Analysis of 5G/SINS tightly coupled navigation algorithm with TOA/AOD
For the problem that the poor reliability and positioning accuracy of 5G positioning or strapdown inertial navigation system (SINS), this paper proposed a 5G/SINS tightly coupled navigation algorithm integrating time of arrival (TOA) and angle of departure (AOD) based on extended Kalman filter. Firs...
Ausführliche Beschreibung
Autor*in: |
GUO Wenfei [verfasserIn] QI Shufeng [verfasserIn] DENG Yue [verfasserIn] GUO Chi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Chinesisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Acta Geodaetica et Cartographica Sinica - Surveying and Mapping Press, 2014, 52(2023), 3, Seite 367-374 |
---|---|
Übergeordnetes Werk: |
volume:52 ; year:2023 ; number:3 ; pages:367-374 |
Links: |
---|
DOI / URN: |
10.11947/j.AGCS.2023.20210555 |
---|
Katalog-ID: |
DOAJ088970574 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ088970574 | ||
003 | DE-627 | ||
005 | 20230505012706.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230505s2023 xx |||||o 00| ||chi c | ||
024 | 7 | |a 10.11947/j.AGCS.2023.20210555 |2 doi | |
035 | |a (DE-627)DOAJ088970574 | ||
035 | |a (DE-599)DOAJ589c637ff6db47d5979ee734ff50e3b0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a chi | ||
050 | 0 | |a GA1-1776 | |
100 | 0 | |a GUO Wenfei |e verfasserin |4 aut | |
245 | 1 | 0 | |a Analysis of 5G/SINS tightly coupled navigation algorithm with TOA/AOD |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a For the problem that the poor reliability and positioning accuracy of 5G positioning or strapdown inertial navigation system (SINS), this paper proposed a 5G/SINS tightly coupled navigation algorithm integrating time of arrival (TOA) and angle of departure (AOD) based on extended Kalman filter. Firstly, the algorithm uses the output information of the inertial sensor to calculate the position, velocity, and attitude of the terminal. On this basis, a set of virtual 5G measurements are inverted by using the known coordinates of the base station. Then, a unified observation equation is established using the measurements and the actual 5G measurements for filtering. Simulation results showed that the success rate of 5G/SINS tightly coupled navigation could reach more than 99%, and the divergence problem of inertial navigation calculation can be effectively improved. Compared with simple 5G positioning, the positioning accuracy of 5G/SINS tightly coupled navigation is greatly improved, and the influence of base station number and base station geometry distribution is less than that of 5G/SINS loosely coupled navigation. More than 99% of the positioning results of 5G/SINS tightly coupled navigation integrated with TOA/AOD are within 3 m. When there are systematic errors in 5G observations, the positioning performance of 5G/SINS tight coupled navigation is better than that of 5G and 5G/SINS loosely coupled navigation. | ||
650 | 4 | |a 5g positioning | |
650 | 4 | |a toa | |
650 | 4 | |a aod | |
650 | 4 | |a sins | |
650 | 4 | |a tightly coupled navigation | |
653 | 0 | |a Mathematical geography. Cartography | |
700 | 0 | |a QI Shufeng |e verfasserin |4 aut | |
700 | 0 | |a DENG Yue |e verfasserin |4 aut | |
700 | 0 | |a GUO Chi |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Acta Geodaetica et Cartographica Sinica |d Surveying and Mapping Press, 2014 |g 52(2023), 3, Seite 367-374 |w (DE-627)57517014X |w (DE-600)2445687-1 |x 10011595 |7 nnns |
773 | 1 | 8 | |g volume:52 |g year:2023 |g number:3 |g pages:367-374 |
856 | 4 | 0 | |u https://doi.org/10.11947/j.AGCS.2023.20210555 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/589c637ff6db47d5979ee734ff50e3b0 |z kostenfrei |
856 | 4 | 0 | |u http://xb.sinomaps.com/article/2022/1001-1595/20230303.htm |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1001-1595 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 52 |j 2023 |e 3 |h 367-374 |
author_variant |
g w gw q s qs d y dy g c gc |
---|---|
matchkey_str |
article:10011595:2023----::nlssfgisihlculdaiainl |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
GA |
publishDate |
2023 |
allfields |
10.11947/j.AGCS.2023.20210555 doi (DE-627)DOAJ088970574 (DE-599)DOAJ589c637ff6db47d5979ee734ff50e3b0 DE-627 ger DE-627 rakwb chi GA1-1776 GUO Wenfei verfasserin aut Analysis of 5G/SINS tightly coupled navigation algorithm with TOA/AOD 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier For the problem that the poor reliability and positioning accuracy of 5G positioning or strapdown inertial navigation system (SINS), this paper proposed a 5G/SINS tightly coupled navigation algorithm integrating time of arrival (TOA) and angle of departure (AOD) based on extended Kalman filter. Firstly, the algorithm uses the output information of the inertial sensor to calculate the position, velocity, and attitude of the terminal. On this basis, a set of virtual 5G measurements are inverted by using the known coordinates of the base station. Then, a unified observation equation is established using the measurements and the actual 5G measurements for filtering. Simulation results showed that the success rate of 5G/SINS tightly coupled navigation could reach more than 99%, and the divergence problem of inertial navigation calculation can be effectively improved. Compared with simple 5G positioning, the positioning accuracy of 5G/SINS tightly coupled navigation is greatly improved, and the influence of base station number and base station geometry distribution is less than that of 5G/SINS loosely coupled navigation. More than 99% of the positioning results of 5G/SINS tightly coupled navigation integrated with TOA/AOD are within 3 m. When there are systematic errors in 5G observations, the positioning performance of 5G/SINS tight coupled navigation is better than that of 5G and 5G/SINS loosely coupled navigation. 5g positioning toa aod sins tightly coupled navigation Mathematical geography. Cartography QI Shufeng verfasserin aut DENG Yue verfasserin aut GUO Chi verfasserin aut In Acta Geodaetica et Cartographica Sinica Surveying and Mapping Press, 2014 52(2023), 3, Seite 367-374 (DE-627)57517014X (DE-600)2445687-1 10011595 nnns volume:52 year:2023 number:3 pages:367-374 https://doi.org/10.11947/j.AGCS.2023.20210555 kostenfrei https://doaj.org/article/589c637ff6db47d5979ee734ff50e3b0 kostenfrei http://xb.sinomaps.com/article/2022/1001-1595/20230303.htm kostenfrei https://doaj.org/toc/1001-1595 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 52 2023 3 367-374 |
spelling |
10.11947/j.AGCS.2023.20210555 doi (DE-627)DOAJ088970574 (DE-599)DOAJ589c637ff6db47d5979ee734ff50e3b0 DE-627 ger DE-627 rakwb chi GA1-1776 GUO Wenfei verfasserin aut Analysis of 5G/SINS tightly coupled navigation algorithm with TOA/AOD 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier For the problem that the poor reliability and positioning accuracy of 5G positioning or strapdown inertial navigation system (SINS), this paper proposed a 5G/SINS tightly coupled navigation algorithm integrating time of arrival (TOA) and angle of departure (AOD) based on extended Kalman filter. Firstly, the algorithm uses the output information of the inertial sensor to calculate the position, velocity, and attitude of the terminal. On this basis, a set of virtual 5G measurements are inverted by using the known coordinates of the base station. Then, a unified observation equation is established using the measurements and the actual 5G measurements for filtering. Simulation results showed that the success rate of 5G/SINS tightly coupled navigation could reach more than 99%, and the divergence problem of inertial navigation calculation can be effectively improved. Compared with simple 5G positioning, the positioning accuracy of 5G/SINS tightly coupled navigation is greatly improved, and the influence of base station number and base station geometry distribution is less than that of 5G/SINS loosely coupled navigation. More than 99% of the positioning results of 5G/SINS tightly coupled navigation integrated with TOA/AOD are within 3 m. When there are systematic errors in 5G observations, the positioning performance of 5G/SINS tight coupled navigation is better than that of 5G and 5G/SINS loosely coupled navigation. 5g positioning toa aod sins tightly coupled navigation Mathematical geography. Cartography QI Shufeng verfasserin aut DENG Yue verfasserin aut GUO Chi verfasserin aut In Acta Geodaetica et Cartographica Sinica Surveying and Mapping Press, 2014 52(2023), 3, Seite 367-374 (DE-627)57517014X (DE-600)2445687-1 10011595 nnns volume:52 year:2023 number:3 pages:367-374 https://doi.org/10.11947/j.AGCS.2023.20210555 kostenfrei https://doaj.org/article/589c637ff6db47d5979ee734ff50e3b0 kostenfrei http://xb.sinomaps.com/article/2022/1001-1595/20230303.htm kostenfrei https://doaj.org/toc/1001-1595 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 52 2023 3 367-374 |
allfields_unstemmed |
10.11947/j.AGCS.2023.20210555 doi (DE-627)DOAJ088970574 (DE-599)DOAJ589c637ff6db47d5979ee734ff50e3b0 DE-627 ger DE-627 rakwb chi GA1-1776 GUO Wenfei verfasserin aut Analysis of 5G/SINS tightly coupled navigation algorithm with TOA/AOD 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier For the problem that the poor reliability and positioning accuracy of 5G positioning or strapdown inertial navigation system (SINS), this paper proposed a 5G/SINS tightly coupled navigation algorithm integrating time of arrival (TOA) and angle of departure (AOD) based on extended Kalman filter. Firstly, the algorithm uses the output information of the inertial sensor to calculate the position, velocity, and attitude of the terminal. On this basis, a set of virtual 5G measurements are inverted by using the known coordinates of the base station. Then, a unified observation equation is established using the measurements and the actual 5G measurements for filtering. Simulation results showed that the success rate of 5G/SINS tightly coupled navigation could reach more than 99%, and the divergence problem of inertial navigation calculation can be effectively improved. Compared with simple 5G positioning, the positioning accuracy of 5G/SINS tightly coupled navigation is greatly improved, and the influence of base station number and base station geometry distribution is less than that of 5G/SINS loosely coupled navigation. More than 99% of the positioning results of 5G/SINS tightly coupled navigation integrated with TOA/AOD are within 3 m. When there are systematic errors in 5G observations, the positioning performance of 5G/SINS tight coupled navigation is better than that of 5G and 5G/SINS loosely coupled navigation. 5g positioning toa aod sins tightly coupled navigation Mathematical geography. Cartography QI Shufeng verfasserin aut DENG Yue verfasserin aut GUO Chi verfasserin aut In Acta Geodaetica et Cartographica Sinica Surveying and Mapping Press, 2014 52(2023), 3, Seite 367-374 (DE-627)57517014X (DE-600)2445687-1 10011595 nnns volume:52 year:2023 number:3 pages:367-374 https://doi.org/10.11947/j.AGCS.2023.20210555 kostenfrei https://doaj.org/article/589c637ff6db47d5979ee734ff50e3b0 kostenfrei http://xb.sinomaps.com/article/2022/1001-1595/20230303.htm kostenfrei https://doaj.org/toc/1001-1595 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 52 2023 3 367-374 |
allfieldsGer |
10.11947/j.AGCS.2023.20210555 doi (DE-627)DOAJ088970574 (DE-599)DOAJ589c637ff6db47d5979ee734ff50e3b0 DE-627 ger DE-627 rakwb chi GA1-1776 GUO Wenfei verfasserin aut Analysis of 5G/SINS tightly coupled navigation algorithm with TOA/AOD 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier For the problem that the poor reliability and positioning accuracy of 5G positioning or strapdown inertial navigation system (SINS), this paper proposed a 5G/SINS tightly coupled navigation algorithm integrating time of arrival (TOA) and angle of departure (AOD) based on extended Kalman filter. Firstly, the algorithm uses the output information of the inertial sensor to calculate the position, velocity, and attitude of the terminal. On this basis, a set of virtual 5G measurements are inverted by using the known coordinates of the base station. Then, a unified observation equation is established using the measurements and the actual 5G measurements for filtering. Simulation results showed that the success rate of 5G/SINS tightly coupled navigation could reach more than 99%, and the divergence problem of inertial navigation calculation can be effectively improved. Compared with simple 5G positioning, the positioning accuracy of 5G/SINS tightly coupled navigation is greatly improved, and the influence of base station number and base station geometry distribution is less than that of 5G/SINS loosely coupled navigation. More than 99% of the positioning results of 5G/SINS tightly coupled navigation integrated with TOA/AOD are within 3 m. When there are systematic errors in 5G observations, the positioning performance of 5G/SINS tight coupled navigation is better than that of 5G and 5G/SINS loosely coupled navigation. 5g positioning toa aod sins tightly coupled navigation Mathematical geography. Cartography QI Shufeng verfasserin aut DENG Yue verfasserin aut GUO Chi verfasserin aut In Acta Geodaetica et Cartographica Sinica Surveying and Mapping Press, 2014 52(2023), 3, Seite 367-374 (DE-627)57517014X (DE-600)2445687-1 10011595 nnns volume:52 year:2023 number:3 pages:367-374 https://doi.org/10.11947/j.AGCS.2023.20210555 kostenfrei https://doaj.org/article/589c637ff6db47d5979ee734ff50e3b0 kostenfrei http://xb.sinomaps.com/article/2022/1001-1595/20230303.htm kostenfrei https://doaj.org/toc/1001-1595 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 52 2023 3 367-374 |
allfieldsSound |
10.11947/j.AGCS.2023.20210555 doi (DE-627)DOAJ088970574 (DE-599)DOAJ589c637ff6db47d5979ee734ff50e3b0 DE-627 ger DE-627 rakwb chi GA1-1776 GUO Wenfei verfasserin aut Analysis of 5G/SINS tightly coupled navigation algorithm with TOA/AOD 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier For the problem that the poor reliability and positioning accuracy of 5G positioning or strapdown inertial navigation system (SINS), this paper proposed a 5G/SINS tightly coupled navigation algorithm integrating time of arrival (TOA) and angle of departure (AOD) based on extended Kalman filter. Firstly, the algorithm uses the output information of the inertial sensor to calculate the position, velocity, and attitude of the terminal. On this basis, a set of virtual 5G measurements are inverted by using the known coordinates of the base station. Then, a unified observation equation is established using the measurements and the actual 5G measurements for filtering. Simulation results showed that the success rate of 5G/SINS tightly coupled navigation could reach more than 99%, and the divergence problem of inertial navigation calculation can be effectively improved. Compared with simple 5G positioning, the positioning accuracy of 5G/SINS tightly coupled navigation is greatly improved, and the influence of base station number and base station geometry distribution is less than that of 5G/SINS loosely coupled navigation. More than 99% of the positioning results of 5G/SINS tightly coupled navigation integrated with TOA/AOD are within 3 m. When there are systematic errors in 5G observations, the positioning performance of 5G/SINS tight coupled navigation is better than that of 5G and 5G/SINS loosely coupled navigation. 5g positioning toa aod sins tightly coupled navigation Mathematical geography. Cartography QI Shufeng verfasserin aut DENG Yue verfasserin aut GUO Chi verfasserin aut In Acta Geodaetica et Cartographica Sinica Surveying and Mapping Press, 2014 52(2023), 3, Seite 367-374 (DE-627)57517014X (DE-600)2445687-1 10011595 nnns volume:52 year:2023 number:3 pages:367-374 https://doi.org/10.11947/j.AGCS.2023.20210555 kostenfrei https://doaj.org/article/589c637ff6db47d5979ee734ff50e3b0 kostenfrei http://xb.sinomaps.com/article/2022/1001-1595/20230303.htm kostenfrei https://doaj.org/toc/1001-1595 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 52 2023 3 367-374 |
language |
Chinese |
source |
In Acta Geodaetica et Cartographica Sinica 52(2023), 3, Seite 367-374 volume:52 year:2023 number:3 pages:367-374 |
sourceStr |
In Acta Geodaetica et Cartographica Sinica 52(2023), 3, Seite 367-374 volume:52 year:2023 number:3 pages:367-374 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
5g positioning toa aod sins tightly coupled navigation Mathematical geography. Cartography |
isfreeaccess_bool |
true |
container_title |
Acta Geodaetica et Cartographica Sinica |
authorswithroles_txt_mv |
GUO Wenfei @@aut@@ QI Shufeng @@aut@@ DENG Yue @@aut@@ GUO Chi @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
57517014X |
id |
DOAJ088970574 |
language_de |
chinesisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ088970574</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505012706.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2023 xx |||||o 00| ||chi c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.11947/j.AGCS.2023.20210555</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ088970574</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ589c637ff6db47d5979ee734ff50e3b0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">chi</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GA1-1776</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">GUO Wenfei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis of 5G/SINS tightly coupled navigation algorithm with TOA/AOD</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">For the problem that the poor reliability and positioning accuracy of 5G positioning or strapdown inertial navigation system (SINS), this paper proposed a 5G/SINS tightly coupled navigation algorithm integrating time of arrival (TOA) and angle of departure (AOD) based on extended Kalman filter. Firstly, the algorithm uses the output information of the inertial sensor to calculate the position, velocity, and attitude of the terminal. On this basis, a set of virtual 5G measurements are inverted by using the known coordinates of the base station. Then, a unified observation equation is established using the measurements and the actual 5G measurements for filtering. Simulation results showed that the success rate of 5G/SINS tightly coupled navigation could reach more than 99%, and the divergence problem of inertial navigation calculation can be effectively improved. Compared with simple 5G positioning, the positioning accuracy of 5G/SINS tightly coupled navigation is greatly improved, and the influence of base station number and base station geometry distribution is less than that of 5G/SINS loosely coupled navigation. More than 99% of the positioning results of 5G/SINS tightly coupled navigation integrated with TOA/AOD are within 3 m. When there are systematic errors in 5G observations, the positioning performance of 5G/SINS tight coupled navigation is better than that of 5G and 5G/SINS loosely coupled navigation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">5g positioning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">toa</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aod</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sins</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tightly coupled navigation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematical geography. Cartography</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">QI Shufeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">DENG Yue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">GUO Chi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Acta Geodaetica et Cartographica Sinica</subfield><subfield code="d">Surveying and Mapping Press, 2014</subfield><subfield code="g">52(2023), 3, Seite 367-374</subfield><subfield code="w">(DE-627)57517014X</subfield><subfield code="w">(DE-600)2445687-1</subfield><subfield code="x">10011595</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:52</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:367-374</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.11947/j.AGCS.2023.20210555</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/589c637ff6db47d5979ee734ff50e3b0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://xb.sinomaps.com/article/2022/1001-1595/20230303.htm</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1001-1595</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">52</subfield><subfield code="j">2023</subfield><subfield code="e">3</subfield><subfield code="h">367-374</subfield></datafield></record></collection>
|
callnumber-first |
G - Geography, Anthropology, Recreation |
author |
GUO Wenfei |
spellingShingle |
GUO Wenfei misc GA1-1776 misc 5g positioning misc toa misc aod misc sins misc tightly coupled navigation misc Mathematical geography. Cartography Analysis of 5G/SINS tightly coupled navigation algorithm with TOA/AOD |
authorStr |
GUO Wenfei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)57517014X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
GA1-1776 |
illustrated |
Not Illustrated |
issn |
10011595 |
topic_title |
GA1-1776 Analysis of 5G/SINS tightly coupled navigation algorithm with TOA/AOD 5g positioning toa aod sins tightly coupled navigation |
topic |
misc GA1-1776 misc 5g positioning misc toa misc aod misc sins misc tightly coupled navigation misc Mathematical geography. Cartography |
topic_unstemmed |
misc GA1-1776 misc 5g positioning misc toa misc aod misc sins misc tightly coupled navigation misc Mathematical geography. Cartography |
topic_browse |
misc GA1-1776 misc 5g positioning misc toa misc aod misc sins misc tightly coupled navigation misc Mathematical geography. Cartography |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Acta Geodaetica et Cartographica Sinica |
hierarchy_parent_id |
57517014X |
hierarchy_top_title |
Acta Geodaetica et Cartographica Sinica |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)57517014X (DE-600)2445687-1 |
title |
Analysis of 5G/SINS tightly coupled navigation algorithm with TOA/AOD |
ctrlnum |
(DE-627)DOAJ088970574 (DE-599)DOAJ589c637ff6db47d5979ee734ff50e3b0 |
title_full |
Analysis of 5G/SINS tightly coupled navigation algorithm with TOA/AOD |
author_sort |
GUO Wenfei |
journal |
Acta Geodaetica et Cartographica Sinica |
journalStr |
Acta Geodaetica et Cartographica Sinica |
callnumber-first-code |
G |
lang_code |
chi |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
367 |
author_browse |
GUO Wenfei QI Shufeng DENG Yue GUO Chi |
container_volume |
52 |
class |
GA1-1776 |
format_se |
Elektronische Aufsätze |
author-letter |
GUO Wenfei |
doi_str_mv |
10.11947/j.AGCS.2023.20210555 |
author2-role |
verfasserin |
title_sort |
analysis of 5g/sins tightly coupled navigation algorithm with toa/aod |
callnumber |
GA1-1776 |
title_auth |
Analysis of 5G/SINS tightly coupled navigation algorithm with TOA/AOD |
abstract |
For the problem that the poor reliability and positioning accuracy of 5G positioning or strapdown inertial navigation system (SINS), this paper proposed a 5G/SINS tightly coupled navigation algorithm integrating time of arrival (TOA) and angle of departure (AOD) based on extended Kalman filter. Firstly, the algorithm uses the output information of the inertial sensor to calculate the position, velocity, and attitude of the terminal. On this basis, a set of virtual 5G measurements are inverted by using the known coordinates of the base station. Then, a unified observation equation is established using the measurements and the actual 5G measurements for filtering. Simulation results showed that the success rate of 5G/SINS tightly coupled navigation could reach more than 99%, and the divergence problem of inertial navigation calculation can be effectively improved. Compared with simple 5G positioning, the positioning accuracy of 5G/SINS tightly coupled navigation is greatly improved, and the influence of base station number and base station geometry distribution is less than that of 5G/SINS loosely coupled navigation. More than 99% of the positioning results of 5G/SINS tightly coupled navigation integrated with TOA/AOD are within 3 m. When there are systematic errors in 5G observations, the positioning performance of 5G/SINS tight coupled navigation is better than that of 5G and 5G/SINS loosely coupled navigation. |
abstractGer |
For the problem that the poor reliability and positioning accuracy of 5G positioning or strapdown inertial navigation system (SINS), this paper proposed a 5G/SINS tightly coupled navigation algorithm integrating time of arrival (TOA) and angle of departure (AOD) based on extended Kalman filter. Firstly, the algorithm uses the output information of the inertial sensor to calculate the position, velocity, and attitude of the terminal. On this basis, a set of virtual 5G measurements are inverted by using the known coordinates of the base station. Then, a unified observation equation is established using the measurements and the actual 5G measurements for filtering. Simulation results showed that the success rate of 5G/SINS tightly coupled navigation could reach more than 99%, and the divergence problem of inertial navigation calculation can be effectively improved. Compared with simple 5G positioning, the positioning accuracy of 5G/SINS tightly coupled navigation is greatly improved, and the influence of base station number and base station geometry distribution is less than that of 5G/SINS loosely coupled navigation. More than 99% of the positioning results of 5G/SINS tightly coupled navigation integrated with TOA/AOD are within 3 m. When there are systematic errors in 5G observations, the positioning performance of 5G/SINS tight coupled navigation is better than that of 5G and 5G/SINS loosely coupled navigation. |
abstract_unstemmed |
For the problem that the poor reliability and positioning accuracy of 5G positioning or strapdown inertial navigation system (SINS), this paper proposed a 5G/SINS tightly coupled navigation algorithm integrating time of arrival (TOA) and angle of departure (AOD) based on extended Kalman filter. Firstly, the algorithm uses the output information of the inertial sensor to calculate the position, velocity, and attitude of the terminal. On this basis, a set of virtual 5G measurements are inverted by using the known coordinates of the base station. Then, a unified observation equation is established using the measurements and the actual 5G measurements for filtering. Simulation results showed that the success rate of 5G/SINS tightly coupled navigation could reach more than 99%, and the divergence problem of inertial navigation calculation can be effectively improved. Compared with simple 5G positioning, the positioning accuracy of 5G/SINS tightly coupled navigation is greatly improved, and the influence of base station number and base station geometry distribution is less than that of 5G/SINS loosely coupled navigation. More than 99% of the positioning results of 5G/SINS tightly coupled navigation integrated with TOA/AOD are within 3 m. When there are systematic errors in 5G observations, the positioning performance of 5G/SINS tight coupled navigation is better than that of 5G and 5G/SINS loosely coupled navigation. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 |
container_issue |
3 |
title_short |
Analysis of 5G/SINS tightly coupled navigation algorithm with TOA/AOD |
url |
https://doi.org/10.11947/j.AGCS.2023.20210555 https://doaj.org/article/589c637ff6db47d5979ee734ff50e3b0 http://xb.sinomaps.com/article/2022/1001-1595/20230303.htm https://doaj.org/toc/1001-1595 |
remote_bool |
true |
author2 |
QI Shufeng DENG Yue GUO Chi |
author2Str |
QI Shufeng DENG Yue GUO Chi |
ppnlink |
57517014X |
callnumber-subject |
GA - Mathematical Geography and Cartography |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.11947/j.AGCS.2023.20210555 |
callnumber-a |
GA1-1776 |
up_date |
2024-07-03T20:30:40.391Z |
_version_ |
1803591237390827520 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ088970574</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505012706.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2023 xx |||||o 00| ||chi c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.11947/j.AGCS.2023.20210555</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ088970574</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ589c637ff6db47d5979ee734ff50e3b0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">chi</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GA1-1776</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">GUO Wenfei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis of 5G/SINS tightly coupled navigation algorithm with TOA/AOD</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">For the problem that the poor reliability and positioning accuracy of 5G positioning or strapdown inertial navigation system (SINS), this paper proposed a 5G/SINS tightly coupled navigation algorithm integrating time of arrival (TOA) and angle of departure (AOD) based on extended Kalman filter. Firstly, the algorithm uses the output information of the inertial sensor to calculate the position, velocity, and attitude of the terminal. On this basis, a set of virtual 5G measurements are inverted by using the known coordinates of the base station. Then, a unified observation equation is established using the measurements and the actual 5G measurements for filtering. Simulation results showed that the success rate of 5G/SINS tightly coupled navigation could reach more than 99%, and the divergence problem of inertial navigation calculation can be effectively improved. Compared with simple 5G positioning, the positioning accuracy of 5G/SINS tightly coupled navigation is greatly improved, and the influence of base station number and base station geometry distribution is less than that of 5G/SINS loosely coupled navigation. More than 99% of the positioning results of 5G/SINS tightly coupled navigation integrated with TOA/AOD are within 3 m. When there are systematic errors in 5G observations, the positioning performance of 5G/SINS tight coupled navigation is better than that of 5G and 5G/SINS loosely coupled navigation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">5g positioning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">toa</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aod</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sins</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tightly coupled navigation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematical geography. Cartography</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">QI Shufeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">DENG Yue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">GUO Chi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Acta Geodaetica et Cartographica Sinica</subfield><subfield code="d">Surveying and Mapping Press, 2014</subfield><subfield code="g">52(2023), 3, Seite 367-374</subfield><subfield code="w">(DE-627)57517014X</subfield><subfield code="w">(DE-600)2445687-1</subfield><subfield code="x">10011595</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:52</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:367-374</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.11947/j.AGCS.2023.20210555</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/589c637ff6db47d5979ee734ff50e3b0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://xb.sinomaps.com/article/2022/1001-1595/20230303.htm</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1001-1595</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">52</subfield><subfield code="j">2023</subfield><subfield code="e">3</subfield><subfield code="h">367-374</subfield></datafield></record></collection>
|
score |
7.4000044 |