Third-Harmonic-Type Modulation Minimizing the DC-Link Energy Storage Requirement of Isolated Phase-Modular Three-Phase PFC Rectifier Systems
A three-phase ac-dc converter with high-frequency isolation can be realized as a phase-modular system by using three single-phase Power Factor Correction (PFC) rectifier modules with isolated dc-dc converter output stages, which advantageously allows to cover a wide input voltage range by module rec...
Ausführliche Beschreibung
Autor*in: |
Thomas Langbauer [verfasserIn] David Menzi [verfasserIn] Valentin Marugg [verfasserIn] Franz Vollmaier [verfasserIn] Jon Azurza [verfasserIn] Matthias Kasper [verfasserIn] Johann W. Kolar [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 11(2023), Seite 34359-34371 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2023 ; pages:34359-34371 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2023.3261243 |
---|
Katalog-ID: |
DOAJ088993574 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ088993574 | ||
003 | DE-627 | ||
005 | 20230505001013.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230505s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2023.3261243 |2 doi | |
035 | |a (DE-627)DOAJ088993574 | ||
035 | |a (DE-599)DOAJ4210e75b862e437295699f7989bfccfa | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Thomas Langbauer |e verfasserin |4 aut | |
245 | 1 | 0 | |a Third-Harmonic-Type Modulation Minimizing the DC-Link Energy Storage Requirement of Isolated Phase-Modular Three-Phase PFC Rectifier Systems |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a A three-phase ac-dc converter with high-frequency isolation can be realized as a phase-modular system by using three single-phase Power Factor Correction (PFC) rectifier modules with isolated dc-dc converter output stages, which advantageously allows to cover a wide input voltage range by module reconfiguration from a star-(Y)- to a delta-(<inline-formula< <tex-math notation="LaTeX"<$\Delta $ </tex-math<</inline-formula<)-arrangement. However, the main limitation of a phase-modular topology is the fact that the input power of each PFC rectifier module pulsates at twice the mains frequency such that large dc-link capacitors are required. Recent literature predicts a substantial single-phase power pulsation reduction enabled by means of third-(3 <inline-formula< <tex-math notation="LaTeX"<$^{\mathrm{ rd}}$ </tex-math<</inline-formula<)-harmonic common-mode (CM) voltage (Y) or current (<inline-formula< <tex-math notation="LaTeX"<$\Delta $ </tex-math<</inline-formula<) injection modulation. This paper experimentally verifies and extends the dc-link energy storage requirement reduction of the 3 <inline-formula< <tex-math notation="LaTeX"<$^{\mathrm{ rd}}$ </tex-math<</inline-formula<-harmonic injection modulation concepts: In a first step, the derivation of the harmonic injection concept is recapitulated and suitable control methods are discussed for both CM voltage (Y) and CM current (<inline-formula< <tex-math notation="LaTeX"<$\Delta $ </tex-math<</inline-formula<) injection. Further, an alternative CM voltage injection strategy with simplified reference generation based only on the instantaneous grid voltage measurements is presented and compared to the pure 3 <inline-formula< <tex-math notation="LaTeX"<$^{\mathrm{ rd}}$ </tex-math<</inline-formula<-harmonic injection modulation. Measurement results obtained from a 6 kW prototype reveal a dc-link voltage variation and/or energy buffering reduction by up to 38.6 % enabled by the harmonic injection modulation compared to conventional operation without 3 <inline-formula< <tex-math notation="LaTeX"<$^{\mathrm{ rd}}$ </tex-math<</inline-formula<-harmonic injection modulation. | ||
650 | 4 | |a AC-DC converter | |
650 | 4 | |a three-phase | |
650 | 4 | |a modular | |
650 | 4 | |a harmonic injection | |
650 | 4 | |a zero sequence | |
650 | 4 | |a CM voltage injection | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a David Menzi |e verfasserin |4 aut | |
700 | 0 | |a Valentin Marugg |e verfasserin |4 aut | |
700 | 0 | |a Franz Vollmaier |e verfasserin |4 aut | |
700 | 0 | |a Jon Azurza |e verfasserin |4 aut | |
700 | 0 | |a Matthias Kasper |e verfasserin |4 aut | |
700 | 0 | |a Johann W. Kolar |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 11(2023), Seite 34359-34371 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2023 |g pages:34359-34371 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2023.3261243 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/4210e75b862e437295699f7989bfccfa |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/10089233/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2023 |h 34359-34371 |
author_variant |
t l tl d m dm v m vm f v fv j a ja m k mk j w k jwk |
---|---|
matchkey_str |
article:21693536:2023----::hrhroitpmdltomnmznteciknrytrgrqieetfsltdhsmdl |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TK |
publishDate |
2023 |
allfields |
10.1109/ACCESS.2023.3261243 doi (DE-627)DOAJ088993574 (DE-599)DOAJ4210e75b862e437295699f7989bfccfa DE-627 ger DE-627 rakwb eng TK1-9971 Thomas Langbauer verfasserin aut Third-Harmonic-Type Modulation Minimizing the DC-Link Energy Storage Requirement of Isolated Phase-Modular Three-Phase PFC Rectifier Systems 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A three-phase ac-dc converter with high-frequency isolation can be realized as a phase-modular system by using three single-phase Power Factor Correction (PFC) rectifier modules with isolated dc-dc converter output stages, which advantageously allows to cover a wide input voltage range by module reconfiguration from a star-(Y)- to a delta-(<inline-formula< <tex-math notation="LaTeX"<$\Delta $ </tex-math<</inline-formula<)-arrangement. However, the main limitation of a phase-modular topology is the fact that the input power of each PFC rectifier module pulsates at twice the mains frequency such that large dc-link capacitors are required. Recent literature predicts a substantial single-phase power pulsation reduction enabled by means of third-(3 <inline-formula< <tex-math notation="LaTeX"<$^{\mathrm{ rd}}$ </tex-math<</inline-formula<)-harmonic common-mode (CM) voltage (Y) or current (<inline-formula< <tex-math notation="LaTeX"<$\Delta $ </tex-math<</inline-formula<) injection modulation. This paper experimentally verifies and extends the dc-link energy storage requirement reduction of the 3 <inline-formula< <tex-math notation="LaTeX"<$^{\mathrm{ rd}}$ </tex-math<</inline-formula<-harmonic injection modulation concepts: In a first step, the derivation of the harmonic injection concept is recapitulated and suitable control methods are discussed for both CM voltage (Y) and CM current (<inline-formula< <tex-math notation="LaTeX"<$\Delta $ </tex-math<</inline-formula<) injection. Further, an alternative CM voltage injection strategy with simplified reference generation based only on the instantaneous grid voltage measurements is presented and compared to the pure 3 <inline-formula< <tex-math notation="LaTeX"<$^{\mathrm{ rd}}$ </tex-math<</inline-formula<-harmonic injection modulation. Measurement results obtained from a 6 kW prototype reveal a dc-link voltage variation and/or energy buffering reduction by up to 38.6 % enabled by the harmonic injection modulation compared to conventional operation without 3 <inline-formula< <tex-math notation="LaTeX"<$^{\mathrm{ rd}}$ </tex-math<</inline-formula<-harmonic injection modulation. AC-DC converter three-phase modular harmonic injection zero sequence CM voltage injection Electrical engineering. Electronics. Nuclear engineering David Menzi verfasserin aut Valentin Marugg verfasserin aut Franz Vollmaier verfasserin aut Jon Azurza verfasserin aut Matthias Kasper verfasserin aut Johann W. Kolar verfasserin aut In IEEE Access IEEE, 2014 11(2023), Seite 34359-34371 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:11 year:2023 pages:34359-34371 https://doi.org/10.1109/ACCESS.2023.3261243 kostenfrei https://doaj.org/article/4210e75b862e437295699f7989bfccfa kostenfrei https://ieeexplore.ieee.org/document/10089233/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 34359-34371 |
spelling |
10.1109/ACCESS.2023.3261243 doi (DE-627)DOAJ088993574 (DE-599)DOAJ4210e75b862e437295699f7989bfccfa DE-627 ger DE-627 rakwb eng TK1-9971 Thomas Langbauer verfasserin aut Third-Harmonic-Type Modulation Minimizing the DC-Link Energy Storage Requirement of Isolated Phase-Modular Three-Phase PFC Rectifier Systems 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A three-phase ac-dc converter with high-frequency isolation can be realized as a phase-modular system by using three single-phase Power Factor Correction (PFC) rectifier modules with isolated dc-dc converter output stages, which advantageously allows to cover a wide input voltage range by module reconfiguration from a star-(Y)- to a delta-(<inline-formula< <tex-math notation="LaTeX"<$\Delta $ </tex-math<</inline-formula<)-arrangement. However, the main limitation of a phase-modular topology is the fact that the input power of each PFC rectifier module pulsates at twice the mains frequency such that large dc-link capacitors are required. Recent literature predicts a substantial single-phase power pulsation reduction enabled by means of third-(3 <inline-formula< <tex-math notation="LaTeX"<$^{\mathrm{ rd}}$ </tex-math<</inline-formula<)-harmonic common-mode (CM) voltage (Y) or current (<inline-formula< <tex-math notation="LaTeX"<$\Delta $ </tex-math<</inline-formula<) injection modulation. This paper experimentally verifies and extends the dc-link energy storage requirement reduction of the 3 <inline-formula< <tex-math notation="LaTeX"<$^{\mathrm{ rd}}$ </tex-math<</inline-formula<-harmonic injection modulation concepts: In a first step, the derivation of the harmonic injection concept is recapitulated and suitable control methods are discussed for both CM voltage (Y) and CM current (<inline-formula< <tex-math notation="LaTeX"<$\Delta $ </tex-math<</inline-formula<) injection. Further, an alternative CM voltage injection strategy with simplified reference generation based only on the instantaneous grid voltage measurements is presented and compared to the pure 3 <inline-formula< <tex-math notation="LaTeX"<$^{\mathrm{ rd}}$ </tex-math<</inline-formula<-harmonic injection modulation. Measurement results obtained from a 6 kW prototype reveal a dc-link voltage variation and/or energy buffering reduction by up to 38.6 % enabled by the harmonic injection modulation compared to conventional operation without 3 <inline-formula< <tex-math notation="LaTeX"<$^{\mathrm{ rd}}$ </tex-math<</inline-formula<-harmonic injection modulation. AC-DC converter three-phase modular harmonic injection zero sequence CM voltage injection Electrical engineering. Electronics. Nuclear engineering David Menzi verfasserin aut Valentin Marugg verfasserin aut Franz Vollmaier verfasserin aut Jon Azurza verfasserin aut Matthias Kasper verfasserin aut Johann W. Kolar verfasserin aut In IEEE Access IEEE, 2014 11(2023), Seite 34359-34371 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:11 year:2023 pages:34359-34371 https://doi.org/10.1109/ACCESS.2023.3261243 kostenfrei https://doaj.org/article/4210e75b862e437295699f7989bfccfa kostenfrei https://ieeexplore.ieee.org/document/10089233/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 34359-34371 |
allfields_unstemmed |
10.1109/ACCESS.2023.3261243 doi (DE-627)DOAJ088993574 (DE-599)DOAJ4210e75b862e437295699f7989bfccfa DE-627 ger DE-627 rakwb eng TK1-9971 Thomas Langbauer verfasserin aut Third-Harmonic-Type Modulation Minimizing the DC-Link Energy Storage Requirement of Isolated Phase-Modular Three-Phase PFC Rectifier Systems 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A three-phase ac-dc converter with high-frequency isolation can be realized as a phase-modular system by using three single-phase Power Factor Correction (PFC) rectifier modules with isolated dc-dc converter output stages, which advantageously allows to cover a wide input voltage range by module reconfiguration from a star-(Y)- to a delta-(<inline-formula< <tex-math notation="LaTeX"<$\Delta $ </tex-math<</inline-formula<)-arrangement. However, the main limitation of a phase-modular topology is the fact that the input power of each PFC rectifier module pulsates at twice the mains frequency such that large dc-link capacitors are required. Recent literature predicts a substantial single-phase power pulsation reduction enabled by means of third-(3 <inline-formula< <tex-math notation="LaTeX"<$^{\mathrm{ rd}}$ </tex-math<</inline-formula<)-harmonic common-mode (CM) voltage (Y) or current (<inline-formula< <tex-math notation="LaTeX"<$\Delta $ </tex-math<</inline-formula<) injection modulation. This paper experimentally verifies and extends the dc-link energy storage requirement reduction of the 3 <inline-formula< <tex-math notation="LaTeX"<$^{\mathrm{ rd}}$ </tex-math<</inline-formula<-harmonic injection modulation concepts: In a first step, the derivation of the harmonic injection concept is recapitulated and suitable control methods are discussed for both CM voltage (Y) and CM current (<inline-formula< <tex-math notation="LaTeX"<$\Delta $ </tex-math<</inline-formula<) injection. Further, an alternative CM voltage injection strategy with simplified reference generation based only on the instantaneous grid voltage measurements is presented and compared to the pure 3 <inline-formula< <tex-math notation="LaTeX"<$^{\mathrm{ rd}}$ </tex-math<</inline-formula<-harmonic injection modulation. Measurement results obtained from a 6 kW prototype reveal a dc-link voltage variation and/or energy buffering reduction by up to 38.6 % enabled by the harmonic injection modulation compared to conventional operation without 3 <inline-formula< <tex-math notation="LaTeX"<$^{\mathrm{ rd}}$ </tex-math<</inline-formula<-harmonic injection modulation. AC-DC converter three-phase modular harmonic injection zero sequence CM voltage injection Electrical engineering. Electronics. Nuclear engineering David Menzi verfasserin aut Valentin Marugg verfasserin aut Franz Vollmaier verfasserin aut Jon Azurza verfasserin aut Matthias Kasper verfasserin aut Johann W. Kolar verfasserin aut In IEEE Access IEEE, 2014 11(2023), Seite 34359-34371 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:11 year:2023 pages:34359-34371 https://doi.org/10.1109/ACCESS.2023.3261243 kostenfrei https://doaj.org/article/4210e75b862e437295699f7989bfccfa kostenfrei https://ieeexplore.ieee.org/document/10089233/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 34359-34371 |
allfieldsGer |
10.1109/ACCESS.2023.3261243 doi (DE-627)DOAJ088993574 (DE-599)DOAJ4210e75b862e437295699f7989bfccfa DE-627 ger DE-627 rakwb eng TK1-9971 Thomas Langbauer verfasserin aut Third-Harmonic-Type Modulation Minimizing the DC-Link Energy Storage Requirement of Isolated Phase-Modular Three-Phase PFC Rectifier Systems 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A three-phase ac-dc converter with high-frequency isolation can be realized as a phase-modular system by using three single-phase Power Factor Correction (PFC) rectifier modules with isolated dc-dc converter output stages, which advantageously allows to cover a wide input voltage range by module reconfiguration from a star-(Y)- to a delta-(<inline-formula< <tex-math notation="LaTeX"<$\Delta $ </tex-math<</inline-formula<)-arrangement. However, the main limitation of a phase-modular topology is the fact that the input power of each PFC rectifier module pulsates at twice the mains frequency such that large dc-link capacitors are required. Recent literature predicts a substantial single-phase power pulsation reduction enabled by means of third-(3 <inline-formula< <tex-math notation="LaTeX"<$^{\mathrm{ rd}}$ </tex-math<</inline-formula<)-harmonic common-mode (CM) voltage (Y) or current (<inline-formula< <tex-math notation="LaTeX"<$\Delta $ </tex-math<</inline-formula<) injection modulation. This paper experimentally verifies and extends the dc-link energy storage requirement reduction of the 3 <inline-formula< <tex-math notation="LaTeX"<$^{\mathrm{ rd}}$ </tex-math<</inline-formula<-harmonic injection modulation concepts: In a first step, the derivation of the harmonic injection concept is recapitulated and suitable control methods are discussed for both CM voltage (Y) and CM current (<inline-formula< <tex-math notation="LaTeX"<$\Delta $ </tex-math<</inline-formula<) injection. Further, an alternative CM voltage injection strategy with simplified reference generation based only on the instantaneous grid voltage measurements is presented and compared to the pure 3 <inline-formula< <tex-math notation="LaTeX"<$^{\mathrm{ rd}}$ </tex-math<</inline-formula<-harmonic injection modulation. Measurement results obtained from a 6 kW prototype reveal a dc-link voltage variation and/or energy buffering reduction by up to 38.6 % enabled by the harmonic injection modulation compared to conventional operation without 3 <inline-formula< <tex-math notation="LaTeX"<$^{\mathrm{ rd}}$ </tex-math<</inline-formula<-harmonic injection modulation. AC-DC converter three-phase modular harmonic injection zero sequence CM voltage injection Electrical engineering. Electronics. Nuclear engineering David Menzi verfasserin aut Valentin Marugg verfasserin aut Franz Vollmaier verfasserin aut Jon Azurza verfasserin aut Matthias Kasper verfasserin aut Johann W. Kolar verfasserin aut In IEEE Access IEEE, 2014 11(2023), Seite 34359-34371 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:11 year:2023 pages:34359-34371 https://doi.org/10.1109/ACCESS.2023.3261243 kostenfrei https://doaj.org/article/4210e75b862e437295699f7989bfccfa kostenfrei https://ieeexplore.ieee.org/document/10089233/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 34359-34371 |
allfieldsSound |
10.1109/ACCESS.2023.3261243 doi (DE-627)DOAJ088993574 (DE-599)DOAJ4210e75b862e437295699f7989bfccfa DE-627 ger DE-627 rakwb eng TK1-9971 Thomas Langbauer verfasserin aut Third-Harmonic-Type Modulation Minimizing the DC-Link Energy Storage Requirement of Isolated Phase-Modular Three-Phase PFC Rectifier Systems 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A three-phase ac-dc converter with high-frequency isolation can be realized as a phase-modular system by using three single-phase Power Factor Correction (PFC) rectifier modules with isolated dc-dc converter output stages, which advantageously allows to cover a wide input voltage range by module reconfiguration from a star-(Y)- to a delta-(<inline-formula< <tex-math notation="LaTeX"<$\Delta $ </tex-math<</inline-formula<)-arrangement. However, the main limitation of a phase-modular topology is the fact that the input power of each PFC rectifier module pulsates at twice the mains frequency such that large dc-link capacitors are required. Recent literature predicts a substantial single-phase power pulsation reduction enabled by means of third-(3 <inline-formula< <tex-math notation="LaTeX"<$^{\mathrm{ rd}}$ </tex-math<</inline-formula<)-harmonic common-mode (CM) voltage (Y) or current (<inline-formula< <tex-math notation="LaTeX"<$\Delta $ </tex-math<</inline-formula<) injection modulation. This paper experimentally verifies and extends the dc-link energy storage requirement reduction of the 3 <inline-formula< <tex-math notation="LaTeX"<$^{\mathrm{ rd}}$ </tex-math<</inline-formula<-harmonic injection modulation concepts: In a first step, the derivation of the harmonic injection concept is recapitulated and suitable control methods are discussed for both CM voltage (Y) and CM current (<inline-formula< <tex-math notation="LaTeX"<$\Delta $ </tex-math<</inline-formula<) injection. Further, an alternative CM voltage injection strategy with simplified reference generation based only on the instantaneous grid voltage measurements is presented and compared to the pure 3 <inline-formula< <tex-math notation="LaTeX"<$^{\mathrm{ rd}}$ </tex-math<</inline-formula<-harmonic injection modulation. Measurement results obtained from a 6 kW prototype reveal a dc-link voltage variation and/or energy buffering reduction by up to 38.6 % enabled by the harmonic injection modulation compared to conventional operation without 3 <inline-formula< <tex-math notation="LaTeX"<$^{\mathrm{ rd}}$ </tex-math<</inline-formula<-harmonic injection modulation. AC-DC converter three-phase modular harmonic injection zero sequence CM voltage injection Electrical engineering. Electronics. Nuclear engineering David Menzi verfasserin aut Valentin Marugg verfasserin aut Franz Vollmaier verfasserin aut Jon Azurza verfasserin aut Matthias Kasper verfasserin aut Johann W. Kolar verfasserin aut In IEEE Access IEEE, 2014 11(2023), Seite 34359-34371 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:11 year:2023 pages:34359-34371 https://doi.org/10.1109/ACCESS.2023.3261243 kostenfrei https://doaj.org/article/4210e75b862e437295699f7989bfccfa kostenfrei https://ieeexplore.ieee.org/document/10089233/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 34359-34371 |
language |
English |
source |
In IEEE Access 11(2023), Seite 34359-34371 volume:11 year:2023 pages:34359-34371 |
sourceStr |
In IEEE Access 11(2023), Seite 34359-34371 volume:11 year:2023 pages:34359-34371 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
AC-DC converter three-phase modular harmonic injection zero sequence CM voltage injection Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Thomas Langbauer @@aut@@ David Menzi @@aut@@ Valentin Marugg @@aut@@ Franz Vollmaier @@aut@@ Jon Azurza @@aut@@ Matthias Kasper @@aut@@ Johann W. Kolar @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ088993574 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ088993574</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505001013.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2023.3261243</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ088993574</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4210e75b862e437295699f7989bfccfa</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Thomas Langbauer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Third-Harmonic-Type Modulation Minimizing the DC-Link Energy Storage Requirement of Isolated Phase-Modular Three-Phase PFC Rectifier Systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A three-phase ac-dc converter with high-frequency isolation can be realized as a phase-modular system by using three single-phase Power Factor Correction (PFC) rectifier modules with isolated dc-dc converter output stages, which advantageously allows to cover a wide input voltage range by module reconfiguration from a star-(Y)- to a delta-(<inline-formula< <tex-math notation="LaTeX"<$\Delta $ </tex-math<</inline-formula<)-arrangement. However, the main limitation of a phase-modular topology is the fact that the input power of each PFC rectifier module pulsates at twice the mains frequency such that large dc-link capacitors are required. Recent literature predicts a substantial single-phase power pulsation reduction enabled by means of third-(3 <inline-formula< <tex-math notation="LaTeX"<$^{\mathrm{ rd}}$ </tex-math<</inline-formula<)-harmonic common-mode (CM) voltage (Y) or current (<inline-formula< <tex-math notation="LaTeX"<$\Delta $ </tex-math<</inline-formula<) injection modulation. This paper experimentally verifies and extends the dc-link energy storage requirement reduction of the 3 <inline-formula< <tex-math notation="LaTeX"<$^{\mathrm{ rd}}$ </tex-math<</inline-formula<-harmonic injection modulation concepts: In a first step, the derivation of the harmonic injection concept is recapitulated and suitable control methods are discussed for both CM voltage (Y) and CM current (<inline-formula< <tex-math notation="LaTeX"<$\Delta $ </tex-math<</inline-formula<) injection. Further, an alternative CM voltage injection strategy with simplified reference generation based only on the instantaneous grid voltage measurements is presented and compared to the pure 3 <inline-formula< <tex-math notation="LaTeX"<$^{\mathrm{ rd}}$ </tex-math<</inline-formula<-harmonic injection modulation. Measurement results obtained from a 6 kW prototype reveal a dc-link voltage variation and/or energy buffering reduction by up to 38.6 % enabled by the harmonic injection modulation compared to conventional operation without 3 <inline-formula< <tex-math notation="LaTeX"<$^{\mathrm{ rd}}$ </tex-math<</inline-formula<-harmonic injection modulation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">AC-DC converter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">three-phase</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">modular</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">harmonic injection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">zero sequence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CM voltage injection</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">David Menzi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Valentin Marugg</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Franz Vollmaier</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jon Azurza</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Matthias Kasper</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Johann W. Kolar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">11(2023), Seite 34359-34371</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2023</subfield><subfield code="g">pages:34359-34371</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2023.3261243</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4210e75b862e437295699f7989bfccfa</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/10089233/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2023</subfield><subfield code="h">34359-34371</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Thomas Langbauer |
spellingShingle |
Thomas Langbauer misc TK1-9971 misc AC-DC converter misc three-phase misc modular misc harmonic injection misc zero sequence misc CM voltage injection misc Electrical engineering. Electronics. Nuclear engineering Third-Harmonic-Type Modulation Minimizing the DC-Link Energy Storage Requirement of Isolated Phase-Modular Three-Phase PFC Rectifier Systems |
authorStr |
Thomas Langbauer |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 Third-Harmonic-Type Modulation Minimizing the DC-Link Energy Storage Requirement of Isolated Phase-Modular Three-Phase PFC Rectifier Systems AC-DC converter three-phase modular harmonic injection zero sequence CM voltage injection |
topic |
misc TK1-9971 misc AC-DC converter misc three-phase misc modular misc harmonic injection misc zero sequence misc CM voltage injection misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc AC-DC converter misc three-phase misc modular misc harmonic injection misc zero sequence misc CM voltage injection misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc AC-DC converter misc three-phase misc modular misc harmonic injection misc zero sequence misc CM voltage injection misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
Third-Harmonic-Type Modulation Minimizing the DC-Link Energy Storage Requirement of Isolated Phase-Modular Three-Phase PFC Rectifier Systems |
ctrlnum |
(DE-627)DOAJ088993574 (DE-599)DOAJ4210e75b862e437295699f7989bfccfa |
title_full |
Third-Harmonic-Type Modulation Minimizing the DC-Link Energy Storage Requirement of Isolated Phase-Modular Three-Phase PFC Rectifier Systems |
author_sort |
Thomas Langbauer |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
34359 |
author_browse |
Thomas Langbauer David Menzi Valentin Marugg Franz Vollmaier Jon Azurza Matthias Kasper Johann W. Kolar |
container_volume |
11 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Thomas Langbauer |
doi_str_mv |
10.1109/ACCESS.2023.3261243 |
author2-role |
verfasserin |
title_sort |
third-harmonic-type modulation minimizing the dc-link energy storage requirement of isolated phase-modular three-phase pfc rectifier systems |
callnumber |
TK1-9971 |
title_auth |
Third-Harmonic-Type Modulation Minimizing the DC-Link Energy Storage Requirement of Isolated Phase-Modular Three-Phase PFC Rectifier Systems |
abstract |
A three-phase ac-dc converter with high-frequency isolation can be realized as a phase-modular system by using three single-phase Power Factor Correction (PFC) rectifier modules with isolated dc-dc converter output stages, which advantageously allows to cover a wide input voltage range by module reconfiguration from a star-(Y)- to a delta-(<inline-formula< <tex-math notation="LaTeX"<$\Delta $ </tex-math<</inline-formula<)-arrangement. However, the main limitation of a phase-modular topology is the fact that the input power of each PFC rectifier module pulsates at twice the mains frequency such that large dc-link capacitors are required. Recent literature predicts a substantial single-phase power pulsation reduction enabled by means of third-(3 <inline-formula< <tex-math notation="LaTeX"<$^{\mathrm{ rd}}$ </tex-math<</inline-formula<)-harmonic common-mode (CM) voltage (Y) or current (<inline-formula< <tex-math notation="LaTeX"<$\Delta $ </tex-math<</inline-formula<) injection modulation. This paper experimentally verifies and extends the dc-link energy storage requirement reduction of the 3 <inline-formula< <tex-math notation="LaTeX"<$^{\mathrm{ rd}}$ </tex-math<</inline-formula<-harmonic injection modulation concepts: In a first step, the derivation of the harmonic injection concept is recapitulated and suitable control methods are discussed for both CM voltage (Y) and CM current (<inline-formula< <tex-math notation="LaTeX"<$\Delta $ </tex-math<</inline-formula<) injection. Further, an alternative CM voltage injection strategy with simplified reference generation based only on the instantaneous grid voltage measurements is presented and compared to the pure 3 <inline-formula< <tex-math notation="LaTeX"<$^{\mathrm{ rd}}$ </tex-math<</inline-formula<-harmonic injection modulation. Measurement results obtained from a 6 kW prototype reveal a dc-link voltage variation and/or energy buffering reduction by up to 38.6 % enabled by the harmonic injection modulation compared to conventional operation without 3 <inline-formula< <tex-math notation="LaTeX"<$^{\mathrm{ rd}}$ </tex-math<</inline-formula<-harmonic injection modulation. |
abstractGer |
A three-phase ac-dc converter with high-frequency isolation can be realized as a phase-modular system by using three single-phase Power Factor Correction (PFC) rectifier modules with isolated dc-dc converter output stages, which advantageously allows to cover a wide input voltage range by module reconfiguration from a star-(Y)- to a delta-(<inline-formula< <tex-math notation="LaTeX"<$\Delta $ </tex-math<</inline-formula<)-arrangement. However, the main limitation of a phase-modular topology is the fact that the input power of each PFC rectifier module pulsates at twice the mains frequency such that large dc-link capacitors are required. Recent literature predicts a substantial single-phase power pulsation reduction enabled by means of third-(3 <inline-formula< <tex-math notation="LaTeX"<$^{\mathrm{ rd}}$ </tex-math<</inline-formula<)-harmonic common-mode (CM) voltage (Y) or current (<inline-formula< <tex-math notation="LaTeX"<$\Delta $ </tex-math<</inline-formula<) injection modulation. This paper experimentally verifies and extends the dc-link energy storage requirement reduction of the 3 <inline-formula< <tex-math notation="LaTeX"<$^{\mathrm{ rd}}$ </tex-math<</inline-formula<-harmonic injection modulation concepts: In a first step, the derivation of the harmonic injection concept is recapitulated and suitable control methods are discussed for both CM voltage (Y) and CM current (<inline-formula< <tex-math notation="LaTeX"<$\Delta $ </tex-math<</inline-formula<) injection. Further, an alternative CM voltage injection strategy with simplified reference generation based only on the instantaneous grid voltage measurements is presented and compared to the pure 3 <inline-formula< <tex-math notation="LaTeX"<$^{\mathrm{ rd}}$ </tex-math<</inline-formula<-harmonic injection modulation. Measurement results obtained from a 6 kW prototype reveal a dc-link voltage variation and/or energy buffering reduction by up to 38.6 % enabled by the harmonic injection modulation compared to conventional operation without 3 <inline-formula< <tex-math notation="LaTeX"<$^{\mathrm{ rd}}$ </tex-math<</inline-formula<-harmonic injection modulation. |
abstract_unstemmed |
A three-phase ac-dc converter with high-frequency isolation can be realized as a phase-modular system by using three single-phase Power Factor Correction (PFC) rectifier modules with isolated dc-dc converter output stages, which advantageously allows to cover a wide input voltage range by module reconfiguration from a star-(Y)- to a delta-(<inline-formula< <tex-math notation="LaTeX"<$\Delta $ </tex-math<</inline-formula<)-arrangement. However, the main limitation of a phase-modular topology is the fact that the input power of each PFC rectifier module pulsates at twice the mains frequency such that large dc-link capacitors are required. Recent literature predicts a substantial single-phase power pulsation reduction enabled by means of third-(3 <inline-formula< <tex-math notation="LaTeX"<$^{\mathrm{ rd}}$ </tex-math<</inline-formula<)-harmonic common-mode (CM) voltage (Y) or current (<inline-formula< <tex-math notation="LaTeX"<$\Delta $ </tex-math<</inline-formula<) injection modulation. This paper experimentally verifies and extends the dc-link energy storage requirement reduction of the 3 <inline-formula< <tex-math notation="LaTeX"<$^{\mathrm{ rd}}$ </tex-math<</inline-formula<-harmonic injection modulation concepts: In a first step, the derivation of the harmonic injection concept is recapitulated and suitable control methods are discussed for both CM voltage (Y) and CM current (<inline-formula< <tex-math notation="LaTeX"<$\Delta $ </tex-math<</inline-formula<) injection. Further, an alternative CM voltage injection strategy with simplified reference generation based only on the instantaneous grid voltage measurements is presented and compared to the pure 3 <inline-formula< <tex-math notation="LaTeX"<$^{\mathrm{ rd}}$ </tex-math<</inline-formula<-harmonic injection modulation. Measurement results obtained from a 6 kW prototype reveal a dc-link voltage variation and/or energy buffering reduction by up to 38.6 % enabled by the harmonic injection modulation compared to conventional operation without 3 <inline-formula< <tex-math notation="LaTeX"<$^{\mathrm{ rd}}$ </tex-math<</inline-formula<-harmonic injection modulation. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Third-Harmonic-Type Modulation Minimizing the DC-Link Energy Storage Requirement of Isolated Phase-Modular Three-Phase PFC Rectifier Systems |
url |
https://doi.org/10.1109/ACCESS.2023.3261243 https://doaj.org/article/4210e75b862e437295699f7989bfccfa https://ieeexplore.ieee.org/document/10089233/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
David Menzi Valentin Marugg Franz Vollmaier Jon Azurza Matthias Kasper Johann W. Kolar |
author2Str |
David Menzi Valentin Marugg Franz Vollmaier Jon Azurza Matthias Kasper Johann W. Kolar |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2023.3261243 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T20:38:30.101Z |
_version_ |
1803591729915363328 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ088993574</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505001013.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2023.3261243</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ088993574</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4210e75b862e437295699f7989bfccfa</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Thomas Langbauer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Third-Harmonic-Type Modulation Minimizing the DC-Link Energy Storage Requirement of Isolated Phase-Modular Three-Phase PFC Rectifier Systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A three-phase ac-dc converter with high-frequency isolation can be realized as a phase-modular system by using three single-phase Power Factor Correction (PFC) rectifier modules with isolated dc-dc converter output stages, which advantageously allows to cover a wide input voltage range by module reconfiguration from a star-(Y)- to a delta-(<inline-formula< <tex-math notation="LaTeX"<$\Delta $ </tex-math<</inline-formula<)-arrangement. However, the main limitation of a phase-modular topology is the fact that the input power of each PFC rectifier module pulsates at twice the mains frequency such that large dc-link capacitors are required. Recent literature predicts a substantial single-phase power pulsation reduction enabled by means of third-(3 <inline-formula< <tex-math notation="LaTeX"<$^{\mathrm{ rd}}$ </tex-math<</inline-formula<)-harmonic common-mode (CM) voltage (Y) or current (<inline-formula< <tex-math notation="LaTeX"<$\Delta $ </tex-math<</inline-formula<) injection modulation. This paper experimentally verifies and extends the dc-link energy storage requirement reduction of the 3 <inline-formula< <tex-math notation="LaTeX"<$^{\mathrm{ rd}}$ </tex-math<</inline-formula<-harmonic injection modulation concepts: In a first step, the derivation of the harmonic injection concept is recapitulated and suitable control methods are discussed for both CM voltage (Y) and CM current (<inline-formula< <tex-math notation="LaTeX"<$\Delta $ </tex-math<</inline-formula<) injection. Further, an alternative CM voltage injection strategy with simplified reference generation based only on the instantaneous grid voltage measurements is presented and compared to the pure 3 <inline-formula< <tex-math notation="LaTeX"<$^{\mathrm{ rd}}$ </tex-math<</inline-formula<-harmonic injection modulation. Measurement results obtained from a 6 kW prototype reveal a dc-link voltage variation and/or energy buffering reduction by up to 38.6 % enabled by the harmonic injection modulation compared to conventional operation without 3 <inline-formula< <tex-math notation="LaTeX"<$^{\mathrm{ rd}}$ </tex-math<</inline-formula<-harmonic injection modulation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">AC-DC converter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">three-phase</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">modular</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">harmonic injection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">zero sequence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CM voltage injection</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">David Menzi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Valentin Marugg</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Franz Vollmaier</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jon Azurza</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Matthias Kasper</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Johann W. Kolar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">11(2023), Seite 34359-34371</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2023</subfield><subfield code="g">pages:34359-34371</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2023.3261243</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4210e75b862e437295699f7989bfccfa</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/10089233/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2023</subfield><subfield code="h">34359-34371</subfield></datafield></record></collection>
|
score |
7.401107 |