1017/fmp.2023.1 |
author2-role |
verfasserin |
title_sort |
stable anisotropic minimal hypersurfaces in $\mathbf {r}^{4}$ |
callnumber |
QA1-939 |
title_auth |
Stable anisotropic minimal hypersurfaces in $\mathbf {R}^{4}$ |
abstract |
We show that a complete, two-sided, stable immersed anisotropic minimal hypersurface in $\mathbf {R}^4$ has intrinsic cubic volume growth, provided the parametric elliptic integral is $C^2$ -close to the area functional. We also obtain an interior volume upper bound for stable anisotropic minimal hypersurfaces in the unit ball. We can estimate the constants explicitly in all of our results. In particular, this paper gives an alternative proof of our recent stable Bernstein theorem for minimal hypersurfaces in $\mathbf {R}^4$ . The new proof is more closely related to techniques from the study of strictly positive scalar curvature. |
abstractGer |
We show that a complete, two-sided, stable immersed anisotropic minimal hypersurface in $\mathbf {R}^4$ has intrinsic cubic volume growth, provided the parametric elliptic integral is $C^2$ -close to the area functional. We also obtain an interior volume upper bound for stable anisotropic minimal hypersurfaces in the unit ball. We can estimate the constants explicitly in all of our results. In particular, this paper gives an alternative proof of our recent stable Bernstein theorem for minimal hypersurfaces in $\mathbf {R}^4$ . The new proof is more closely related to techniques from the study of strictly positive scalar curvature. |
abstract_unstemmed |
We show that a complete, two-sided, stable immersed anisotropic minimal hypersurface in $\mathbf {R}^4$ has intrinsic cubic volume growth, provided the parametric elliptic integral is $C^2$ -close to the area functional. We also obtain an interior volume upper bound for stable anisotropic minimal hypersurfaces in the unit ball. We can estimate the constants explicitly in all of our results. In particular, this paper gives an alternative proof of our recent stable Bernstein theorem for minimal hypersurfaces in $\mathbf {R}^4$ . The new proof is more closely related to techniques from the study of strictly positive scalar curvature. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Stable anisotropic minimal hypersurfaces in $\mathbf {R}^{4}$ |
url |
https://doi.org/10.1017/fmp.2023.1 https://doaj.org/article/b74c876d146f4476aec343bd794c943e https://www.cambridge.org/core/product/identifier/S205050862300001X/type/journal_article https://doaj.org/toc/2050-5086 |
remote_bool |
true |
author2 |
Chao Li |
author2Str |
Chao Li |
ppnlink |
751861073 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1017/fmp.2023.1 |
callnumber-a |
QA1-939 |
up_date |
2024-07-03T15:52:34.347Z |
_version_ |
1803573740798214144 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ088111857</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503024013.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230410s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/fmp.2023.1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ088111857</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb74c876d146f4476aec343bd794c943e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Otis Chodosh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stable anisotropic minimal hypersurfaces in $\mathbf {R}^{4}$</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We show that a complete, two-sided, stable immersed anisotropic minimal hypersurface in $\mathbf {R}^4$ has intrinsic cubic volume growth, provided the parametric elliptic integral is $C^2$ -close to the area functional. We also obtain an interior volume upper bound for stable anisotropic minimal hypersurfaces in the unit ball. We can estimate the constants explicitly in all of our results. In particular, this paper gives an alternative proof of our recent stable Bernstein theorem for minimal hypersurfaces in $\mathbf {R}^4$ . The new proof is more closely related to techniques from the study of strictly positive scalar curvature.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">53C42</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">35J50</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">53A10</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">49F10</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chao Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Forum of Mathematics, Pi</subfield><subfield code="d">Cambridge University Press, 2017</subfield><subfield code="g">11(2023)</subfield><subfield code="w">(DE-627)751861073</subfield><subfield code="w">(DE-600)2723153-7</subfield><subfield code="x">20505086</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2023</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/fmp.2023.1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b74c876d146f4476aec343bd794c943e</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.cambridge.org/core/product/identifier/S205050862300001X/type/journal_article</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2050-5086</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_374</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2023</subfield></datafield></record></collection>
|
score |
7.4005327 |