Particle-Hole State Density Calculations with Non-Equidistant Spacing Model: I. Basic Derivation
The basic analytical formula for particle-hole state densities is derived based on the non-Equidistant Spacing Model (non-ESM) for the single-particle level density (s.p.l.d.) dependence on particle excitation energy u. Two methods are illustrated in this work, the first depends on Taylor series exp...
Ausführliche Beschreibung
Autor*in: |
Ahmed Abdul-Razzaq Selman [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2010 |
---|
Schlagwörter: |
Level Density Single-Particle Level Density Statistical Compound Nucleus Reactions |
---|
Übergeordnetes Werk: |
In: Iraqi Journal of Physics - University of Baghdad, 2022, 8(2010), 13 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2010 ; number:13 |
Links: |
---|
Katalog-ID: |
DOAJ08862479X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ08862479X | ||
003 | DE-627 | ||
005 | 20230501211128.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230410s2010 xx |||||o 00| ||eng c | ||
035 | |a (DE-627)DOAJ08862479X | ||
035 | |a (DE-599)DOAJ6cad4910254b4f1f84053ee8b825c839 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QC1-999 | |
100 | 0 | |a Ahmed Abdul-Razzaq Selman |e verfasserin |4 aut | |
245 | 1 | 0 | |a Particle-Hole State Density Calculations with Non-Equidistant Spacing Model: I. Basic Derivation |
264 | 1 | |c 2010 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The basic analytical formula for particle-hole state densities is derived based on the non-Equidistant Spacing Model (non-ESM) for the single-particle level density (s.p.l.d.) dependence on particle excitation energy u. Two methods are illustrated in this work, the first depends on Taylor series expansion of the s.p.l.d. about u, while the second uses direct analytical derivation of the state density formula. This treatment is applied for a system composing from one kind of fermions and for uncorrected physical system. The important corrections due to Pauli blocking was added to the present formula. Analytical comparisons with the standard formulae for ESM are made and it is shown that the solution reduces to earlier formulae providing more general way to calculate state density. Numerical calculations then are made and the results show that state density behavior with excitation energy deviates from Ericson’s and Williams’ formulae types, especially at higher excitation energies | ||
650 | 4 | |a Level Density Single-Particle Level Density Statistical Compound Nucleus Reactions | |
653 | 0 | |a Physics | |
773 | 0 | 8 | |i In |t Iraqi Journal of Physics |d University of Baghdad, 2022 |g 8(2010), 13 |w (DE-627)DOAJ078601851 |x 26645548 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2010 |g number:13 |
856 | 4 | 0 | |u https://doaj.org/article/6cad4910254b4f1f84053ee8b825c839 |z kostenfrei |
856 | 4 | 0 | |u https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/828 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2070-4003 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2664-5548 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
951 | |a AR | ||
952 | |d 8 |j 2010 |e 13 |
author_variant |
a a r s aars |
---|---|
matchkey_str |
article:26645548:2010----::atceoettdniyacltosihoeudsatpcn |
hierarchy_sort_str |
2010 |
callnumber-subject-code |
QC |
publishDate |
2010 |
allfields |
(DE-627)DOAJ08862479X (DE-599)DOAJ6cad4910254b4f1f84053ee8b825c839 DE-627 ger DE-627 rakwb eng QC1-999 Ahmed Abdul-Razzaq Selman verfasserin aut Particle-Hole State Density Calculations with Non-Equidistant Spacing Model: I. Basic Derivation 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The basic analytical formula for particle-hole state densities is derived based on the non-Equidistant Spacing Model (non-ESM) for the single-particle level density (s.p.l.d.) dependence on particle excitation energy u. Two methods are illustrated in this work, the first depends on Taylor series expansion of the s.p.l.d. about u, while the second uses direct analytical derivation of the state density formula. This treatment is applied for a system composing from one kind of fermions and for uncorrected physical system. The important corrections due to Pauli blocking was added to the present formula. Analytical comparisons with the standard formulae for ESM are made and it is shown that the solution reduces to earlier formulae providing more general way to calculate state density. Numerical calculations then are made and the results show that state density behavior with excitation energy deviates from Ericson’s and Williams’ formulae types, especially at higher excitation energies Level Density Single-Particle Level Density Statistical Compound Nucleus Reactions Physics In Iraqi Journal of Physics University of Baghdad, 2022 8(2010), 13 (DE-627)DOAJ078601851 26645548 nnns volume:8 year:2010 number:13 https://doaj.org/article/6cad4910254b4f1f84053ee8b825c839 kostenfrei https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/828 kostenfrei https://doaj.org/toc/2070-4003 Journal toc kostenfrei https://doaj.org/toc/2664-5548 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA AR 8 2010 13 |
spelling |
(DE-627)DOAJ08862479X (DE-599)DOAJ6cad4910254b4f1f84053ee8b825c839 DE-627 ger DE-627 rakwb eng QC1-999 Ahmed Abdul-Razzaq Selman verfasserin aut Particle-Hole State Density Calculations with Non-Equidistant Spacing Model: I. Basic Derivation 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The basic analytical formula for particle-hole state densities is derived based on the non-Equidistant Spacing Model (non-ESM) for the single-particle level density (s.p.l.d.) dependence on particle excitation energy u. Two methods are illustrated in this work, the first depends on Taylor series expansion of the s.p.l.d. about u, while the second uses direct analytical derivation of the state density formula. This treatment is applied for a system composing from one kind of fermions and for uncorrected physical system. The important corrections due to Pauli blocking was added to the present formula. Analytical comparisons with the standard formulae for ESM are made and it is shown that the solution reduces to earlier formulae providing more general way to calculate state density. Numerical calculations then are made and the results show that state density behavior with excitation energy deviates from Ericson’s and Williams’ formulae types, especially at higher excitation energies Level Density Single-Particle Level Density Statistical Compound Nucleus Reactions Physics In Iraqi Journal of Physics University of Baghdad, 2022 8(2010), 13 (DE-627)DOAJ078601851 26645548 nnns volume:8 year:2010 number:13 https://doaj.org/article/6cad4910254b4f1f84053ee8b825c839 kostenfrei https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/828 kostenfrei https://doaj.org/toc/2070-4003 Journal toc kostenfrei https://doaj.org/toc/2664-5548 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA AR 8 2010 13 |
allfields_unstemmed |
(DE-627)DOAJ08862479X (DE-599)DOAJ6cad4910254b4f1f84053ee8b825c839 DE-627 ger DE-627 rakwb eng QC1-999 Ahmed Abdul-Razzaq Selman verfasserin aut Particle-Hole State Density Calculations with Non-Equidistant Spacing Model: I. Basic Derivation 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The basic analytical formula for particle-hole state densities is derived based on the non-Equidistant Spacing Model (non-ESM) for the single-particle level density (s.p.l.d.) dependence on particle excitation energy u. Two methods are illustrated in this work, the first depends on Taylor series expansion of the s.p.l.d. about u, while the second uses direct analytical derivation of the state density formula. This treatment is applied for a system composing from one kind of fermions and for uncorrected physical system. The important corrections due to Pauli blocking was added to the present formula. Analytical comparisons with the standard formulae for ESM are made and it is shown that the solution reduces to earlier formulae providing more general way to calculate state density. Numerical calculations then are made and the results show that state density behavior with excitation energy deviates from Ericson’s and Williams’ formulae types, especially at higher excitation energies Level Density Single-Particle Level Density Statistical Compound Nucleus Reactions Physics In Iraqi Journal of Physics University of Baghdad, 2022 8(2010), 13 (DE-627)DOAJ078601851 26645548 nnns volume:8 year:2010 number:13 https://doaj.org/article/6cad4910254b4f1f84053ee8b825c839 kostenfrei https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/828 kostenfrei https://doaj.org/toc/2070-4003 Journal toc kostenfrei https://doaj.org/toc/2664-5548 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA AR 8 2010 13 |
allfieldsGer |
(DE-627)DOAJ08862479X (DE-599)DOAJ6cad4910254b4f1f84053ee8b825c839 DE-627 ger DE-627 rakwb eng QC1-999 Ahmed Abdul-Razzaq Selman verfasserin aut Particle-Hole State Density Calculations with Non-Equidistant Spacing Model: I. Basic Derivation 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The basic analytical formula for particle-hole state densities is derived based on the non-Equidistant Spacing Model (non-ESM) for the single-particle level density (s.p.l.d.) dependence on particle excitation energy u. Two methods are illustrated in this work, the first depends on Taylor series expansion of the s.p.l.d. about u, while the second uses direct analytical derivation of the state density formula. This treatment is applied for a system composing from one kind of fermions and for uncorrected physical system. The important corrections due to Pauli blocking was added to the present formula. Analytical comparisons with the standard formulae for ESM are made and it is shown that the solution reduces to earlier formulae providing more general way to calculate state density. Numerical calculations then are made and the results show that state density behavior with excitation energy deviates from Ericson’s and Williams’ formulae types, especially at higher excitation energies Level Density Single-Particle Level Density Statistical Compound Nucleus Reactions Physics In Iraqi Journal of Physics University of Baghdad, 2022 8(2010), 13 (DE-627)DOAJ078601851 26645548 nnns volume:8 year:2010 number:13 https://doaj.org/article/6cad4910254b4f1f84053ee8b825c839 kostenfrei https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/828 kostenfrei https://doaj.org/toc/2070-4003 Journal toc kostenfrei https://doaj.org/toc/2664-5548 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA AR 8 2010 13 |
allfieldsSound |
(DE-627)DOAJ08862479X (DE-599)DOAJ6cad4910254b4f1f84053ee8b825c839 DE-627 ger DE-627 rakwb eng QC1-999 Ahmed Abdul-Razzaq Selman verfasserin aut Particle-Hole State Density Calculations with Non-Equidistant Spacing Model: I. Basic Derivation 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The basic analytical formula for particle-hole state densities is derived based on the non-Equidistant Spacing Model (non-ESM) for the single-particle level density (s.p.l.d.) dependence on particle excitation energy u. Two methods are illustrated in this work, the first depends on Taylor series expansion of the s.p.l.d. about u, while the second uses direct analytical derivation of the state density formula. This treatment is applied for a system composing from one kind of fermions and for uncorrected physical system. The important corrections due to Pauli blocking was added to the present formula. Analytical comparisons with the standard formulae for ESM are made and it is shown that the solution reduces to earlier formulae providing more general way to calculate state density. Numerical calculations then are made and the results show that state density behavior with excitation energy deviates from Ericson’s and Williams’ formulae types, especially at higher excitation energies Level Density Single-Particle Level Density Statistical Compound Nucleus Reactions Physics In Iraqi Journal of Physics University of Baghdad, 2022 8(2010), 13 (DE-627)DOAJ078601851 26645548 nnns volume:8 year:2010 number:13 https://doaj.org/article/6cad4910254b4f1f84053ee8b825c839 kostenfrei https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/828 kostenfrei https://doaj.org/toc/2070-4003 Journal toc kostenfrei https://doaj.org/toc/2664-5548 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA AR 8 2010 13 |
language |
English |
source |
In Iraqi Journal of Physics 8(2010), 13 volume:8 year:2010 number:13 |
sourceStr |
In Iraqi Journal of Physics 8(2010), 13 volume:8 year:2010 number:13 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Level Density Single-Particle Level Density Statistical Compound Nucleus Reactions Physics |
isfreeaccess_bool |
true |
container_title |
Iraqi Journal of Physics |
authorswithroles_txt_mv |
Ahmed Abdul-Razzaq Selman @@aut@@ |
publishDateDaySort_date |
2010-01-01T00:00:00Z |
hierarchy_top_id |
DOAJ078601851 |
id |
DOAJ08862479X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ08862479X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230501211128.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230410s2010 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ08862479X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6cad4910254b4f1f84053ee8b825c839</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ahmed Abdul-Razzaq Selman</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Particle-Hole State Density Calculations with Non-Equidistant Spacing Model: I. Basic Derivation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The basic analytical formula for particle-hole state densities is derived based on the non-Equidistant Spacing Model (non-ESM) for the single-particle level density (s.p.l.d.) dependence on particle excitation energy u. Two methods are illustrated in this work, the first depends on Taylor series expansion of the s.p.l.d. about u, while the second uses direct analytical derivation of the state density formula. This treatment is applied for a system composing from one kind of fermions and for uncorrected physical system. The important corrections due to Pauli blocking was added to the present formula. Analytical comparisons with the standard formulae for ESM are made and it is shown that the solution reduces to earlier formulae providing more general way to calculate state density. Numerical calculations then are made and the results show that state density behavior with excitation energy deviates from Ericson’s and Williams’ formulae types, especially at higher excitation energies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Level Density Single-Particle Level Density Statistical Compound Nucleus Reactions</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Iraqi Journal of Physics</subfield><subfield code="d">University of Baghdad, 2022</subfield><subfield code="g">8(2010), 13</subfield><subfield code="w">(DE-627)DOAJ078601851</subfield><subfield code="x">26645548</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6cad4910254b4f1f84053ee8b825c839</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/828</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2070-4003</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2664-5548</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2010</subfield><subfield code="e">13</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Ahmed Abdul-Razzaq Selman |
spellingShingle |
Ahmed Abdul-Razzaq Selman misc QC1-999 misc Level Density Single-Particle Level Density Statistical Compound Nucleus Reactions misc Physics Particle-Hole State Density Calculations with Non-Equidistant Spacing Model: I. Basic Derivation |
authorStr |
Ahmed Abdul-Razzaq Selman |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)DOAJ078601851 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QC1-999 |
illustrated |
Not Illustrated |
issn |
26645548 |
topic_title |
QC1-999 Particle-Hole State Density Calculations with Non-Equidistant Spacing Model: I. Basic Derivation Level Density Single-Particle Level Density Statistical Compound Nucleus Reactions |
topic |
misc QC1-999 misc Level Density Single-Particle Level Density Statistical Compound Nucleus Reactions misc Physics |
topic_unstemmed |
misc QC1-999 misc Level Density Single-Particle Level Density Statistical Compound Nucleus Reactions misc Physics |
topic_browse |
misc QC1-999 misc Level Density Single-Particle Level Density Statistical Compound Nucleus Reactions misc Physics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Iraqi Journal of Physics |
hierarchy_parent_id |
DOAJ078601851 |
hierarchy_top_title |
Iraqi Journal of Physics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)DOAJ078601851 |
title |
Particle-Hole State Density Calculations with Non-Equidistant Spacing Model: I. Basic Derivation |
ctrlnum |
(DE-627)DOAJ08862479X (DE-599)DOAJ6cad4910254b4f1f84053ee8b825c839 |
title_full |
Particle-Hole State Density Calculations with Non-Equidistant Spacing Model: I. Basic Derivation |
author_sort |
Ahmed Abdul-Razzaq Selman |
journal |
Iraqi Journal of Physics |
journalStr |
Iraqi Journal of Physics |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2010 |
contenttype_str_mv |
txt |
author_browse |
Ahmed Abdul-Razzaq Selman |
container_volume |
8 |
class |
QC1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Ahmed Abdul-Razzaq Selman |
title_sort |
particle-hole state density calculations with non-equidistant spacing model: i. basic derivation |
callnumber |
QC1-999 |
title_auth |
Particle-Hole State Density Calculations with Non-Equidistant Spacing Model: I. Basic Derivation |
abstract |
The basic analytical formula for particle-hole state densities is derived based on the non-Equidistant Spacing Model (non-ESM) for the single-particle level density (s.p.l.d.) dependence on particle excitation energy u. Two methods are illustrated in this work, the first depends on Taylor series expansion of the s.p.l.d. about u, while the second uses direct analytical derivation of the state density formula. This treatment is applied for a system composing from one kind of fermions and for uncorrected physical system. The important corrections due to Pauli blocking was added to the present formula. Analytical comparisons with the standard formulae for ESM are made and it is shown that the solution reduces to earlier formulae providing more general way to calculate state density. Numerical calculations then are made and the results show that state density behavior with excitation energy deviates from Ericson’s and Williams’ formulae types, especially at higher excitation energies |
abstractGer |
The basic analytical formula for particle-hole state densities is derived based on the non-Equidistant Spacing Model (non-ESM) for the single-particle level density (s.p.l.d.) dependence on particle excitation energy u. Two methods are illustrated in this work, the first depends on Taylor series expansion of the s.p.l.d. about u, while the second uses direct analytical derivation of the state density formula. This treatment is applied for a system composing from one kind of fermions and for uncorrected physical system. The important corrections due to Pauli blocking was added to the present formula. Analytical comparisons with the standard formulae for ESM are made and it is shown that the solution reduces to earlier formulae providing more general way to calculate state density. Numerical calculations then are made and the results show that state density behavior with excitation energy deviates from Ericson’s and Williams’ formulae types, especially at higher excitation energies |
abstract_unstemmed |
The basic analytical formula for particle-hole state densities is derived based on the non-Equidistant Spacing Model (non-ESM) for the single-particle level density (s.p.l.d.) dependence on particle excitation energy u. Two methods are illustrated in this work, the first depends on Taylor series expansion of the s.p.l.d. about u, while the second uses direct analytical derivation of the state density formula. This treatment is applied for a system composing from one kind of fermions and for uncorrected physical system. The important corrections due to Pauli blocking was added to the present formula. Analytical comparisons with the standard formulae for ESM are made and it is shown that the solution reduces to earlier formulae providing more general way to calculate state density. Numerical calculations then are made and the results show that state density behavior with excitation energy deviates from Ericson’s and Williams’ formulae types, especially at higher excitation energies |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA |
container_issue |
13 |
title_short |
Particle-Hole State Density Calculations with Non-Equidistant Spacing Model: I. Basic Derivation |
url |
https://doaj.org/article/6cad4910254b4f1f84053ee8b825c839 https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/828 https://doaj.org/toc/2070-4003 https://doaj.org/toc/2664-5548 |
remote_bool |
true |
ppnlink |
DOAJ078601851 |
callnumber-subject |
QC - Physics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
callnumber-a |
QC1-999 |
up_date |
2024-07-03T18:42:06.102Z |
_version_ |
1803584406660579328 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ08862479X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230501211128.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230410s2010 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ08862479X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6cad4910254b4f1f84053ee8b825c839</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ahmed Abdul-Razzaq Selman</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Particle-Hole State Density Calculations with Non-Equidistant Spacing Model: I. Basic Derivation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The basic analytical formula for particle-hole state densities is derived based on the non-Equidistant Spacing Model (non-ESM) for the single-particle level density (s.p.l.d.) dependence on particle excitation energy u. Two methods are illustrated in this work, the first depends on Taylor series expansion of the s.p.l.d. about u, while the second uses direct analytical derivation of the state density formula. This treatment is applied for a system composing from one kind of fermions and for uncorrected physical system. The important corrections due to Pauli blocking was added to the present formula. Analytical comparisons with the standard formulae for ESM are made and it is shown that the solution reduces to earlier formulae providing more general way to calculate state density. Numerical calculations then are made and the results show that state density behavior with excitation energy deviates from Ericson’s and Williams’ formulae types, especially at higher excitation energies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Level Density Single-Particle Level Density Statistical Compound Nucleus Reactions</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Iraqi Journal of Physics</subfield><subfield code="d">University of Baghdad, 2022</subfield><subfield code="g">8(2010), 13</subfield><subfield code="w">(DE-627)DOAJ078601851</subfield><subfield code="x">26645548</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6cad4910254b4f1f84053ee8b825c839</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/828</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2070-4003</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2664-5548</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2010</subfield><subfield code="e">13</subfield></datafield></record></collection>
|
score |
7.3986626 |