Study on time–space characteristics of gas drainage in advanced self‐pressure‐relief area of the stope
Abstract Gas drainage is an important measure to ensure energy safety in coal mines. However, for mines with high gas content and low permeability, the critical question is how to enhance the drainage effect of drilling. By using the self‐unloading pressure effect on the coal body in front of the mi...
Ausführliche Beschreibung
Autor*in: |
Xi Jie [verfasserIn] Wang Zhaofeng [verfasserIn] Chen Dongdong [verfasserIn] Chen Jinsheng [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Energy Science & Engineering - Wiley, 2014, 11(2023), 3, Seite 1311-1324 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2023 ; number:3 ; pages:1311-1324 |
Links: |
---|
DOI / URN: |
10.1002/ese3.1393 |
---|
Katalog-ID: |
DOAJ08859887X |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ08859887X | ||
003 | DE-627 | ||
005 | 20230410114016.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230410s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1002/ese3.1393 |2 doi | |
035 | |a (DE-627)DOAJ08859887X | ||
035 | |a (DE-599)DOAJa100e94711a84d0e8f3947c82038901f | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Xi Jie |e verfasserin |4 aut | |
245 | 1 | 0 | |a Study on time–space characteristics of gas drainage in advanced self‐pressure‐relief area of the stope |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Gas drainage is an important measure to ensure energy safety in coal mines. However, for mines with high gas content and low permeability, the critical question is how to enhance the drainage effect of drilling. By using the self‐unloading pressure effect on the coal body in front of the mine, the permeability of the coal body can be improved, which facilitates gas drainage. Therefore, establishing the fluid–solid model of gas‐bearing coal mass under the influence of mining, this paper simulates the advanced self‐pressure‐relief range in front of the coal working face and the permeability of coal seam at different heights. Through simulations and field tests, the reasonableness of the advanced self‐pressure‐relief gas drainage was verified, and the spatial and temporal characteristics of the gas drainage from the borehole were quantified and analyzed. The results show that the width of the advanced self‐pressure‐relief zone after simulated mining is 25 m, the vertical permeability of the coal seam increases first and then decreases with the increase of the height from the floor, and the maximum permeability of the layer is 2.6 m from the floor, which is 8.62 times higher than the initial permeability; the gas drainage effect of test boreholes has a periodic law with the coal seam recovery, which, divided into the initial drainage stage, the scalar volume of gas drainage increase stage, and the scalar volume of gas drainage decay stage. At a distance from the working face 20–40 m, the boreholes' scalar volume of gas drainage increased by 3.89 times compared with the initial drainage stage, and the scalar drainage volume of the boreholes through the seam increased by 8.01 times compared with the initial drainage stage; in the section of increasing scalar volume of drainage, the gas drainage volume of the boreholes at different heights of the coal seam had obvious “stratification” phenomenon. The test boreholes were optimally placed in the middle of the seam at the lower end. The study provides a reference for self‐pressure‐relief gas drainage technology and optimization of borehole placement. | ||
650 | 4 | |a advanced self‐pressure‐relief zone | |
650 | 4 | |a COMSOL simulation | |
650 | 4 | |a drainage before mining | |
650 | 4 | |a drainage while mining | |
650 | 4 | |a gas drainage | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Wang Zhaofeng |e verfasserin |4 aut | |
700 | 0 | |a Chen Dongdong |e verfasserin |4 aut | |
700 | 0 | |a Chen Jinsheng |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Energy Science & Engineering |d Wiley, 2014 |g 11(2023), 3, Seite 1311-1324 |w (DE-627)750089202 |w (DE-600)2720339-6 |x 20500505 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2023 |g number:3 |g pages:1311-1324 |
856 | 4 | 0 | |u https://doi.org/10.1002/ese3.1393 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/a100e94711a84d0e8f3947c82038901f |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1002/ese3.1393 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2050-0505 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2023 |e 3 |h 1311-1324 |
author_variant |
x j xj w z wz c d cd c j cj |
---|---|
matchkey_str |
article:20500505:2023----::tdotmsaehrceitcogsriaendacdefrs |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1002/ese3.1393 doi (DE-627)DOAJ08859887X (DE-599)DOAJa100e94711a84d0e8f3947c82038901f DE-627 ger DE-627 rakwb eng Xi Jie verfasserin aut Study on time–space characteristics of gas drainage in advanced self‐pressure‐relief area of the stope 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Gas drainage is an important measure to ensure energy safety in coal mines. However, for mines with high gas content and low permeability, the critical question is how to enhance the drainage effect of drilling. By using the self‐unloading pressure effect on the coal body in front of the mine, the permeability of the coal body can be improved, which facilitates gas drainage. Therefore, establishing the fluid–solid model of gas‐bearing coal mass under the influence of mining, this paper simulates the advanced self‐pressure‐relief range in front of the coal working face and the permeability of coal seam at different heights. Through simulations and field tests, the reasonableness of the advanced self‐pressure‐relief gas drainage was verified, and the spatial and temporal characteristics of the gas drainage from the borehole were quantified and analyzed. The results show that the width of the advanced self‐pressure‐relief zone after simulated mining is 25 m, the vertical permeability of the coal seam increases first and then decreases with the increase of the height from the floor, and the maximum permeability of the layer is 2.6 m from the floor, which is 8.62 times higher than the initial permeability; the gas drainage effect of test boreholes has a periodic law with the coal seam recovery, which, divided into the initial drainage stage, the scalar volume of gas drainage increase stage, and the scalar volume of gas drainage decay stage. At a distance from the working face 20–40 m, the boreholes' scalar volume of gas drainage increased by 3.89 times compared with the initial drainage stage, and the scalar drainage volume of the boreholes through the seam increased by 8.01 times compared with the initial drainage stage; in the section of increasing scalar volume of drainage, the gas drainage volume of the boreholes at different heights of the coal seam had obvious “stratification” phenomenon. The test boreholes were optimally placed in the middle of the seam at the lower end. The study provides a reference for self‐pressure‐relief gas drainage technology and optimization of borehole placement. advanced self‐pressure‐relief zone COMSOL simulation drainage before mining drainage while mining gas drainage Technology T Science Q Wang Zhaofeng verfasserin aut Chen Dongdong verfasserin aut Chen Jinsheng verfasserin aut In Energy Science & Engineering Wiley, 2014 11(2023), 3, Seite 1311-1324 (DE-627)750089202 (DE-600)2720339-6 20500505 nnns volume:11 year:2023 number:3 pages:1311-1324 https://doi.org/10.1002/ese3.1393 kostenfrei https://doaj.org/article/a100e94711a84d0e8f3947c82038901f kostenfrei https://doi.org/10.1002/ese3.1393 kostenfrei https://doaj.org/toc/2050-0505 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 3 1311-1324 |
spelling |
10.1002/ese3.1393 doi (DE-627)DOAJ08859887X (DE-599)DOAJa100e94711a84d0e8f3947c82038901f DE-627 ger DE-627 rakwb eng Xi Jie verfasserin aut Study on time–space characteristics of gas drainage in advanced self‐pressure‐relief area of the stope 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Gas drainage is an important measure to ensure energy safety in coal mines. However, for mines with high gas content and low permeability, the critical question is how to enhance the drainage effect of drilling. By using the self‐unloading pressure effect on the coal body in front of the mine, the permeability of the coal body can be improved, which facilitates gas drainage. Therefore, establishing the fluid–solid model of gas‐bearing coal mass under the influence of mining, this paper simulates the advanced self‐pressure‐relief range in front of the coal working face and the permeability of coal seam at different heights. Through simulations and field tests, the reasonableness of the advanced self‐pressure‐relief gas drainage was verified, and the spatial and temporal characteristics of the gas drainage from the borehole were quantified and analyzed. The results show that the width of the advanced self‐pressure‐relief zone after simulated mining is 25 m, the vertical permeability of the coal seam increases first and then decreases with the increase of the height from the floor, and the maximum permeability of the layer is 2.6 m from the floor, which is 8.62 times higher than the initial permeability; the gas drainage effect of test boreholes has a periodic law with the coal seam recovery, which, divided into the initial drainage stage, the scalar volume of gas drainage increase stage, and the scalar volume of gas drainage decay stage. At a distance from the working face 20–40 m, the boreholes' scalar volume of gas drainage increased by 3.89 times compared with the initial drainage stage, and the scalar drainage volume of the boreholes through the seam increased by 8.01 times compared with the initial drainage stage; in the section of increasing scalar volume of drainage, the gas drainage volume of the boreholes at different heights of the coal seam had obvious “stratification” phenomenon. The test boreholes were optimally placed in the middle of the seam at the lower end. The study provides a reference for self‐pressure‐relief gas drainage technology and optimization of borehole placement. advanced self‐pressure‐relief zone COMSOL simulation drainage before mining drainage while mining gas drainage Technology T Science Q Wang Zhaofeng verfasserin aut Chen Dongdong verfasserin aut Chen Jinsheng verfasserin aut In Energy Science & Engineering Wiley, 2014 11(2023), 3, Seite 1311-1324 (DE-627)750089202 (DE-600)2720339-6 20500505 nnns volume:11 year:2023 number:3 pages:1311-1324 https://doi.org/10.1002/ese3.1393 kostenfrei https://doaj.org/article/a100e94711a84d0e8f3947c82038901f kostenfrei https://doi.org/10.1002/ese3.1393 kostenfrei https://doaj.org/toc/2050-0505 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 3 1311-1324 |
allfields_unstemmed |
10.1002/ese3.1393 doi (DE-627)DOAJ08859887X (DE-599)DOAJa100e94711a84d0e8f3947c82038901f DE-627 ger DE-627 rakwb eng Xi Jie verfasserin aut Study on time–space characteristics of gas drainage in advanced self‐pressure‐relief area of the stope 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Gas drainage is an important measure to ensure energy safety in coal mines. However, for mines with high gas content and low permeability, the critical question is how to enhance the drainage effect of drilling. By using the self‐unloading pressure effect on the coal body in front of the mine, the permeability of the coal body can be improved, which facilitates gas drainage. Therefore, establishing the fluid–solid model of gas‐bearing coal mass under the influence of mining, this paper simulates the advanced self‐pressure‐relief range in front of the coal working face and the permeability of coal seam at different heights. Through simulations and field tests, the reasonableness of the advanced self‐pressure‐relief gas drainage was verified, and the spatial and temporal characteristics of the gas drainage from the borehole were quantified and analyzed. The results show that the width of the advanced self‐pressure‐relief zone after simulated mining is 25 m, the vertical permeability of the coal seam increases first and then decreases with the increase of the height from the floor, and the maximum permeability of the layer is 2.6 m from the floor, which is 8.62 times higher than the initial permeability; the gas drainage effect of test boreholes has a periodic law with the coal seam recovery, which, divided into the initial drainage stage, the scalar volume of gas drainage increase stage, and the scalar volume of gas drainage decay stage. At a distance from the working face 20–40 m, the boreholes' scalar volume of gas drainage increased by 3.89 times compared with the initial drainage stage, and the scalar drainage volume of the boreholes through the seam increased by 8.01 times compared with the initial drainage stage; in the section of increasing scalar volume of drainage, the gas drainage volume of the boreholes at different heights of the coal seam had obvious “stratification” phenomenon. The test boreholes were optimally placed in the middle of the seam at the lower end. The study provides a reference for self‐pressure‐relief gas drainage technology and optimization of borehole placement. advanced self‐pressure‐relief zone COMSOL simulation drainage before mining drainage while mining gas drainage Technology T Science Q Wang Zhaofeng verfasserin aut Chen Dongdong verfasserin aut Chen Jinsheng verfasserin aut In Energy Science & Engineering Wiley, 2014 11(2023), 3, Seite 1311-1324 (DE-627)750089202 (DE-600)2720339-6 20500505 nnns volume:11 year:2023 number:3 pages:1311-1324 https://doi.org/10.1002/ese3.1393 kostenfrei https://doaj.org/article/a100e94711a84d0e8f3947c82038901f kostenfrei https://doi.org/10.1002/ese3.1393 kostenfrei https://doaj.org/toc/2050-0505 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 3 1311-1324 |
allfieldsGer |
10.1002/ese3.1393 doi (DE-627)DOAJ08859887X (DE-599)DOAJa100e94711a84d0e8f3947c82038901f DE-627 ger DE-627 rakwb eng Xi Jie verfasserin aut Study on time–space characteristics of gas drainage in advanced self‐pressure‐relief area of the stope 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Gas drainage is an important measure to ensure energy safety in coal mines. However, for mines with high gas content and low permeability, the critical question is how to enhance the drainage effect of drilling. By using the self‐unloading pressure effect on the coal body in front of the mine, the permeability of the coal body can be improved, which facilitates gas drainage. Therefore, establishing the fluid–solid model of gas‐bearing coal mass under the influence of mining, this paper simulates the advanced self‐pressure‐relief range in front of the coal working face and the permeability of coal seam at different heights. Through simulations and field tests, the reasonableness of the advanced self‐pressure‐relief gas drainage was verified, and the spatial and temporal characteristics of the gas drainage from the borehole were quantified and analyzed. The results show that the width of the advanced self‐pressure‐relief zone after simulated mining is 25 m, the vertical permeability of the coal seam increases first and then decreases with the increase of the height from the floor, and the maximum permeability of the layer is 2.6 m from the floor, which is 8.62 times higher than the initial permeability; the gas drainage effect of test boreholes has a periodic law with the coal seam recovery, which, divided into the initial drainage stage, the scalar volume of gas drainage increase stage, and the scalar volume of gas drainage decay stage. At a distance from the working face 20–40 m, the boreholes' scalar volume of gas drainage increased by 3.89 times compared with the initial drainage stage, and the scalar drainage volume of the boreholes through the seam increased by 8.01 times compared with the initial drainage stage; in the section of increasing scalar volume of drainage, the gas drainage volume of the boreholes at different heights of the coal seam had obvious “stratification” phenomenon. The test boreholes were optimally placed in the middle of the seam at the lower end. The study provides a reference for self‐pressure‐relief gas drainage technology and optimization of borehole placement. advanced self‐pressure‐relief zone COMSOL simulation drainage before mining drainage while mining gas drainage Technology T Science Q Wang Zhaofeng verfasserin aut Chen Dongdong verfasserin aut Chen Jinsheng verfasserin aut In Energy Science & Engineering Wiley, 2014 11(2023), 3, Seite 1311-1324 (DE-627)750089202 (DE-600)2720339-6 20500505 nnns volume:11 year:2023 number:3 pages:1311-1324 https://doi.org/10.1002/ese3.1393 kostenfrei https://doaj.org/article/a100e94711a84d0e8f3947c82038901f kostenfrei https://doi.org/10.1002/ese3.1393 kostenfrei https://doaj.org/toc/2050-0505 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 3 1311-1324 |
allfieldsSound |
10.1002/ese3.1393 doi (DE-627)DOAJ08859887X (DE-599)DOAJa100e94711a84d0e8f3947c82038901f DE-627 ger DE-627 rakwb eng Xi Jie verfasserin aut Study on time–space characteristics of gas drainage in advanced self‐pressure‐relief area of the stope 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Gas drainage is an important measure to ensure energy safety in coal mines. However, for mines with high gas content and low permeability, the critical question is how to enhance the drainage effect of drilling. By using the self‐unloading pressure effect on the coal body in front of the mine, the permeability of the coal body can be improved, which facilitates gas drainage. Therefore, establishing the fluid–solid model of gas‐bearing coal mass under the influence of mining, this paper simulates the advanced self‐pressure‐relief range in front of the coal working face and the permeability of coal seam at different heights. Through simulations and field tests, the reasonableness of the advanced self‐pressure‐relief gas drainage was verified, and the spatial and temporal characteristics of the gas drainage from the borehole were quantified and analyzed. The results show that the width of the advanced self‐pressure‐relief zone after simulated mining is 25 m, the vertical permeability of the coal seam increases first and then decreases with the increase of the height from the floor, and the maximum permeability of the layer is 2.6 m from the floor, which is 8.62 times higher than the initial permeability; the gas drainage effect of test boreholes has a periodic law with the coal seam recovery, which, divided into the initial drainage stage, the scalar volume of gas drainage increase stage, and the scalar volume of gas drainage decay stage. At a distance from the working face 20–40 m, the boreholes' scalar volume of gas drainage increased by 3.89 times compared with the initial drainage stage, and the scalar drainage volume of the boreholes through the seam increased by 8.01 times compared with the initial drainage stage; in the section of increasing scalar volume of drainage, the gas drainage volume of the boreholes at different heights of the coal seam had obvious “stratification” phenomenon. The test boreholes were optimally placed in the middle of the seam at the lower end. The study provides a reference for self‐pressure‐relief gas drainage technology and optimization of borehole placement. advanced self‐pressure‐relief zone COMSOL simulation drainage before mining drainage while mining gas drainage Technology T Science Q Wang Zhaofeng verfasserin aut Chen Dongdong verfasserin aut Chen Jinsheng verfasserin aut In Energy Science & Engineering Wiley, 2014 11(2023), 3, Seite 1311-1324 (DE-627)750089202 (DE-600)2720339-6 20500505 nnns volume:11 year:2023 number:3 pages:1311-1324 https://doi.org/10.1002/ese3.1393 kostenfrei https://doaj.org/article/a100e94711a84d0e8f3947c82038901f kostenfrei https://doi.org/10.1002/ese3.1393 kostenfrei https://doaj.org/toc/2050-0505 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 3 1311-1324 |
language |
English |
source |
In Energy Science & Engineering 11(2023), 3, Seite 1311-1324 volume:11 year:2023 number:3 pages:1311-1324 |
sourceStr |
In Energy Science & Engineering 11(2023), 3, Seite 1311-1324 volume:11 year:2023 number:3 pages:1311-1324 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
advanced self‐pressure‐relief zone COMSOL simulation drainage before mining drainage while mining gas drainage Technology T Science Q |
isfreeaccess_bool |
true |
container_title |
Energy Science & Engineering |
authorswithroles_txt_mv |
Xi Jie @@aut@@ Wang Zhaofeng @@aut@@ Chen Dongdong @@aut@@ Chen Jinsheng @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
750089202 |
id |
DOAJ08859887X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ08859887X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230410114016.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230410s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/ese3.1393</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ08859887X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa100e94711a84d0e8f3947c82038901f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xi Jie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Study on time–space characteristics of gas drainage in advanced self‐pressure‐relief area of the stope</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Gas drainage is an important measure to ensure energy safety in coal mines. However, for mines with high gas content and low permeability, the critical question is how to enhance the drainage effect of drilling. By using the self‐unloading pressure effect on the coal body in front of the mine, the permeability of the coal body can be improved, which facilitates gas drainage. Therefore, establishing the fluid–solid model of gas‐bearing coal mass under the influence of mining, this paper simulates the advanced self‐pressure‐relief range in front of the coal working face and the permeability of coal seam at different heights. Through simulations and field tests, the reasonableness of the advanced self‐pressure‐relief gas drainage was verified, and the spatial and temporal characteristics of the gas drainage from the borehole were quantified and analyzed. The results show that the width of the advanced self‐pressure‐relief zone after simulated mining is 25 m, the vertical permeability of the coal seam increases first and then decreases with the increase of the height from the floor, and the maximum permeability of the layer is 2.6 m from the floor, which is 8.62 times higher than the initial permeability; the gas drainage effect of test boreholes has a periodic law with the coal seam recovery, which, divided into the initial drainage stage, the scalar volume of gas drainage increase stage, and the scalar volume of gas drainage decay stage. At a distance from the working face 20–40 m, the boreholes' scalar volume of gas drainage increased by 3.89 times compared with the initial drainage stage, and the scalar drainage volume of the boreholes through the seam increased by 8.01 times compared with the initial drainage stage; in the section of increasing scalar volume of drainage, the gas drainage volume of the boreholes at different heights of the coal seam had obvious “stratification” phenomenon. The test boreholes were optimally placed in the middle of the seam at the lower end. The study provides a reference for self‐pressure‐relief gas drainage technology and optimization of borehole placement.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">advanced self‐pressure‐relief zone</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COMSOL simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">drainage before mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">drainage while mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">gas drainage</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wang Zhaofeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chen Dongdong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chen Jinsheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energy Science & Engineering</subfield><subfield code="d">Wiley, 2014</subfield><subfield code="g">11(2023), 3, Seite 1311-1324</subfield><subfield code="w">(DE-627)750089202</subfield><subfield code="w">(DE-600)2720339-6</subfield><subfield code="x">20500505</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:1311-1324</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/ese3.1393</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a100e94711a84d0e8f3947c82038901f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/ese3.1393</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2050-0505</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2023</subfield><subfield code="e">3</subfield><subfield code="h">1311-1324</subfield></datafield></record></collection>
|
author |
Xi Jie |
spellingShingle |
Xi Jie misc advanced self‐pressure‐relief zone misc COMSOL simulation misc drainage before mining misc drainage while mining misc gas drainage misc Technology misc T misc Science misc Q Study on time–space characteristics of gas drainage in advanced self‐pressure‐relief area of the stope |
authorStr |
Xi Jie |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)750089202 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20500505 |
topic_title |
Study on time–space characteristics of gas drainage in advanced self‐pressure‐relief area of the stope advanced self‐pressure‐relief zone COMSOL simulation drainage before mining drainage while mining gas drainage |
topic |
misc advanced self‐pressure‐relief zone misc COMSOL simulation misc drainage before mining misc drainage while mining misc gas drainage misc Technology misc T misc Science misc Q |
topic_unstemmed |
misc advanced self‐pressure‐relief zone misc COMSOL simulation misc drainage before mining misc drainage while mining misc gas drainage misc Technology misc T misc Science misc Q |
topic_browse |
misc advanced self‐pressure‐relief zone misc COMSOL simulation misc drainage before mining misc drainage while mining misc gas drainage misc Technology misc T misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Energy Science & Engineering |
hierarchy_parent_id |
750089202 |
hierarchy_top_title |
Energy Science & Engineering |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)750089202 (DE-600)2720339-6 |
title |
Study on time–space characteristics of gas drainage in advanced self‐pressure‐relief area of the stope |
ctrlnum |
(DE-627)DOAJ08859887X (DE-599)DOAJa100e94711a84d0e8f3947c82038901f |
title_full |
Study on time–space characteristics of gas drainage in advanced self‐pressure‐relief area of the stope |
author_sort |
Xi Jie |
journal |
Energy Science & Engineering |
journalStr |
Energy Science & Engineering |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
1311 |
author_browse |
Xi Jie Wang Zhaofeng Chen Dongdong Chen Jinsheng |
container_volume |
11 |
format_se |
Elektronische Aufsätze |
author-letter |
Xi Jie |
doi_str_mv |
10.1002/ese3.1393 |
author2-role |
verfasserin |
title_sort |
study on time–space characteristics of gas drainage in advanced self‐pressure‐relief area of the stope |
title_auth |
Study on time–space characteristics of gas drainage in advanced self‐pressure‐relief area of the stope |
abstract |
Abstract Gas drainage is an important measure to ensure energy safety in coal mines. However, for mines with high gas content and low permeability, the critical question is how to enhance the drainage effect of drilling. By using the self‐unloading pressure effect on the coal body in front of the mine, the permeability of the coal body can be improved, which facilitates gas drainage. Therefore, establishing the fluid–solid model of gas‐bearing coal mass under the influence of mining, this paper simulates the advanced self‐pressure‐relief range in front of the coal working face and the permeability of coal seam at different heights. Through simulations and field tests, the reasonableness of the advanced self‐pressure‐relief gas drainage was verified, and the spatial and temporal characteristics of the gas drainage from the borehole were quantified and analyzed. The results show that the width of the advanced self‐pressure‐relief zone after simulated mining is 25 m, the vertical permeability of the coal seam increases first and then decreases with the increase of the height from the floor, and the maximum permeability of the layer is 2.6 m from the floor, which is 8.62 times higher than the initial permeability; the gas drainage effect of test boreholes has a periodic law with the coal seam recovery, which, divided into the initial drainage stage, the scalar volume of gas drainage increase stage, and the scalar volume of gas drainage decay stage. At a distance from the working face 20–40 m, the boreholes' scalar volume of gas drainage increased by 3.89 times compared with the initial drainage stage, and the scalar drainage volume of the boreholes through the seam increased by 8.01 times compared with the initial drainage stage; in the section of increasing scalar volume of drainage, the gas drainage volume of the boreholes at different heights of the coal seam had obvious “stratification” phenomenon. The test boreholes were optimally placed in the middle of the seam at the lower end. The study provides a reference for self‐pressure‐relief gas drainage technology and optimization of borehole placement. |
abstractGer |
Abstract Gas drainage is an important measure to ensure energy safety in coal mines. However, for mines with high gas content and low permeability, the critical question is how to enhance the drainage effect of drilling. By using the self‐unloading pressure effect on the coal body in front of the mine, the permeability of the coal body can be improved, which facilitates gas drainage. Therefore, establishing the fluid–solid model of gas‐bearing coal mass under the influence of mining, this paper simulates the advanced self‐pressure‐relief range in front of the coal working face and the permeability of coal seam at different heights. Through simulations and field tests, the reasonableness of the advanced self‐pressure‐relief gas drainage was verified, and the spatial and temporal characteristics of the gas drainage from the borehole were quantified and analyzed. The results show that the width of the advanced self‐pressure‐relief zone after simulated mining is 25 m, the vertical permeability of the coal seam increases first and then decreases with the increase of the height from the floor, and the maximum permeability of the layer is 2.6 m from the floor, which is 8.62 times higher than the initial permeability; the gas drainage effect of test boreholes has a periodic law with the coal seam recovery, which, divided into the initial drainage stage, the scalar volume of gas drainage increase stage, and the scalar volume of gas drainage decay stage. At a distance from the working face 20–40 m, the boreholes' scalar volume of gas drainage increased by 3.89 times compared with the initial drainage stage, and the scalar drainage volume of the boreholes through the seam increased by 8.01 times compared with the initial drainage stage; in the section of increasing scalar volume of drainage, the gas drainage volume of the boreholes at different heights of the coal seam had obvious “stratification” phenomenon. The test boreholes were optimally placed in the middle of the seam at the lower end. The study provides a reference for self‐pressure‐relief gas drainage technology and optimization of borehole placement. |
abstract_unstemmed |
Abstract Gas drainage is an important measure to ensure energy safety in coal mines. However, for mines with high gas content and low permeability, the critical question is how to enhance the drainage effect of drilling. By using the self‐unloading pressure effect on the coal body in front of the mine, the permeability of the coal body can be improved, which facilitates gas drainage. Therefore, establishing the fluid–solid model of gas‐bearing coal mass under the influence of mining, this paper simulates the advanced self‐pressure‐relief range in front of the coal working face and the permeability of coal seam at different heights. Through simulations and field tests, the reasonableness of the advanced self‐pressure‐relief gas drainage was verified, and the spatial and temporal characteristics of the gas drainage from the borehole were quantified and analyzed. The results show that the width of the advanced self‐pressure‐relief zone after simulated mining is 25 m, the vertical permeability of the coal seam increases first and then decreases with the increase of the height from the floor, and the maximum permeability of the layer is 2.6 m from the floor, which is 8.62 times higher than the initial permeability; the gas drainage effect of test boreholes has a periodic law with the coal seam recovery, which, divided into the initial drainage stage, the scalar volume of gas drainage increase stage, and the scalar volume of gas drainage decay stage. At a distance from the working face 20–40 m, the boreholes' scalar volume of gas drainage increased by 3.89 times compared with the initial drainage stage, and the scalar drainage volume of the boreholes through the seam increased by 8.01 times compared with the initial drainage stage; in the section of increasing scalar volume of drainage, the gas drainage volume of the boreholes at different heights of the coal seam had obvious “stratification” phenomenon. The test boreholes were optimally placed in the middle of the seam at the lower end. The study provides a reference for self‐pressure‐relief gas drainage technology and optimization of borehole placement. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3 |
title_short |
Study on time–space characteristics of gas drainage in advanced self‐pressure‐relief area of the stope |
url |
https://doi.org/10.1002/ese3.1393 https://doaj.org/article/a100e94711a84d0e8f3947c82038901f https://doaj.org/toc/2050-0505 |
remote_bool |
true |
author2 |
Wang Zhaofeng Chen Dongdong Chen Jinsheng |
author2Str |
Wang Zhaofeng Chen Dongdong Chen Jinsheng |
ppnlink |
750089202 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1002/ese3.1393 |
up_date |
2024-07-03T18:33:39.606Z |
_version_ |
1803583875567321088 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ08859887X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230410114016.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230410s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/ese3.1393</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ08859887X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa100e94711a84d0e8f3947c82038901f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xi Jie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Study on time–space characteristics of gas drainage in advanced self‐pressure‐relief area of the stope</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Gas drainage is an important measure to ensure energy safety in coal mines. However, for mines with high gas content and low permeability, the critical question is how to enhance the drainage effect of drilling. By using the self‐unloading pressure effect on the coal body in front of the mine, the permeability of the coal body can be improved, which facilitates gas drainage. Therefore, establishing the fluid–solid model of gas‐bearing coal mass under the influence of mining, this paper simulates the advanced self‐pressure‐relief range in front of the coal working face and the permeability of coal seam at different heights. Through simulations and field tests, the reasonableness of the advanced self‐pressure‐relief gas drainage was verified, and the spatial and temporal characteristics of the gas drainage from the borehole were quantified and analyzed. The results show that the width of the advanced self‐pressure‐relief zone after simulated mining is 25 m, the vertical permeability of the coal seam increases first and then decreases with the increase of the height from the floor, and the maximum permeability of the layer is 2.6 m from the floor, which is 8.62 times higher than the initial permeability; the gas drainage effect of test boreholes has a periodic law with the coal seam recovery, which, divided into the initial drainage stage, the scalar volume of gas drainage increase stage, and the scalar volume of gas drainage decay stage. At a distance from the working face 20–40 m, the boreholes' scalar volume of gas drainage increased by 3.89 times compared with the initial drainage stage, and the scalar drainage volume of the boreholes through the seam increased by 8.01 times compared with the initial drainage stage; in the section of increasing scalar volume of drainage, the gas drainage volume of the boreholes at different heights of the coal seam had obvious “stratification” phenomenon. The test boreholes were optimally placed in the middle of the seam at the lower end. The study provides a reference for self‐pressure‐relief gas drainage technology and optimization of borehole placement.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">advanced self‐pressure‐relief zone</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COMSOL simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">drainage before mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">drainage while mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">gas drainage</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wang Zhaofeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chen Dongdong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chen Jinsheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energy Science & Engineering</subfield><subfield code="d">Wiley, 2014</subfield><subfield code="g">11(2023), 3, Seite 1311-1324</subfield><subfield code="w">(DE-627)750089202</subfield><subfield code="w">(DE-600)2720339-6</subfield><subfield code="x">20500505</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:1311-1324</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/ese3.1393</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a100e94711a84d0e8f3947c82038901f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/ese3.1393</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2050-0505</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2023</subfield><subfield code="e">3</subfield><subfield code="h">1311-1324</subfield></datafield></record></collection>
|
score |
7.4013395 |