Inferring More from Less: Prospector as a Photometric Redshift Engine in the Era of JWST
The advent of the James Webb Space Telescope (JWST) signals a new era in exploring galaxies in the high- z universe. Current and upcoming JWST imaging will potentially detect galaxies at z ∼ 20, creating a new urgency in the quest to infer accurate photometric redshifts (photo- z ) for individual ga...
Ausführliche Beschreibung
Autor*in: |
Bingjie Wang [verfasserIn] Joel Leja [verfasserIn] Rachel Bezanson [verfasserIn] Benjamin D. Johnson [verfasserIn] Gourav Khullar [verfasserIn] Ivo Labbé [verfasserIn] Sedona H. Price [verfasserIn] John R. Weaver [verfasserIn] Katherine E. Whitaker [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: The Astrophysical Journal Letters - IOP Publishing, 2022, 944(2023), 2, p L58 |
---|---|
Übergeordnetes Werk: |
volume:944 ; year:2023 ; number:2, p L58 |
Links: |
---|
DOI / URN: |
10.3847/2041-8213/acba99 |
---|
Katalog-ID: |
DOAJ089156684 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ089156684 | ||
003 | DE-627 | ||
005 | 20230505015835.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230505s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3847/2041-8213/acba99 |2 doi | |
035 | |a (DE-627)DOAJ089156684 | ||
035 | |a (DE-599)DOAJ806dc5b00dd14dc4aacd01c1690b5944 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QB460-466 | |
100 | 0 | |a Bingjie Wang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Inferring More from Less: Prospector as a Photometric Redshift Engine in the Era of JWST |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The advent of the James Webb Space Telescope (JWST) signals a new era in exploring galaxies in the high- z universe. Current and upcoming JWST imaging will potentially detect galaxies at z ∼ 20, creating a new urgency in the quest to infer accurate photometric redshifts (photo- z ) for individual galaxies from their spectral energy distributions, as well as masses, ages, and star formation rates. Here we illustrate the utility of informed priors encoding previous observations of galaxies across cosmic time in achieving these goals. We construct three joint priors encoding empirical constraints of redshifts, masses, and star formation histories in the galaxy population within the Prospector Bayesian inference framework. In contrast with uniform priors, our model breaks an age–mass–redshift degeneracy, and thus reduces the mean bias error in masses from 0.3 to 0.1 dex, and in ages from 0.6 to 0.2 dex in tests done on mock JWST observations. Notably, our model recovers redshifts at least as accurately as the state-of-the-art photo- z code EAzY in deep JWST fields, but with two advantages: tailoring a model based on a particular survey is rendered mostly unnecessary given well-motivated priors; obtaining joint posteriors describing stellar, active galactic nuclei, gas, and dust contributions becomes possible. We can now confidently use the joint distribution to propagate full non-Gaussian redshift uncertainties into inferred properties of the galaxy population. This model, “ Prospector - β ,” is intended for fitting galaxy photometry where the redshift is unknown, and will be instrumental in ensuring the maximum science return from forthcoming photometric surveys with JWST. The code is made publicly available online as a part of Prospector ^9 . | ||
650 | 4 | |a Bayesian statistics | |
650 | 4 | |a Computational astronomy | |
650 | 4 | |a Galaxy evolution | |
650 | 4 | |a Galaxy formation | |
650 | 4 | |a Redshift surveys | |
650 | 4 | |a Spectrophotometry | |
653 | 0 | |a Astrophysics | |
700 | 0 | |a Joel Leja |e verfasserin |4 aut | |
700 | 0 | |a Rachel Bezanson |e verfasserin |4 aut | |
700 | 0 | |a Benjamin D. Johnson |e verfasserin |4 aut | |
700 | 0 | |a Gourav Khullar |e verfasserin |4 aut | |
700 | 0 | |a Ivo Labbé |e verfasserin |4 aut | |
700 | 0 | |a Sedona H. Price |e verfasserin |4 aut | |
700 | 0 | |a John R. Weaver |e verfasserin |4 aut | |
700 | 0 | |a Katherine E. Whitaker |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t The Astrophysical Journal Letters |d IOP Publishing, 2022 |g 944(2023), 2, p L58 |w (DE-627)312189028 |w (DE-600)2006858-X |x 20418213 |7 nnns |
773 | 1 | 8 | |g volume:944 |g year:2023 |g number:2, p L58 |
856 | 4 | 0 | |u https://doi.org/10.3847/2041-8213/acba99 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/806dc5b00dd14dc4aacd01c1690b5944 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.3847/2041-8213/acba99 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2041-8205 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 944 |j 2023 |e 2, p L58 |
author_variant |
b w bw j l jl r b rb b d j bdj g k gk i l il s h p shp j r w jrw k e w kew |
---|---|
matchkey_str |
article:20418213:2023----::nernmrfolspopcoaahtmtirdhfe |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QB |
publishDate |
2023 |
allfields |
10.3847/2041-8213/acba99 doi (DE-627)DOAJ089156684 (DE-599)DOAJ806dc5b00dd14dc4aacd01c1690b5944 DE-627 ger DE-627 rakwb eng QB460-466 Bingjie Wang verfasserin aut Inferring More from Less: Prospector as a Photometric Redshift Engine in the Era of JWST 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The advent of the James Webb Space Telescope (JWST) signals a new era in exploring galaxies in the high- z universe. Current and upcoming JWST imaging will potentially detect galaxies at z ∼ 20, creating a new urgency in the quest to infer accurate photometric redshifts (photo- z ) for individual galaxies from their spectral energy distributions, as well as masses, ages, and star formation rates. Here we illustrate the utility of informed priors encoding previous observations of galaxies across cosmic time in achieving these goals. We construct three joint priors encoding empirical constraints of redshifts, masses, and star formation histories in the galaxy population within the Prospector Bayesian inference framework. In contrast with uniform priors, our model breaks an age–mass–redshift degeneracy, and thus reduces the mean bias error in masses from 0.3 to 0.1 dex, and in ages from 0.6 to 0.2 dex in tests done on mock JWST observations. Notably, our model recovers redshifts at least as accurately as the state-of-the-art photo- z code EAzY in deep JWST fields, but with two advantages: tailoring a model based on a particular survey is rendered mostly unnecessary given well-motivated priors; obtaining joint posteriors describing stellar, active galactic nuclei, gas, and dust contributions becomes possible. We can now confidently use the joint distribution to propagate full non-Gaussian redshift uncertainties into inferred properties of the galaxy population. This model, “ Prospector - β ,” is intended for fitting galaxy photometry where the redshift is unknown, and will be instrumental in ensuring the maximum science return from forthcoming photometric surveys with JWST. The code is made publicly available online as a part of Prospector ^9 . Bayesian statistics Computational astronomy Galaxy evolution Galaxy formation Redshift surveys Spectrophotometry Astrophysics Joel Leja verfasserin aut Rachel Bezanson verfasserin aut Benjamin D. Johnson verfasserin aut Gourav Khullar verfasserin aut Ivo Labbé verfasserin aut Sedona H. Price verfasserin aut John R. Weaver verfasserin aut Katherine E. Whitaker verfasserin aut In The Astrophysical Journal Letters IOP Publishing, 2022 944(2023), 2, p L58 (DE-627)312189028 (DE-600)2006858-X 20418213 nnns volume:944 year:2023 number:2, p L58 https://doi.org/10.3847/2041-8213/acba99 kostenfrei https://doaj.org/article/806dc5b00dd14dc4aacd01c1690b5944 kostenfrei https://doi.org/10.3847/2041-8213/acba99 kostenfrei https://doaj.org/toc/2041-8205 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 944 2023 2, p L58 |
spelling |
10.3847/2041-8213/acba99 doi (DE-627)DOAJ089156684 (DE-599)DOAJ806dc5b00dd14dc4aacd01c1690b5944 DE-627 ger DE-627 rakwb eng QB460-466 Bingjie Wang verfasserin aut Inferring More from Less: Prospector as a Photometric Redshift Engine in the Era of JWST 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The advent of the James Webb Space Telescope (JWST) signals a new era in exploring galaxies in the high- z universe. Current and upcoming JWST imaging will potentially detect galaxies at z ∼ 20, creating a new urgency in the quest to infer accurate photometric redshifts (photo- z ) for individual galaxies from their spectral energy distributions, as well as masses, ages, and star formation rates. Here we illustrate the utility of informed priors encoding previous observations of galaxies across cosmic time in achieving these goals. We construct three joint priors encoding empirical constraints of redshifts, masses, and star formation histories in the galaxy population within the Prospector Bayesian inference framework. In contrast with uniform priors, our model breaks an age–mass–redshift degeneracy, and thus reduces the mean bias error in masses from 0.3 to 0.1 dex, and in ages from 0.6 to 0.2 dex in tests done on mock JWST observations. Notably, our model recovers redshifts at least as accurately as the state-of-the-art photo- z code EAzY in deep JWST fields, but with two advantages: tailoring a model based on a particular survey is rendered mostly unnecessary given well-motivated priors; obtaining joint posteriors describing stellar, active galactic nuclei, gas, and dust contributions becomes possible. We can now confidently use the joint distribution to propagate full non-Gaussian redshift uncertainties into inferred properties of the galaxy population. This model, “ Prospector - β ,” is intended for fitting galaxy photometry where the redshift is unknown, and will be instrumental in ensuring the maximum science return from forthcoming photometric surveys with JWST. The code is made publicly available online as a part of Prospector ^9 . Bayesian statistics Computational astronomy Galaxy evolution Galaxy formation Redshift surveys Spectrophotometry Astrophysics Joel Leja verfasserin aut Rachel Bezanson verfasserin aut Benjamin D. Johnson verfasserin aut Gourav Khullar verfasserin aut Ivo Labbé verfasserin aut Sedona H. Price verfasserin aut John R. Weaver verfasserin aut Katherine E. Whitaker verfasserin aut In The Astrophysical Journal Letters IOP Publishing, 2022 944(2023), 2, p L58 (DE-627)312189028 (DE-600)2006858-X 20418213 nnns volume:944 year:2023 number:2, p L58 https://doi.org/10.3847/2041-8213/acba99 kostenfrei https://doaj.org/article/806dc5b00dd14dc4aacd01c1690b5944 kostenfrei https://doi.org/10.3847/2041-8213/acba99 kostenfrei https://doaj.org/toc/2041-8205 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 944 2023 2, p L58 |
allfields_unstemmed |
10.3847/2041-8213/acba99 doi (DE-627)DOAJ089156684 (DE-599)DOAJ806dc5b00dd14dc4aacd01c1690b5944 DE-627 ger DE-627 rakwb eng QB460-466 Bingjie Wang verfasserin aut Inferring More from Less: Prospector as a Photometric Redshift Engine in the Era of JWST 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The advent of the James Webb Space Telescope (JWST) signals a new era in exploring galaxies in the high- z universe. Current and upcoming JWST imaging will potentially detect galaxies at z ∼ 20, creating a new urgency in the quest to infer accurate photometric redshifts (photo- z ) for individual galaxies from their spectral energy distributions, as well as masses, ages, and star formation rates. Here we illustrate the utility of informed priors encoding previous observations of galaxies across cosmic time in achieving these goals. We construct three joint priors encoding empirical constraints of redshifts, masses, and star formation histories in the galaxy population within the Prospector Bayesian inference framework. In contrast with uniform priors, our model breaks an age–mass–redshift degeneracy, and thus reduces the mean bias error in masses from 0.3 to 0.1 dex, and in ages from 0.6 to 0.2 dex in tests done on mock JWST observations. Notably, our model recovers redshifts at least as accurately as the state-of-the-art photo- z code EAzY in deep JWST fields, but with two advantages: tailoring a model based on a particular survey is rendered mostly unnecessary given well-motivated priors; obtaining joint posteriors describing stellar, active galactic nuclei, gas, and dust contributions becomes possible. We can now confidently use the joint distribution to propagate full non-Gaussian redshift uncertainties into inferred properties of the galaxy population. This model, “ Prospector - β ,” is intended for fitting galaxy photometry where the redshift is unknown, and will be instrumental in ensuring the maximum science return from forthcoming photometric surveys with JWST. The code is made publicly available online as a part of Prospector ^9 . Bayesian statistics Computational astronomy Galaxy evolution Galaxy formation Redshift surveys Spectrophotometry Astrophysics Joel Leja verfasserin aut Rachel Bezanson verfasserin aut Benjamin D. Johnson verfasserin aut Gourav Khullar verfasserin aut Ivo Labbé verfasserin aut Sedona H. Price verfasserin aut John R. Weaver verfasserin aut Katherine E. Whitaker verfasserin aut In The Astrophysical Journal Letters IOP Publishing, 2022 944(2023), 2, p L58 (DE-627)312189028 (DE-600)2006858-X 20418213 nnns volume:944 year:2023 number:2, p L58 https://doi.org/10.3847/2041-8213/acba99 kostenfrei https://doaj.org/article/806dc5b00dd14dc4aacd01c1690b5944 kostenfrei https://doi.org/10.3847/2041-8213/acba99 kostenfrei https://doaj.org/toc/2041-8205 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 944 2023 2, p L58 |
allfieldsGer |
10.3847/2041-8213/acba99 doi (DE-627)DOAJ089156684 (DE-599)DOAJ806dc5b00dd14dc4aacd01c1690b5944 DE-627 ger DE-627 rakwb eng QB460-466 Bingjie Wang verfasserin aut Inferring More from Less: Prospector as a Photometric Redshift Engine in the Era of JWST 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The advent of the James Webb Space Telescope (JWST) signals a new era in exploring galaxies in the high- z universe. Current and upcoming JWST imaging will potentially detect galaxies at z ∼ 20, creating a new urgency in the quest to infer accurate photometric redshifts (photo- z ) for individual galaxies from their spectral energy distributions, as well as masses, ages, and star formation rates. Here we illustrate the utility of informed priors encoding previous observations of galaxies across cosmic time in achieving these goals. We construct three joint priors encoding empirical constraints of redshifts, masses, and star formation histories in the galaxy population within the Prospector Bayesian inference framework. In contrast with uniform priors, our model breaks an age–mass–redshift degeneracy, and thus reduces the mean bias error in masses from 0.3 to 0.1 dex, and in ages from 0.6 to 0.2 dex in tests done on mock JWST observations. Notably, our model recovers redshifts at least as accurately as the state-of-the-art photo- z code EAzY in deep JWST fields, but with two advantages: tailoring a model based on a particular survey is rendered mostly unnecessary given well-motivated priors; obtaining joint posteriors describing stellar, active galactic nuclei, gas, and dust contributions becomes possible. We can now confidently use the joint distribution to propagate full non-Gaussian redshift uncertainties into inferred properties of the galaxy population. This model, “ Prospector - β ,” is intended for fitting galaxy photometry where the redshift is unknown, and will be instrumental in ensuring the maximum science return from forthcoming photometric surveys with JWST. The code is made publicly available online as a part of Prospector ^9 . Bayesian statistics Computational astronomy Galaxy evolution Galaxy formation Redshift surveys Spectrophotometry Astrophysics Joel Leja verfasserin aut Rachel Bezanson verfasserin aut Benjamin D. Johnson verfasserin aut Gourav Khullar verfasserin aut Ivo Labbé verfasserin aut Sedona H. Price verfasserin aut John R. Weaver verfasserin aut Katherine E. Whitaker verfasserin aut In The Astrophysical Journal Letters IOP Publishing, 2022 944(2023), 2, p L58 (DE-627)312189028 (DE-600)2006858-X 20418213 nnns volume:944 year:2023 number:2, p L58 https://doi.org/10.3847/2041-8213/acba99 kostenfrei https://doaj.org/article/806dc5b00dd14dc4aacd01c1690b5944 kostenfrei https://doi.org/10.3847/2041-8213/acba99 kostenfrei https://doaj.org/toc/2041-8205 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 944 2023 2, p L58 |
allfieldsSound |
10.3847/2041-8213/acba99 doi (DE-627)DOAJ089156684 (DE-599)DOAJ806dc5b00dd14dc4aacd01c1690b5944 DE-627 ger DE-627 rakwb eng QB460-466 Bingjie Wang verfasserin aut Inferring More from Less: Prospector as a Photometric Redshift Engine in the Era of JWST 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The advent of the James Webb Space Telescope (JWST) signals a new era in exploring galaxies in the high- z universe. Current and upcoming JWST imaging will potentially detect galaxies at z ∼ 20, creating a new urgency in the quest to infer accurate photometric redshifts (photo- z ) for individual galaxies from their spectral energy distributions, as well as masses, ages, and star formation rates. Here we illustrate the utility of informed priors encoding previous observations of galaxies across cosmic time in achieving these goals. We construct three joint priors encoding empirical constraints of redshifts, masses, and star formation histories in the galaxy population within the Prospector Bayesian inference framework. In contrast with uniform priors, our model breaks an age–mass–redshift degeneracy, and thus reduces the mean bias error in masses from 0.3 to 0.1 dex, and in ages from 0.6 to 0.2 dex in tests done on mock JWST observations. Notably, our model recovers redshifts at least as accurately as the state-of-the-art photo- z code EAzY in deep JWST fields, but with two advantages: tailoring a model based on a particular survey is rendered mostly unnecessary given well-motivated priors; obtaining joint posteriors describing stellar, active galactic nuclei, gas, and dust contributions becomes possible. We can now confidently use the joint distribution to propagate full non-Gaussian redshift uncertainties into inferred properties of the galaxy population. This model, “ Prospector - β ,” is intended for fitting galaxy photometry where the redshift is unknown, and will be instrumental in ensuring the maximum science return from forthcoming photometric surveys with JWST. The code is made publicly available online as a part of Prospector ^9 . Bayesian statistics Computational astronomy Galaxy evolution Galaxy formation Redshift surveys Spectrophotometry Astrophysics Joel Leja verfasserin aut Rachel Bezanson verfasserin aut Benjamin D. Johnson verfasserin aut Gourav Khullar verfasserin aut Ivo Labbé verfasserin aut Sedona H. Price verfasserin aut John R. Weaver verfasserin aut Katherine E. Whitaker verfasserin aut In The Astrophysical Journal Letters IOP Publishing, 2022 944(2023), 2, p L58 (DE-627)312189028 (DE-600)2006858-X 20418213 nnns volume:944 year:2023 number:2, p L58 https://doi.org/10.3847/2041-8213/acba99 kostenfrei https://doaj.org/article/806dc5b00dd14dc4aacd01c1690b5944 kostenfrei https://doi.org/10.3847/2041-8213/acba99 kostenfrei https://doaj.org/toc/2041-8205 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 944 2023 2, p L58 |
language |
English |
source |
In The Astrophysical Journal Letters 944(2023), 2, p L58 volume:944 year:2023 number:2, p L58 |
sourceStr |
In The Astrophysical Journal Letters 944(2023), 2, p L58 volume:944 year:2023 number:2, p L58 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Bayesian statistics Computational astronomy Galaxy evolution Galaxy formation Redshift surveys Spectrophotometry Astrophysics |
isfreeaccess_bool |
true |
container_title |
The Astrophysical Journal Letters |
authorswithroles_txt_mv |
Bingjie Wang @@aut@@ Joel Leja @@aut@@ Rachel Bezanson @@aut@@ Benjamin D. Johnson @@aut@@ Gourav Khullar @@aut@@ Ivo Labbé @@aut@@ Sedona H. Price @@aut@@ John R. Weaver @@aut@@ Katherine E. Whitaker @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
312189028 |
id |
DOAJ089156684 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ089156684</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505015835.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3847/2041-8213/acba99</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ089156684</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ806dc5b00dd14dc4aacd01c1690b5944</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB460-466</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Bingjie Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Inferring More from Less: Prospector as a Photometric Redshift Engine in the Era of JWST</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The advent of the James Webb Space Telescope (JWST) signals a new era in exploring galaxies in the high- z universe. Current and upcoming JWST imaging will potentially detect galaxies at z ∼ 20, creating a new urgency in the quest to infer accurate photometric redshifts (photo- z ) for individual galaxies from their spectral energy distributions, as well as masses, ages, and star formation rates. Here we illustrate the utility of informed priors encoding previous observations of galaxies across cosmic time in achieving these goals. We construct three joint priors encoding empirical constraints of redshifts, masses, and star formation histories in the galaxy population within the Prospector Bayesian inference framework. In contrast with uniform priors, our model breaks an age–mass–redshift degeneracy, and thus reduces the mean bias error in masses from 0.3 to 0.1 dex, and in ages from 0.6 to 0.2 dex in tests done on mock JWST observations. Notably, our model recovers redshifts at least as accurately as the state-of-the-art photo- z code EAzY in deep JWST fields, but with two advantages: tailoring a model based on a particular survey is rendered mostly unnecessary given well-motivated priors; obtaining joint posteriors describing stellar, active galactic nuclei, gas, and dust contributions becomes possible. We can now confidently use the joint distribution to propagate full non-Gaussian redshift uncertainties into inferred properties of the galaxy population. This model, “ Prospector - β ,” is intended for fitting galaxy photometry where the redshift is unknown, and will be instrumental in ensuring the maximum science return from forthcoming photometric surveys with JWST. The code is made publicly available online as a part of Prospector ^9 .</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bayesian statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational astronomy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Galaxy evolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Galaxy formation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Redshift surveys</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectrophotometry</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Joel Leja</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rachel Bezanson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Benjamin D. Johnson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gourav Khullar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ivo Labbé</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sedona H. Price</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">John R. Weaver</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Katherine E. Whitaker</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">The Astrophysical Journal Letters</subfield><subfield code="d">IOP Publishing, 2022</subfield><subfield code="g">944(2023), 2, p L58</subfield><subfield code="w">(DE-627)312189028</subfield><subfield code="w">(DE-600)2006858-X</subfield><subfield code="x">20418213</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:944</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:2, p L58</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/2041-8213/acba99</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/806dc5b00dd14dc4aacd01c1690b5944</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/2041-8213/acba99</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2041-8205</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">944</subfield><subfield code="j">2023</subfield><subfield code="e">2, p L58</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Bingjie Wang |
spellingShingle |
Bingjie Wang misc QB460-466 misc Bayesian statistics misc Computational astronomy misc Galaxy evolution misc Galaxy formation misc Redshift surveys misc Spectrophotometry misc Astrophysics Inferring More from Less: Prospector as a Photometric Redshift Engine in the Era of JWST |
authorStr |
Bingjie Wang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)312189028 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QB460-466 |
illustrated |
Not Illustrated |
issn |
20418213 |
topic_title |
QB460-466 Inferring More from Less: Prospector as a Photometric Redshift Engine in the Era of JWST Bayesian statistics Computational astronomy Galaxy evolution Galaxy formation Redshift surveys Spectrophotometry |
topic |
misc QB460-466 misc Bayesian statistics misc Computational astronomy misc Galaxy evolution misc Galaxy formation misc Redshift surveys misc Spectrophotometry misc Astrophysics |
topic_unstemmed |
misc QB460-466 misc Bayesian statistics misc Computational astronomy misc Galaxy evolution misc Galaxy formation misc Redshift surveys misc Spectrophotometry misc Astrophysics |
topic_browse |
misc QB460-466 misc Bayesian statistics misc Computational astronomy misc Galaxy evolution misc Galaxy formation misc Redshift surveys misc Spectrophotometry misc Astrophysics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The Astrophysical Journal Letters |
hierarchy_parent_id |
312189028 |
hierarchy_top_title |
The Astrophysical Journal Letters |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)312189028 (DE-600)2006858-X |
title |
Inferring More from Less: Prospector as a Photometric Redshift Engine in the Era of JWST |
ctrlnum |
(DE-627)DOAJ089156684 (DE-599)DOAJ806dc5b00dd14dc4aacd01c1690b5944 |
title_full |
Inferring More from Less: Prospector as a Photometric Redshift Engine in the Era of JWST |
author_sort |
Bingjie Wang |
journal |
The Astrophysical Journal Letters |
journalStr |
The Astrophysical Journal Letters |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Bingjie Wang Joel Leja Rachel Bezanson Benjamin D. Johnson Gourav Khullar Ivo Labbé Sedona H. Price John R. Weaver Katherine E. Whitaker |
container_volume |
944 |
class |
QB460-466 |
format_se |
Elektronische Aufsätze |
author-letter |
Bingjie Wang |
doi_str_mv |
10.3847/2041-8213/acba99 |
author2-role |
verfasserin |
title_sort |
inferring more from less: prospector as a photometric redshift engine in the era of jwst |
callnumber |
QB460-466 |
title_auth |
Inferring More from Less: Prospector as a Photometric Redshift Engine in the Era of JWST |
abstract |
The advent of the James Webb Space Telescope (JWST) signals a new era in exploring galaxies in the high- z universe. Current and upcoming JWST imaging will potentially detect galaxies at z ∼ 20, creating a new urgency in the quest to infer accurate photometric redshifts (photo- z ) for individual galaxies from their spectral energy distributions, as well as masses, ages, and star formation rates. Here we illustrate the utility of informed priors encoding previous observations of galaxies across cosmic time in achieving these goals. We construct three joint priors encoding empirical constraints of redshifts, masses, and star formation histories in the galaxy population within the Prospector Bayesian inference framework. In contrast with uniform priors, our model breaks an age–mass–redshift degeneracy, and thus reduces the mean bias error in masses from 0.3 to 0.1 dex, and in ages from 0.6 to 0.2 dex in tests done on mock JWST observations. Notably, our model recovers redshifts at least as accurately as the state-of-the-art photo- z code EAzY in deep JWST fields, but with two advantages: tailoring a model based on a particular survey is rendered mostly unnecessary given well-motivated priors; obtaining joint posteriors describing stellar, active galactic nuclei, gas, and dust contributions becomes possible. We can now confidently use the joint distribution to propagate full non-Gaussian redshift uncertainties into inferred properties of the galaxy population. This model, “ Prospector - β ,” is intended for fitting galaxy photometry where the redshift is unknown, and will be instrumental in ensuring the maximum science return from forthcoming photometric surveys with JWST. The code is made publicly available online as a part of Prospector ^9 . |
abstractGer |
The advent of the James Webb Space Telescope (JWST) signals a new era in exploring galaxies in the high- z universe. Current and upcoming JWST imaging will potentially detect galaxies at z ∼ 20, creating a new urgency in the quest to infer accurate photometric redshifts (photo- z ) for individual galaxies from their spectral energy distributions, as well as masses, ages, and star formation rates. Here we illustrate the utility of informed priors encoding previous observations of galaxies across cosmic time in achieving these goals. We construct three joint priors encoding empirical constraints of redshifts, masses, and star formation histories in the galaxy population within the Prospector Bayesian inference framework. In contrast with uniform priors, our model breaks an age–mass–redshift degeneracy, and thus reduces the mean bias error in masses from 0.3 to 0.1 dex, and in ages from 0.6 to 0.2 dex in tests done on mock JWST observations. Notably, our model recovers redshifts at least as accurately as the state-of-the-art photo- z code EAzY in deep JWST fields, but with two advantages: tailoring a model based on a particular survey is rendered mostly unnecessary given well-motivated priors; obtaining joint posteriors describing stellar, active galactic nuclei, gas, and dust contributions becomes possible. We can now confidently use the joint distribution to propagate full non-Gaussian redshift uncertainties into inferred properties of the galaxy population. This model, “ Prospector - β ,” is intended for fitting galaxy photometry where the redshift is unknown, and will be instrumental in ensuring the maximum science return from forthcoming photometric surveys with JWST. The code is made publicly available online as a part of Prospector ^9 . |
abstract_unstemmed |
The advent of the James Webb Space Telescope (JWST) signals a new era in exploring galaxies in the high- z universe. Current and upcoming JWST imaging will potentially detect galaxies at z ∼ 20, creating a new urgency in the quest to infer accurate photometric redshifts (photo- z ) for individual galaxies from their spectral energy distributions, as well as masses, ages, and star formation rates. Here we illustrate the utility of informed priors encoding previous observations of galaxies across cosmic time in achieving these goals. We construct three joint priors encoding empirical constraints of redshifts, masses, and star formation histories in the galaxy population within the Prospector Bayesian inference framework. In contrast with uniform priors, our model breaks an age–mass–redshift degeneracy, and thus reduces the mean bias error in masses from 0.3 to 0.1 dex, and in ages from 0.6 to 0.2 dex in tests done on mock JWST observations. Notably, our model recovers redshifts at least as accurately as the state-of-the-art photo- z code EAzY in deep JWST fields, but with two advantages: tailoring a model based on a particular survey is rendered mostly unnecessary given well-motivated priors; obtaining joint posteriors describing stellar, active galactic nuclei, gas, and dust contributions becomes possible. We can now confidently use the joint distribution to propagate full non-Gaussian redshift uncertainties into inferred properties of the galaxy population. This model, “ Prospector - β ,” is intended for fitting galaxy photometry where the redshift is unknown, and will be instrumental in ensuring the maximum science return from forthcoming photometric surveys with JWST. The code is made publicly available online as a part of Prospector ^9 . |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2, p L58 |
title_short |
Inferring More from Less: Prospector as a Photometric Redshift Engine in the Era of JWST |
url |
https://doi.org/10.3847/2041-8213/acba99 https://doaj.org/article/806dc5b00dd14dc4aacd01c1690b5944 https://doaj.org/toc/2041-8205 |
remote_bool |
true |
author2 |
Joel Leja Rachel Bezanson Benjamin D. Johnson Gourav Khullar Ivo Labbé Sedona H. Price John R. Weaver Katherine E. Whitaker |
author2Str |
Joel Leja Rachel Bezanson Benjamin D. Johnson Gourav Khullar Ivo Labbé Sedona H. Price John R. Weaver Katherine E. Whitaker |
ppnlink |
312189028 |
callnumber-subject |
QB - Astronomy |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3847/2041-8213/acba99 |
callnumber-a |
QB460-466 |
up_date |
2024-07-03T21:34:59.470Z |
_version_ |
1803595283926351872 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ089156684</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505015835.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3847/2041-8213/acba99</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ089156684</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ806dc5b00dd14dc4aacd01c1690b5944</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB460-466</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Bingjie Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Inferring More from Less: Prospector as a Photometric Redshift Engine in the Era of JWST</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The advent of the James Webb Space Telescope (JWST) signals a new era in exploring galaxies in the high- z universe. Current and upcoming JWST imaging will potentially detect galaxies at z ∼ 20, creating a new urgency in the quest to infer accurate photometric redshifts (photo- z ) for individual galaxies from their spectral energy distributions, as well as masses, ages, and star formation rates. Here we illustrate the utility of informed priors encoding previous observations of galaxies across cosmic time in achieving these goals. We construct three joint priors encoding empirical constraints of redshifts, masses, and star formation histories in the galaxy population within the Prospector Bayesian inference framework. In contrast with uniform priors, our model breaks an age–mass–redshift degeneracy, and thus reduces the mean bias error in masses from 0.3 to 0.1 dex, and in ages from 0.6 to 0.2 dex in tests done on mock JWST observations. Notably, our model recovers redshifts at least as accurately as the state-of-the-art photo- z code EAzY in deep JWST fields, but with two advantages: tailoring a model based on a particular survey is rendered mostly unnecessary given well-motivated priors; obtaining joint posteriors describing stellar, active galactic nuclei, gas, and dust contributions becomes possible. We can now confidently use the joint distribution to propagate full non-Gaussian redshift uncertainties into inferred properties of the galaxy population. This model, “ Prospector - β ,” is intended for fitting galaxy photometry where the redshift is unknown, and will be instrumental in ensuring the maximum science return from forthcoming photometric surveys with JWST. The code is made publicly available online as a part of Prospector ^9 .</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bayesian statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational astronomy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Galaxy evolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Galaxy formation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Redshift surveys</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectrophotometry</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Joel Leja</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rachel Bezanson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Benjamin D. Johnson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gourav Khullar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ivo Labbé</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sedona H. Price</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">John R. Weaver</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Katherine E. Whitaker</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">The Astrophysical Journal Letters</subfield><subfield code="d">IOP Publishing, 2022</subfield><subfield code="g">944(2023), 2, p L58</subfield><subfield code="w">(DE-627)312189028</subfield><subfield code="w">(DE-600)2006858-X</subfield><subfield code="x">20418213</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:944</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:2, p L58</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/2041-8213/acba99</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/806dc5b00dd14dc4aacd01c1690b5944</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/2041-8213/acba99</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2041-8205</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">944</subfield><subfield code="j">2023</subfield><subfield code="e">2, p L58</subfield></datafield></record></collection>
|
score |
7.4018173 |