A Machine-learning Approach to Assessing the Presence of Substructure in Quasar-host Galaxies Using the Hyper Suprime-cam Subaru Strategic Program
The conditions under which galactic nuclear regions become active are largely unknown, although it has been hypothesized that secular processes related to galaxy morphology could play a significant role. We investigate this question using optical i -band images of 3096 SDSS quasars and galaxies at 0...
Ausführliche Beschreibung
Autor*in: |
Chris Nagele [verfasserIn] John D. Silverman [verfasserIn] Tilman Hartwig [verfasserIn] Junyao Li [verfasserIn] Connor Bottrell [verfasserIn] Xuheng Ding [verfasserIn] Yoshiki Toba [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: The Astrophysical Journal - IOP Publishing, 2022, 947(2023), 1, p 30 |
---|---|
Übergeordnetes Werk: |
volume:947 ; year:2023 ; number:1, p 30 |
Links: |
---|
DOI / URN: |
10.3847/1538-4357/acbd4a |
---|
Katalog-ID: |
DOAJ089150694 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ089150694 | ||
003 | DE-627 | ||
005 | 20230505015810.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230505s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3847/1538-4357/acbd4a |2 doi | |
035 | |a (DE-627)DOAJ089150694 | ||
035 | |a (DE-599)DOAJ2a081049f572494c9535227743355787 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QB460-466 | |
100 | 0 | |a Chris Nagele |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Machine-learning Approach to Assessing the Presence of Substructure in Quasar-host Galaxies Using the Hyper Suprime-cam Subaru Strategic Program |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The conditions under which galactic nuclear regions become active are largely unknown, although it has been hypothesized that secular processes related to galaxy morphology could play a significant role. We investigate this question using optical i -band images of 3096 SDSS quasars and galaxies at 0.3 < z < 0.6 from the Hyper Suprime-Cam Subaru Strategic Program, which possesses a unique combination of area, depth, and resolution, allowing the use of residual images, after removal of the quasar and smooth galaxy model, to investigate internal structural features. We employ a variational auto-encoder, which is a generative model that acts as a form of dimensionality reduction. We analyze the lower-dimensional latent space in search of features that correlate with nuclear activity. We find that the latent space does separate images based on the presence of nuclear activity, which appears to be associated with more pronounced components (i.e., arcs, rings, and bars) as compared to a matched control sample of inactive galaxies. These results suggest the importance of secular processes and possibly mergers (by their remnant features) in activating or sustaining black hole growth. Our study highlights the breadth of information available in ground-based imaging taken under optimal seeing conditions and having an accurate characterization of the point-spread function (PSF), thus demonstrating future science to come from the Rubin Observatory. | ||
650 | 4 | |a AGN host galaxies | |
650 | 4 | |a Convolutional neural networks | |
653 | 0 | |a Astrophysics | |
700 | 0 | |a John D. Silverman |e verfasserin |4 aut | |
700 | 0 | |a Tilman Hartwig |e verfasserin |4 aut | |
700 | 0 | |a Junyao Li |e verfasserin |4 aut | |
700 | 0 | |a Connor Bottrell |e verfasserin |4 aut | |
700 | 0 | |a Xuheng Ding |e verfasserin |4 aut | |
700 | 0 | |a Yoshiki Toba |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t The Astrophysical Journal |d IOP Publishing, 2022 |g 947(2023), 1, p 30 |w (DE-627)269019219 |w (DE-600)1473835-1 |x 15384357 |7 nnns |
773 | 1 | 8 | |g volume:947 |g year:2023 |g number:1, p 30 |
856 | 4 | 0 | |u https://doi.org/10.3847/1538-4357/acbd4a |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/2a081049f572494c9535227743355787 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.3847/1538-4357/acbd4a |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1538-4357 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 947 |j 2023 |e 1, p 30 |
author_variant |
c n cn j d s jds t h th j l jl c b cb x d xd y t yt |
---|---|
matchkey_str |
article:15384357:2023----::mcieerigprahosesntersnefusrcuenusrotaaissnteye |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QB |
publishDate |
2023 |
allfields |
10.3847/1538-4357/acbd4a doi (DE-627)DOAJ089150694 (DE-599)DOAJ2a081049f572494c9535227743355787 DE-627 ger DE-627 rakwb eng QB460-466 Chris Nagele verfasserin aut A Machine-learning Approach to Assessing the Presence of Substructure in Quasar-host Galaxies Using the Hyper Suprime-cam Subaru Strategic Program 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The conditions under which galactic nuclear regions become active are largely unknown, although it has been hypothesized that secular processes related to galaxy morphology could play a significant role. We investigate this question using optical i -band images of 3096 SDSS quasars and galaxies at 0.3 < z < 0.6 from the Hyper Suprime-Cam Subaru Strategic Program, which possesses a unique combination of area, depth, and resolution, allowing the use of residual images, after removal of the quasar and smooth galaxy model, to investigate internal structural features. We employ a variational auto-encoder, which is a generative model that acts as a form of dimensionality reduction. We analyze the lower-dimensional latent space in search of features that correlate with nuclear activity. We find that the latent space does separate images based on the presence of nuclear activity, which appears to be associated with more pronounced components (i.e., arcs, rings, and bars) as compared to a matched control sample of inactive galaxies. These results suggest the importance of secular processes and possibly mergers (by their remnant features) in activating or sustaining black hole growth. Our study highlights the breadth of information available in ground-based imaging taken under optimal seeing conditions and having an accurate characterization of the point-spread function (PSF), thus demonstrating future science to come from the Rubin Observatory. AGN host galaxies Convolutional neural networks Astrophysics John D. Silverman verfasserin aut Tilman Hartwig verfasserin aut Junyao Li verfasserin aut Connor Bottrell verfasserin aut Xuheng Ding verfasserin aut Yoshiki Toba verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 947(2023), 1, p 30 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:947 year:2023 number:1, p 30 https://doi.org/10.3847/1538-4357/acbd4a kostenfrei https://doaj.org/article/2a081049f572494c9535227743355787 kostenfrei https://doi.org/10.3847/1538-4357/acbd4a kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 947 2023 1, p 30 |
spelling |
10.3847/1538-4357/acbd4a doi (DE-627)DOAJ089150694 (DE-599)DOAJ2a081049f572494c9535227743355787 DE-627 ger DE-627 rakwb eng QB460-466 Chris Nagele verfasserin aut A Machine-learning Approach to Assessing the Presence of Substructure in Quasar-host Galaxies Using the Hyper Suprime-cam Subaru Strategic Program 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The conditions under which galactic nuclear regions become active are largely unknown, although it has been hypothesized that secular processes related to galaxy morphology could play a significant role. We investigate this question using optical i -band images of 3096 SDSS quasars and galaxies at 0.3 < z < 0.6 from the Hyper Suprime-Cam Subaru Strategic Program, which possesses a unique combination of area, depth, and resolution, allowing the use of residual images, after removal of the quasar and smooth galaxy model, to investigate internal structural features. We employ a variational auto-encoder, which is a generative model that acts as a form of dimensionality reduction. We analyze the lower-dimensional latent space in search of features that correlate with nuclear activity. We find that the latent space does separate images based on the presence of nuclear activity, which appears to be associated with more pronounced components (i.e., arcs, rings, and bars) as compared to a matched control sample of inactive galaxies. These results suggest the importance of secular processes and possibly mergers (by their remnant features) in activating or sustaining black hole growth. Our study highlights the breadth of information available in ground-based imaging taken under optimal seeing conditions and having an accurate characterization of the point-spread function (PSF), thus demonstrating future science to come from the Rubin Observatory. AGN host galaxies Convolutional neural networks Astrophysics John D. Silverman verfasserin aut Tilman Hartwig verfasserin aut Junyao Li verfasserin aut Connor Bottrell verfasserin aut Xuheng Ding verfasserin aut Yoshiki Toba verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 947(2023), 1, p 30 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:947 year:2023 number:1, p 30 https://doi.org/10.3847/1538-4357/acbd4a kostenfrei https://doaj.org/article/2a081049f572494c9535227743355787 kostenfrei https://doi.org/10.3847/1538-4357/acbd4a kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 947 2023 1, p 30 |
allfields_unstemmed |
10.3847/1538-4357/acbd4a doi (DE-627)DOAJ089150694 (DE-599)DOAJ2a081049f572494c9535227743355787 DE-627 ger DE-627 rakwb eng QB460-466 Chris Nagele verfasserin aut A Machine-learning Approach to Assessing the Presence of Substructure in Quasar-host Galaxies Using the Hyper Suprime-cam Subaru Strategic Program 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The conditions under which galactic nuclear regions become active are largely unknown, although it has been hypothesized that secular processes related to galaxy morphology could play a significant role. We investigate this question using optical i -band images of 3096 SDSS quasars and galaxies at 0.3 < z < 0.6 from the Hyper Suprime-Cam Subaru Strategic Program, which possesses a unique combination of area, depth, and resolution, allowing the use of residual images, after removal of the quasar and smooth galaxy model, to investigate internal structural features. We employ a variational auto-encoder, which is a generative model that acts as a form of dimensionality reduction. We analyze the lower-dimensional latent space in search of features that correlate with nuclear activity. We find that the latent space does separate images based on the presence of nuclear activity, which appears to be associated with more pronounced components (i.e., arcs, rings, and bars) as compared to a matched control sample of inactive galaxies. These results suggest the importance of secular processes and possibly mergers (by their remnant features) in activating or sustaining black hole growth. Our study highlights the breadth of information available in ground-based imaging taken under optimal seeing conditions and having an accurate characterization of the point-spread function (PSF), thus demonstrating future science to come from the Rubin Observatory. AGN host galaxies Convolutional neural networks Astrophysics John D. Silverman verfasserin aut Tilman Hartwig verfasserin aut Junyao Li verfasserin aut Connor Bottrell verfasserin aut Xuheng Ding verfasserin aut Yoshiki Toba verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 947(2023), 1, p 30 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:947 year:2023 number:1, p 30 https://doi.org/10.3847/1538-4357/acbd4a kostenfrei https://doaj.org/article/2a081049f572494c9535227743355787 kostenfrei https://doi.org/10.3847/1538-4357/acbd4a kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 947 2023 1, p 30 |
allfieldsGer |
10.3847/1538-4357/acbd4a doi (DE-627)DOAJ089150694 (DE-599)DOAJ2a081049f572494c9535227743355787 DE-627 ger DE-627 rakwb eng QB460-466 Chris Nagele verfasserin aut A Machine-learning Approach to Assessing the Presence of Substructure in Quasar-host Galaxies Using the Hyper Suprime-cam Subaru Strategic Program 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The conditions under which galactic nuclear regions become active are largely unknown, although it has been hypothesized that secular processes related to galaxy morphology could play a significant role. We investigate this question using optical i -band images of 3096 SDSS quasars and galaxies at 0.3 < z < 0.6 from the Hyper Suprime-Cam Subaru Strategic Program, which possesses a unique combination of area, depth, and resolution, allowing the use of residual images, after removal of the quasar and smooth galaxy model, to investigate internal structural features. We employ a variational auto-encoder, which is a generative model that acts as a form of dimensionality reduction. We analyze the lower-dimensional latent space in search of features that correlate with nuclear activity. We find that the latent space does separate images based on the presence of nuclear activity, which appears to be associated with more pronounced components (i.e., arcs, rings, and bars) as compared to a matched control sample of inactive galaxies. These results suggest the importance of secular processes and possibly mergers (by their remnant features) in activating or sustaining black hole growth. Our study highlights the breadth of information available in ground-based imaging taken under optimal seeing conditions and having an accurate characterization of the point-spread function (PSF), thus demonstrating future science to come from the Rubin Observatory. AGN host galaxies Convolutional neural networks Astrophysics John D. Silverman verfasserin aut Tilman Hartwig verfasserin aut Junyao Li verfasserin aut Connor Bottrell verfasserin aut Xuheng Ding verfasserin aut Yoshiki Toba verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 947(2023), 1, p 30 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:947 year:2023 number:1, p 30 https://doi.org/10.3847/1538-4357/acbd4a kostenfrei https://doaj.org/article/2a081049f572494c9535227743355787 kostenfrei https://doi.org/10.3847/1538-4357/acbd4a kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 947 2023 1, p 30 |
allfieldsSound |
10.3847/1538-4357/acbd4a doi (DE-627)DOAJ089150694 (DE-599)DOAJ2a081049f572494c9535227743355787 DE-627 ger DE-627 rakwb eng QB460-466 Chris Nagele verfasserin aut A Machine-learning Approach to Assessing the Presence of Substructure in Quasar-host Galaxies Using the Hyper Suprime-cam Subaru Strategic Program 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The conditions under which galactic nuclear regions become active are largely unknown, although it has been hypothesized that secular processes related to galaxy morphology could play a significant role. We investigate this question using optical i -band images of 3096 SDSS quasars and galaxies at 0.3 < z < 0.6 from the Hyper Suprime-Cam Subaru Strategic Program, which possesses a unique combination of area, depth, and resolution, allowing the use of residual images, after removal of the quasar and smooth galaxy model, to investigate internal structural features. We employ a variational auto-encoder, which is a generative model that acts as a form of dimensionality reduction. We analyze the lower-dimensional latent space in search of features that correlate with nuclear activity. We find that the latent space does separate images based on the presence of nuclear activity, which appears to be associated with more pronounced components (i.e., arcs, rings, and bars) as compared to a matched control sample of inactive galaxies. These results suggest the importance of secular processes and possibly mergers (by their remnant features) in activating or sustaining black hole growth. Our study highlights the breadth of information available in ground-based imaging taken under optimal seeing conditions and having an accurate characterization of the point-spread function (PSF), thus demonstrating future science to come from the Rubin Observatory. AGN host galaxies Convolutional neural networks Astrophysics John D. Silverman verfasserin aut Tilman Hartwig verfasserin aut Junyao Li verfasserin aut Connor Bottrell verfasserin aut Xuheng Ding verfasserin aut Yoshiki Toba verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 947(2023), 1, p 30 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:947 year:2023 number:1, p 30 https://doi.org/10.3847/1538-4357/acbd4a kostenfrei https://doaj.org/article/2a081049f572494c9535227743355787 kostenfrei https://doi.org/10.3847/1538-4357/acbd4a kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 947 2023 1, p 30 |
language |
English |
source |
In The Astrophysical Journal 947(2023), 1, p 30 volume:947 year:2023 number:1, p 30 |
sourceStr |
In The Astrophysical Journal 947(2023), 1, p 30 volume:947 year:2023 number:1, p 30 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
AGN host galaxies Convolutional neural networks Astrophysics |
isfreeaccess_bool |
true |
container_title |
The Astrophysical Journal |
authorswithroles_txt_mv |
Chris Nagele @@aut@@ John D. Silverman @@aut@@ Tilman Hartwig @@aut@@ Junyao Li @@aut@@ Connor Bottrell @@aut@@ Xuheng Ding @@aut@@ Yoshiki Toba @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
269019219 |
id |
DOAJ089150694 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ089150694</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505015810.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3847/1538-4357/acbd4a</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ089150694</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ2a081049f572494c9535227743355787</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB460-466</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Chris Nagele</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Machine-learning Approach to Assessing the Presence of Substructure in Quasar-host Galaxies Using the Hyper Suprime-cam Subaru Strategic Program</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The conditions under which galactic nuclear regions become active are largely unknown, although it has been hypothesized that secular processes related to galaxy morphology could play a significant role. We investigate this question using optical i -band images of 3096 SDSS quasars and galaxies at 0.3 < z < 0.6 from the Hyper Suprime-Cam Subaru Strategic Program, which possesses a unique combination of area, depth, and resolution, allowing the use of residual images, after removal of the quasar and smooth galaxy model, to investigate internal structural features. We employ a variational auto-encoder, which is a generative model that acts as a form of dimensionality reduction. We analyze the lower-dimensional latent space in search of features that correlate with nuclear activity. We find that the latent space does separate images based on the presence of nuclear activity, which appears to be associated with more pronounced components (i.e., arcs, rings, and bars) as compared to a matched control sample of inactive galaxies. These results suggest the importance of secular processes and possibly mergers (by their remnant features) in activating or sustaining black hole growth. Our study highlights the breadth of information available in ground-based imaging taken under optimal seeing conditions and having an accurate characterization of the point-spread function (PSF), thus demonstrating future science to come from the Rubin Observatory.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">AGN host galaxies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convolutional neural networks</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">John D. Silverman</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tilman Hartwig</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Junyao Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Connor Bottrell</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xuheng Ding</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yoshiki Toba</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">The Astrophysical Journal</subfield><subfield code="d">IOP Publishing, 2022</subfield><subfield code="g">947(2023), 1, p 30</subfield><subfield code="w">(DE-627)269019219</subfield><subfield code="w">(DE-600)1473835-1</subfield><subfield code="x">15384357</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:947</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1, p 30</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/acbd4a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/2a081049f572494c9535227743355787</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/acbd4a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1538-4357</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">947</subfield><subfield code="j">2023</subfield><subfield code="e">1, p 30</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Chris Nagele |
spellingShingle |
Chris Nagele misc QB460-466 misc AGN host galaxies misc Convolutional neural networks misc Astrophysics A Machine-learning Approach to Assessing the Presence of Substructure in Quasar-host Galaxies Using the Hyper Suprime-cam Subaru Strategic Program |
authorStr |
Chris Nagele |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)269019219 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QB460-466 |
illustrated |
Not Illustrated |
issn |
15384357 |
topic_title |
QB460-466 A Machine-learning Approach to Assessing the Presence of Substructure in Quasar-host Galaxies Using the Hyper Suprime-cam Subaru Strategic Program AGN host galaxies Convolutional neural networks |
topic |
misc QB460-466 misc AGN host galaxies misc Convolutional neural networks misc Astrophysics |
topic_unstemmed |
misc QB460-466 misc AGN host galaxies misc Convolutional neural networks misc Astrophysics |
topic_browse |
misc QB460-466 misc AGN host galaxies misc Convolutional neural networks misc Astrophysics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The Astrophysical Journal |
hierarchy_parent_id |
269019219 |
hierarchy_top_title |
The Astrophysical Journal |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)269019219 (DE-600)1473835-1 |
title |
A Machine-learning Approach to Assessing the Presence of Substructure in Quasar-host Galaxies Using the Hyper Suprime-cam Subaru Strategic Program |
ctrlnum |
(DE-627)DOAJ089150694 (DE-599)DOAJ2a081049f572494c9535227743355787 |
title_full |
A Machine-learning Approach to Assessing the Presence of Substructure in Quasar-host Galaxies Using the Hyper Suprime-cam Subaru Strategic Program |
author_sort |
Chris Nagele |
journal |
The Astrophysical Journal |
journalStr |
The Astrophysical Journal |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Chris Nagele John D. Silverman Tilman Hartwig Junyao Li Connor Bottrell Xuheng Ding Yoshiki Toba |
container_volume |
947 |
class |
QB460-466 |
format_se |
Elektronische Aufsätze |
author-letter |
Chris Nagele |
doi_str_mv |
10.3847/1538-4357/acbd4a |
author2-role |
verfasserin |
title_sort |
machine-learning approach to assessing the presence of substructure in quasar-host galaxies using the hyper suprime-cam subaru strategic program |
callnumber |
QB460-466 |
title_auth |
A Machine-learning Approach to Assessing the Presence of Substructure in Quasar-host Galaxies Using the Hyper Suprime-cam Subaru Strategic Program |
abstract |
The conditions under which galactic nuclear regions become active are largely unknown, although it has been hypothesized that secular processes related to galaxy morphology could play a significant role. We investigate this question using optical i -band images of 3096 SDSS quasars and galaxies at 0.3 < z < 0.6 from the Hyper Suprime-Cam Subaru Strategic Program, which possesses a unique combination of area, depth, and resolution, allowing the use of residual images, after removal of the quasar and smooth galaxy model, to investigate internal structural features. We employ a variational auto-encoder, which is a generative model that acts as a form of dimensionality reduction. We analyze the lower-dimensional latent space in search of features that correlate with nuclear activity. We find that the latent space does separate images based on the presence of nuclear activity, which appears to be associated with more pronounced components (i.e., arcs, rings, and bars) as compared to a matched control sample of inactive galaxies. These results suggest the importance of secular processes and possibly mergers (by their remnant features) in activating or sustaining black hole growth. Our study highlights the breadth of information available in ground-based imaging taken under optimal seeing conditions and having an accurate characterization of the point-spread function (PSF), thus demonstrating future science to come from the Rubin Observatory. |
abstractGer |
The conditions under which galactic nuclear regions become active are largely unknown, although it has been hypothesized that secular processes related to galaxy morphology could play a significant role. We investigate this question using optical i -band images of 3096 SDSS quasars and galaxies at 0.3 < z < 0.6 from the Hyper Suprime-Cam Subaru Strategic Program, which possesses a unique combination of area, depth, and resolution, allowing the use of residual images, after removal of the quasar and smooth galaxy model, to investigate internal structural features. We employ a variational auto-encoder, which is a generative model that acts as a form of dimensionality reduction. We analyze the lower-dimensional latent space in search of features that correlate with nuclear activity. We find that the latent space does separate images based on the presence of nuclear activity, which appears to be associated with more pronounced components (i.e., arcs, rings, and bars) as compared to a matched control sample of inactive galaxies. These results suggest the importance of secular processes and possibly mergers (by their remnant features) in activating or sustaining black hole growth. Our study highlights the breadth of information available in ground-based imaging taken under optimal seeing conditions and having an accurate characterization of the point-spread function (PSF), thus demonstrating future science to come from the Rubin Observatory. |
abstract_unstemmed |
The conditions under which galactic nuclear regions become active are largely unknown, although it has been hypothesized that secular processes related to galaxy morphology could play a significant role. We investigate this question using optical i -band images of 3096 SDSS quasars and galaxies at 0.3 < z < 0.6 from the Hyper Suprime-Cam Subaru Strategic Program, which possesses a unique combination of area, depth, and resolution, allowing the use of residual images, after removal of the quasar and smooth galaxy model, to investigate internal structural features. We employ a variational auto-encoder, which is a generative model that acts as a form of dimensionality reduction. We analyze the lower-dimensional latent space in search of features that correlate with nuclear activity. We find that the latent space does separate images based on the presence of nuclear activity, which appears to be associated with more pronounced components (i.e., arcs, rings, and bars) as compared to a matched control sample of inactive galaxies. These results suggest the importance of secular processes and possibly mergers (by their remnant features) in activating or sustaining black hole growth. Our study highlights the breadth of information available in ground-based imaging taken under optimal seeing conditions and having an accurate characterization of the point-spread function (PSF), thus demonstrating future science to come from the Rubin Observatory. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1, p 30 |
title_short |
A Machine-learning Approach to Assessing the Presence of Substructure in Quasar-host Galaxies Using the Hyper Suprime-cam Subaru Strategic Program |
url |
https://doi.org/10.3847/1538-4357/acbd4a https://doaj.org/article/2a081049f572494c9535227743355787 https://doaj.org/toc/1538-4357 |
remote_bool |
true |
author2 |
John D. Silverman Tilman Hartwig Junyao Li Connor Bottrell Xuheng Ding Yoshiki Toba |
author2Str |
John D. Silverman Tilman Hartwig Junyao Li Connor Bottrell Xuheng Ding Yoshiki Toba |
ppnlink |
269019219 |
callnumber-subject |
QB - Astronomy |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3847/1538-4357/acbd4a |
callnumber-a |
QB460-466 |
up_date |
2024-07-03T21:32:40.574Z |
_version_ |
1803595138291728384 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ089150694</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505015810.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3847/1538-4357/acbd4a</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ089150694</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ2a081049f572494c9535227743355787</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB460-466</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Chris Nagele</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Machine-learning Approach to Assessing the Presence of Substructure in Quasar-host Galaxies Using the Hyper Suprime-cam Subaru Strategic Program</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The conditions under which galactic nuclear regions become active are largely unknown, although it has been hypothesized that secular processes related to galaxy morphology could play a significant role. We investigate this question using optical i -band images of 3096 SDSS quasars and galaxies at 0.3 < z < 0.6 from the Hyper Suprime-Cam Subaru Strategic Program, which possesses a unique combination of area, depth, and resolution, allowing the use of residual images, after removal of the quasar and smooth galaxy model, to investigate internal structural features. We employ a variational auto-encoder, which is a generative model that acts as a form of dimensionality reduction. We analyze the lower-dimensional latent space in search of features that correlate with nuclear activity. We find that the latent space does separate images based on the presence of nuclear activity, which appears to be associated with more pronounced components (i.e., arcs, rings, and bars) as compared to a matched control sample of inactive galaxies. These results suggest the importance of secular processes and possibly mergers (by their remnant features) in activating or sustaining black hole growth. Our study highlights the breadth of information available in ground-based imaging taken under optimal seeing conditions and having an accurate characterization of the point-spread function (PSF), thus demonstrating future science to come from the Rubin Observatory.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">AGN host galaxies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convolutional neural networks</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">John D. Silverman</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tilman Hartwig</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Junyao Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Connor Bottrell</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xuheng Ding</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yoshiki Toba</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">The Astrophysical Journal</subfield><subfield code="d">IOP Publishing, 2022</subfield><subfield code="g">947(2023), 1, p 30</subfield><subfield code="w">(DE-627)269019219</subfield><subfield code="w">(DE-600)1473835-1</subfield><subfield code="x">15384357</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:947</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1, p 30</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/acbd4a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/2a081049f572494c9535227743355787</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/acbd4a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1538-4357</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">947</subfield><subfield code="j">2023</subfield><subfield code="e">1, p 30</subfield></datafield></record></collection>
|
score |
7.400319 |