Hourly electricity price forecast for short-and long-term, using deep neural networks
Despite the practical importance of accurate long-term electricity price forecast with high resolution - and the significant need for that - only small percentage of the tremendous papers on energy price forecast attempted to target this topic. Its reason can be the high volatility of electricity pr...
Ausführliche Beschreibung
Autor*in: |
Dombi Gergely [verfasserIn] Dulai Tibor [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Acta Universitatis Sapientiae: Informatica - Sciendo, 2015, 14(2022), 2, Seite 208-222 |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:2022 ; number:2 ; pages:208-222 |
Links: |
---|
DOI / URN: |
10.2478/ausi-2022-0013 |
---|
Katalog-ID: |
DOAJ088252221 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ088252221 | ||
003 | DE-627 | ||
005 | 20230410111011.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230410s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.2478/ausi-2022-0013 |2 doi | |
035 | |a (DE-627)DOAJ088252221 | ||
035 | |a (DE-599)DOAJf050e029d5734f9190576759ed5ae73f | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA75.5-76.95 | |
100 | 0 | |a Dombi Gergely |e verfasserin |4 aut | |
245 | 1 | 0 | |a Hourly electricity price forecast for short-and long-term, using deep neural networks |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Despite the practical importance of accurate long-term electricity price forecast with high resolution - and the significant need for that - only small percentage of the tremendous papers on energy price forecast attempted to target this topic. Its reason can be the high volatility of electricity prices and the hidden – and often unpredictable – relations with its influencing factors. | ||
650 | 4 | |a hourly electricity price forecast | |
650 | 4 | |a artificial intelligence | |
650 | 4 | |a deep neural networks | |
650 | 4 | |a 68t07 | |
653 | 0 | |a Electronic computers. Computer science | |
700 | 0 | |a Dulai Tibor |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Acta Universitatis Sapientiae: Informatica |d Sciendo, 2015 |g 14(2022), 2, Seite 208-222 |w (DE-627)656330031 |w (DE-600)2602721-5 |x 20667760 |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2022 |g number:2 |g pages:208-222 |
856 | 4 | 0 | |u https://doi.org/10.2478/ausi-2022-0013 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/f050e029d5734f9190576759ed5ae73f |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.2478/ausi-2022-0013 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2066-7760 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 14 |j 2022 |e 2 |h 208-222 |
author_variant |
d g dg d t dt |
---|---|
matchkey_str |
article:20667760:2022----::orylcrctpieoeatosotnlntruig |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QA |
publishDate |
2022 |
allfields |
10.2478/ausi-2022-0013 doi (DE-627)DOAJ088252221 (DE-599)DOAJf050e029d5734f9190576759ed5ae73f DE-627 ger DE-627 rakwb eng QA75.5-76.95 Dombi Gergely verfasserin aut Hourly electricity price forecast for short-and long-term, using deep neural networks 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Despite the practical importance of accurate long-term electricity price forecast with high resolution - and the significant need for that - only small percentage of the tremendous papers on energy price forecast attempted to target this topic. Its reason can be the high volatility of electricity prices and the hidden – and often unpredictable – relations with its influencing factors. hourly electricity price forecast artificial intelligence deep neural networks 68t07 Electronic computers. Computer science Dulai Tibor verfasserin aut In Acta Universitatis Sapientiae: Informatica Sciendo, 2015 14(2022), 2, Seite 208-222 (DE-627)656330031 (DE-600)2602721-5 20667760 nnns volume:14 year:2022 number:2 pages:208-222 https://doi.org/10.2478/ausi-2022-0013 kostenfrei https://doaj.org/article/f050e029d5734f9190576759ed5ae73f kostenfrei https://doi.org/10.2478/ausi-2022-0013 kostenfrei https://doaj.org/toc/2066-7760 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 2 208-222 |
spelling |
10.2478/ausi-2022-0013 doi (DE-627)DOAJ088252221 (DE-599)DOAJf050e029d5734f9190576759ed5ae73f DE-627 ger DE-627 rakwb eng QA75.5-76.95 Dombi Gergely verfasserin aut Hourly electricity price forecast for short-and long-term, using deep neural networks 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Despite the practical importance of accurate long-term electricity price forecast with high resolution - and the significant need for that - only small percentage of the tremendous papers on energy price forecast attempted to target this topic. Its reason can be the high volatility of electricity prices and the hidden – and often unpredictable – relations with its influencing factors. hourly electricity price forecast artificial intelligence deep neural networks 68t07 Electronic computers. Computer science Dulai Tibor verfasserin aut In Acta Universitatis Sapientiae: Informatica Sciendo, 2015 14(2022), 2, Seite 208-222 (DE-627)656330031 (DE-600)2602721-5 20667760 nnns volume:14 year:2022 number:2 pages:208-222 https://doi.org/10.2478/ausi-2022-0013 kostenfrei https://doaj.org/article/f050e029d5734f9190576759ed5ae73f kostenfrei https://doi.org/10.2478/ausi-2022-0013 kostenfrei https://doaj.org/toc/2066-7760 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 2 208-222 |
allfields_unstemmed |
10.2478/ausi-2022-0013 doi (DE-627)DOAJ088252221 (DE-599)DOAJf050e029d5734f9190576759ed5ae73f DE-627 ger DE-627 rakwb eng QA75.5-76.95 Dombi Gergely verfasserin aut Hourly electricity price forecast for short-and long-term, using deep neural networks 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Despite the practical importance of accurate long-term electricity price forecast with high resolution - and the significant need for that - only small percentage of the tremendous papers on energy price forecast attempted to target this topic. Its reason can be the high volatility of electricity prices and the hidden – and often unpredictable – relations with its influencing factors. hourly electricity price forecast artificial intelligence deep neural networks 68t07 Electronic computers. Computer science Dulai Tibor verfasserin aut In Acta Universitatis Sapientiae: Informatica Sciendo, 2015 14(2022), 2, Seite 208-222 (DE-627)656330031 (DE-600)2602721-5 20667760 nnns volume:14 year:2022 number:2 pages:208-222 https://doi.org/10.2478/ausi-2022-0013 kostenfrei https://doaj.org/article/f050e029d5734f9190576759ed5ae73f kostenfrei https://doi.org/10.2478/ausi-2022-0013 kostenfrei https://doaj.org/toc/2066-7760 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 2 208-222 |
allfieldsGer |
10.2478/ausi-2022-0013 doi (DE-627)DOAJ088252221 (DE-599)DOAJf050e029d5734f9190576759ed5ae73f DE-627 ger DE-627 rakwb eng QA75.5-76.95 Dombi Gergely verfasserin aut Hourly electricity price forecast for short-and long-term, using deep neural networks 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Despite the practical importance of accurate long-term electricity price forecast with high resolution - and the significant need for that - only small percentage of the tremendous papers on energy price forecast attempted to target this topic. Its reason can be the high volatility of electricity prices and the hidden – and often unpredictable – relations with its influencing factors. hourly electricity price forecast artificial intelligence deep neural networks 68t07 Electronic computers. Computer science Dulai Tibor verfasserin aut In Acta Universitatis Sapientiae: Informatica Sciendo, 2015 14(2022), 2, Seite 208-222 (DE-627)656330031 (DE-600)2602721-5 20667760 nnns volume:14 year:2022 number:2 pages:208-222 https://doi.org/10.2478/ausi-2022-0013 kostenfrei https://doaj.org/article/f050e029d5734f9190576759ed5ae73f kostenfrei https://doi.org/10.2478/ausi-2022-0013 kostenfrei https://doaj.org/toc/2066-7760 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 2 208-222 |
allfieldsSound |
10.2478/ausi-2022-0013 doi (DE-627)DOAJ088252221 (DE-599)DOAJf050e029d5734f9190576759ed5ae73f DE-627 ger DE-627 rakwb eng QA75.5-76.95 Dombi Gergely verfasserin aut Hourly electricity price forecast for short-and long-term, using deep neural networks 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Despite the practical importance of accurate long-term electricity price forecast with high resolution - and the significant need for that - only small percentage of the tremendous papers on energy price forecast attempted to target this topic. Its reason can be the high volatility of electricity prices and the hidden – and often unpredictable – relations with its influencing factors. hourly electricity price forecast artificial intelligence deep neural networks 68t07 Electronic computers. Computer science Dulai Tibor verfasserin aut In Acta Universitatis Sapientiae: Informatica Sciendo, 2015 14(2022), 2, Seite 208-222 (DE-627)656330031 (DE-600)2602721-5 20667760 nnns volume:14 year:2022 number:2 pages:208-222 https://doi.org/10.2478/ausi-2022-0013 kostenfrei https://doaj.org/article/f050e029d5734f9190576759ed5ae73f kostenfrei https://doi.org/10.2478/ausi-2022-0013 kostenfrei https://doaj.org/toc/2066-7760 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 2 208-222 |
language |
English |
source |
In Acta Universitatis Sapientiae: Informatica 14(2022), 2, Seite 208-222 volume:14 year:2022 number:2 pages:208-222 |
sourceStr |
In Acta Universitatis Sapientiae: Informatica 14(2022), 2, Seite 208-222 volume:14 year:2022 number:2 pages:208-222 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
hourly electricity price forecast artificial intelligence deep neural networks 68t07 Electronic computers. Computer science |
isfreeaccess_bool |
true |
container_title |
Acta Universitatis Sapientiae: Informatica |
authorswithroles_txt_mv |
Dombi Gergely @@aut@@ Dulai Tibor @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
656330031 |
id |
DOAJ088252221 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ088252221</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230410111011.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230410s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2478/ausi-2022-0013</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ088252221</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf050e029d5734f9190576759ed5ae73f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA75.5-76.95</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Dombi Gergely</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hourly electricity price forecast for short-and long-term, using deep neural networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Despite the practical importance of accurate long-term electricity price forecast with high resolution - and the significant need for that - only small percentage of the tremendous papers on energy price forecast attempted to target this topic. Its reason can be the high volatility of electricity prices and the hidden – and often unpredictable – relations with its influencing factors.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hourly electricity price forecast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deep neural networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">68t07</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronic computers. Computer science</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dulai Tibor</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Acta Universitatis Sapientiae: Informatica</subfield><subfield code="d">Sciendo, 2015</subfield><subfield code="g">14(2022), 2, Seite 208-222</subfield><subfield code="w">(DE-627)656330031</subfield><subfield code="w">(DE-600)2602721-5</subfield><subfield code="x">20667760</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:208-222</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.2478/ausi-2022-0013</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f050e029d5734f9190576759ed5ae73f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.2478/ausi-2022-0013</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2066-7760</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2022</subfield><subfield code="e">2</subfield><subfield code="h">208-222</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Dombi Gergely |
spellingShingle |
Dombi Gergely misc QA75.5-76.95 misc hourly electricity price forecast misc artificial intelligence misc deep neural networks misc 68t07 misc Electronic computers. Computer science Hourly electricity price forecast for short-and long-term, using deep neural networks |
authorStr |
Dombi Gergely |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)656330031 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA75 |
illustrated |
Not Illustrated |
issn |
20667760 |
topic_title |
QA75.5-76.95 Hourly electricity price forecast for short-and long-term, using deep neural networks hourly electricity price forecast artificial intelligence deep neural networks 68t07 |
topic |
misc QA75.5-76.95 misc hourly electricity price forecast misc artificial intelligence misc deep neural networks misc 68t07 misc Electronic computers. Computer science |
topic_unstemmed |
misc QA75.5-76.95 misc hourly electricity price forecast misc artificial intelligence misc deep neural networks misc 68t07 misc Electronic computers. Computer science |
topic_browse |
misc QA75.5-76.95 misc hourly electricity price forecast misc artificial intelligence misc deep neural networks misc 68t07 misc Electronic computers. Computer science |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Acta Universitatis Sapientiae: Informatica |
hierarchy_parent_id |
656330031 |
hierarchy_top_title |
Acta Universitatis Sapientiae: Informatica |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)656330031 (DE-600)2602721-5 |
title |
Hourly electricity price forecast for short-and long-term, using deep neural networks |
ctrlnum |
(DE-627)DOAJ088252221 (DE-599)DOAJf050e029d5734f9190576759ed5ae73f |
title_full |
Hourly electricity price forecast for short-and long-term, using deep neural networks |
author_sort |
Dombi Gergely |
journal |
Acta Universitatis Sapientiae: Informatica |
journalStr |
Acta Universitatis Sapientiae: Informatica |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
208 |
author_browse |
Dombi Gergely Dulai Tibor |
container_volume |
14 |
class |
QA75.5-76.95 |
format_se |
Elektronische Aufsätze |
author-letter |
Dombi Gergely |
doi_str_mv |
10.2478/ausi-2022-0013 |
author2-role |
verfasserin |
title_sort |
hourly electricity price forecast for short-and long-term, using deep neural networks |
callnumber |
QA75.5-76.95 |
title_auth |
Hourly electricity price forecast for short-and long-term, using deep neural networks |
abstract |
Despite the practical importance of accurate long-term electricity price forecast with high resolution - and the significant need for that - only small percentage of the tremendous papers on energy price forecast attempted to target this topic. Its reason can be the high volatility of electricity prices and the hidden – and often unpredictable – relations with its influencing factors. |
abstractGer |
Despite the practical importance of accurate long-term electricity price forecast with high resolution - and the significant need for that - only small percentage of the tremendous papers on energy price forecast attempted to target this topic. Its reason can be the high volatility of electricity prices and the hidden – and often unpredictable – relations with its influencing factors. |
abstract_unstemmed |
Despite the practical importance of accurate long-term electricity price forecast with high resolution - and the significant need for that - only small percentage of the tremendous papers on energy price forecast attempted to target this topic. Its reason can be the high volatility of electricity prices and the hidden – and often unpredictable – relations with its influencing factors. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Hourly electricity price forecast for short-and long-term, using deep neural networks |
url |
https://doi.org/10.2478/ausi-2022-0013 https://doaj.org/article/f050e029d5734f9190576759ed5ae73f https://doaj.org/toc/2066-7760 |
remote_bool |
true |
author2 |
Dulai Tibor |
author2Str |
Dulai Tibor |
ppnlink |
656330031 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.2478/ausi-2022-0013 |
callnumber-a |
QA75.5-76.95 |
up_date |
2024-07-03T16:41:06.886Z |
_version_ |
1803576794820902912 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ088252221</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230410111011.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230410s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2478/ausi-2022-0013</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ088252221</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf050e029d5734f9190576759ed5ae73f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA75.5-76.95</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Dombi Gergely</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hourly electricity price forecast for short-and long-term, using deep neural networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Despite the practical importance of accurate long-term electricity price forecast with high resolution - and the significant need for that - only small percentage of the tremendous papers on energy price forecast attempted to target this topic. Its reason can be the high volatility of electricity prices and the hidden – and often unpredictable – relations with its influencing factors.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hourly electricity price forecast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deep neural networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">68t07</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronic computers. Computer science</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dulai Tibor</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Acta Universitatis Sapientiae: Informatica</subfield><subfield code="d">Sciendo, 2015</subfield><subfield code="g">14(2022), 2, Seite 208-222</subfield><subfield code="w">(DE-627)656330031</subfield><subfield code="w">(DE-600)2602721-5</subfield><subfield code="x">20667760</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:208-222</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.2478/ausi-2022-0013</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f050e029d5734f9190576759ed5ae73f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.2478/ausi-2022-0013</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2066-7760</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2022</subfield><subfield code="e">2</subfield><subfield code="h">208-222</subfield></datafield></record></collection>
|
score |
7.401288 |