Simple Physics and Integrators Accurately Reproduce Mercury Instability Statistics
The long-term stability of the solar system is an issue of significant scientific and philosophical interest. The mechanism leading to instability is Mercury’s eccentricity being pumped up so high that Mercury either collides with Venus or is scattered into the Sun. Previously, only three five-billi...
Ausführliche Beschreibung
Autor*in: |
Dorian S. Abbot [verfasserIn] David M. Hernandez [verfasserIn] Sam Hadden [verfasserIn] Robert J. Webber [verfasserIn] Georgios P. Afentakis [verfasserIn] Jonathan Weare [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: The Astrophysical Journal - IOP Publishing, 2022, 944(2023), 2, p 190 |
---|---|
Übergeordnetes Werk: |
volume:944 ; year:2023 ; number:2, p 190 |
Links: |
---|
DOI / URN: |
10.3847/1538-4357/acb6ff |
---|
Katalog-ID: |
DOAJ089157656 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ089157656 | ||
003 | DE-627 | ||
005 | 20230505015839.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230505s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3847/1538-4357/acb6ff |2 doi | |
035 | |a (DE-627)DOAJ089157656 | ||
035 | |a (DE-599)DOAJ148066b7cb154fbdae7d710991dd654d | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QB460-466 | |
100 | 0 | |a Dorian S. Abbot |e verfasserin |4 aut | |
245 | 1 | 0 | |a Simple Physics and Integrators Accurately Reproduce Mercury Instability Statistics |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The long-term stability of the solar system is an issue of significant scientific and philosophical interest. The mechanism leading to instability is Mercury’s eccentricity being pumped up so high that Mercury either collides with Venus or is scattered into the Sun. Previously, only three five-billion-year N -body ensembles of the solar system with thousands of simulations have been run to assess long-term stability. We generate two additional ensembles, each with 2750 members, and make them publicly available at https://archive.org/details/dorianabbot . We find that accurate Mercury instability statistics can be obtained by (1) including only the Sun and the eight planets, (2) using a simple Wisdom–Holman scheme without correctors, (3) using a basic representation of general relativity, and (4) using a time step of 3.16 days. By combining our solar system ensembles with previous ensembles, we form a 9601-member ensemble of ensembles. In this ensemble of ensembles, the logarithm of the frequency of a Mercury instability event increases linearly with time between 1.3 and 5 Gyr, suggesting that a single mechanism is responsible for Mercury instabilities in this time range and that this mechanism becomes more active as time progresses. Our work provides a robust estimate of Mercury instability statistics over the next five billion years, outlines methodologies that may be useful for exoplanet system investigations, and provides two large ensembles of publicly available solar system integrations that can serve as test beds for theoretical ideas as well as training sets for artificial intelligence schemes. | ||
650 | 4 | |a Solar system | |
650 | 4 | |a Mercury (planet) | |
650 | 4 | |a Planetary dynamics | |
653 | 0 | |a Astrophysics | |
700 | 0 | |a David M. Hernandez |e verfasserin |4 aut | |
700 | 0 | |a Sam Hadden |e verfasserin |4 aut | |
700 | 0 | |a Robert J. Webber |e verfasserin |4 aut | |
700 | 0 | |a Georgios P. Afentakis |e verfasserin |4 aut | |
700 | 0 | |a Jonathan Weare |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t The Astrophysical Journal |d IOP Publishing, 2022 |g 944(2023), 2, p 190 |w (DE-627)269019219 |w (DE-600)1473835-1 |x 15384357 |7 nnns |
773 | 1 | 8 | |g volume:944 |g year:2023 |g number:2, p 190 |
856 | 4 | 0 | |u https://doi.org/10.3847/1538-4357/acb6ff |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/148066b7cb154fbdae7d710991dd654d |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.3847/1538-4357/acb6ff |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1538-4357 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 944 |j 2023 |e 2, p 190 |
author_variant |
d s a dsa d m h dmh s h sh r j w rjw g p a gpa j w jw |
---|---|
matchkey_str |
article:15384357:2023----::ipehscadnertracrtlrpoueecri |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QB |
publishDate |
2023 |
allfields |
10.3847/1538-4357/acb6ff doi (DE-627)DOAJ089157656 (DE-599)DOAJ148066b7cb154fbdae7d710991dd654d DE-627 ger DE-627 rakwb eng QB460-466 Dorian S. Abbot verfasserin aut Simple Physics and Integrators Accurately Reproduce Mercury Instability Statistics 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The long-term stability of the solar system is an issue of significant scientific and philosophical interest. The mechanism leading to instability is Mercury’s eccentricity being pumped up so high that Mercury either collides with Venus or is scattered into the Sun. Previously, only three five-billion-year N -body ensembles of the solar system with thousands of simulations have been run to assess long-term stability. We generate two additional ensembles, each with 2750 members, and make them publicly available at https://archive.org/details/dorianabbot . We find that accurate Mercury instability statistics can be obtained by (1) including only the Sun and the eight planets, (2) using a simple Wisdom–Holman scheme without correctors, (3) using a basic representation of general relativity, and (4) using a time step of 3.16 days. By combining our solar system ensembles with previous ensembles, we form a 9601-member ensemble of ensembles. In this ensemble of ensembles, the logarithm of the frequency of a Mercury instability event increases linearly with time between 1.3 and 5 Gyr, suggesting that a single mechanism is responsible for Mercury instabilities in this time range and that this mechanism becomes more active as time progresses. Our work provides a robust estimate of Mercury instability statistics over the next five billion years, outlines methodologies that may be useful for exoplanet system investigations, and provides two large ensembles of publicly available solar system integrations that can serve as test beds for theoretical ideas as well as training sets for artificial intelligence schemes. Solar system Mercury (planet) Planetary dynamics Astrophysics David M. Hernandez verfasserin aut Sam Hadden verfasserin aut Robert J. Webber verfasserin aut Georgios P. Afentakis verfasserin aut Jonathan Weare verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 944(2023), 2, p 190 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:944 year:2023 number:2, p 190 https://doi.org/10.3847/1538-4357/acb6ff kostenfrei https://doaj.org/article/148066b7cb154fbdae7d710991dd654d kostenfrei https://doi.org/10.3847/1538-4357/acb6ff kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 944 2023 2, p 190 |
spelling |
10.3847/1538-4357/acb6ff doi (DE-627)DOAJ089157656 (DE-599)DOAJ148066b7cb154fbdae7d710991dd654d DE-627 ger DE-627 rakwb eng QB460-466 Dorian S. Abbot verfasserin aut Simple Physics and Integrators Accurately Reproduce Mercury Instability Statistics 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The long-term stability of the solar system is an issue of significant scientific and philosophical interest. The mechanism leading to instability is Mercury’s eccentricity being pumped up so high that Mercury either collides with Venus or is scattered into the Sun. Previously, only three five-billion-year N -body ensembles of the solar system with thousands of simulations have been run to assess long-term stability. We generate two additional ensembles, each with 2750 members, and make them publicly available at https://archive.org/details/dorianabbot . We find that accurate Mercury instability statistics can be obtained by (1) including only the Sun and the eight planets, (2) using a simple Wisdom–Holman scheme without correctors, (3) using a basic representation of general relativity, and (4) using a time step of 3.16 days. By combining our solar system ensembles with previous ensembles, we form a 9601-member ensemble of ensembles. In this ensemble of ensembles, the logarithm of the frequency of a Mercury instability event increases linearly with time between 1.3 and 5 Gyr, suggesting that a single mechanism is responsible for Mercury instabilities in this time range and that this mechanism becomes more active as time progresses. Our work provides a robust estimate of Mercury instability statistics over the next five billion years, outlines methodologies that may be useful for exoplanet system investigations, and provides two large ensembles of publicly available solar system integrations that can serve as test beds for theoretical ideas as well as training sets for artificial intelligence schemes. Solar system Mercury (planet) Planetary dynamics Astrophysics David M. Hernandez verfasserin aut Sam Hadden verfasserin aut Robert J. Webber verfasserin aut Georgios P. Afentakis verfasserin aut Jonathan Weare verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 944(2023), 2, p 190 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:944 year:2023 number:2, p 190 https://doi.org/10.3847/1538-4357/acb6ff kostenfrei https://doaj.org/article/148066b7cb154fbdae7d710991dd654d kostenfrei https://doi.org/10.3847/1538-4357/acb6ff kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 944 2023 2, p 190 |
allfields_unstemmed |
10.3847/1538-4357/acb6ff doi (DE-627)DOAJ089157656 (DE-599)DOAJ148066b7cb154fbdae7d710991dd654d DE-627 ger DE-627 rakwb eng QB460-466 Dorian S. Abbot verfasserin aut Simple Physics and Integrators Accurately Reproduce Mercury Instability Statistics 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The long-term stability of the solar system is an issue of significant scientific and philosophical interest. The mechanism leading to instability is Mercury’s eccentricity being pumped up so high that Mercury either collides with Venus or is scattered into the Sun. Previously, only three five-billion-year N -body ensembles of the solar system with thousands of simulations have been run to assess long-term stability. We generate two additional ensembles, each with 2750 members, and make them publicly available at https://archive.org/details/dorianabbot . We find that accurate Mercury instability statistics can be obtained by (1) including only the Sun and the eight planets, (2) using a simple Wisdom–Holman scheme without correctors, (3) using a basic representation of general relativity, and (4) using a time step of 3.16 days. By combining our solar system ensembles with previous ensembles, we form a 9601-member ensemble of ensembles. In this ensemble of ensembles, the logarithm of the frequency of a Mercury instability event increases linearly with time between 1.3 and 5 Gyr, suggesting that a single mechanism is responsible for Mercury instabilities in this time range and that this mechanism becomes more active as time progresses. Our work provides a robust estimate of Mercury instability statistics over the next five billion years, outlines methodologies that may be useful for exoplanet system investigations, and provides two large ensembles of publicly available solar system integrations that can serve as test beds for theoretical ideas as well as training sets for artificial intelligence schemes. Solar system Mercury (planet) Planetary dynamics Astrophysics David M. Hernandez verfasserin aut Sam Hadden verfasserin aut Robert J. Webber verfasserin aut Georgios P. Afentakis verfasserin aut Jonathan Weare verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 944(2023), 2, p 190 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:944 year:2023 number:2, p 190 https://doi.org/10.3847/1538-4357/acb6ff kostenfrei https://doaj.org/article/148066b7cb154fbdae7d710991dd654d kostenfrei https://doi.org/10.3847/1538-4357/acb6ff kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 944 2023 2, p 190 |
allfieldsGer |
10.3847/1538-4357/acb6ff doi (DE-627)DOAJ089157656 (DE-599)DOAJ148066b7cb154fbdae7d710991dd654d DE-627 ger DE-627 rakwb eng QB460-466 Dorian S. Abbot verfasserin aut Simple Physics and Integrators Accurately Reproduce Mercury Instability Statistics 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The long-term stability of the solar system is an issue of significant scientific and philosophical interest. The mechanism leading to instability is Mercury’s eccentricity being pumped up so high that Mercury either collides with Venus or is scattered into the Sun. Previously, only three five-billion-year N -body ensembles of the solar system with thousands of simulations have been run to assess long-term stability. We generate two additional ensembles, each with 2750 members, and make them publicly available at https://archive.org/details/dorianabbot . We find that accurate Mercury instability statistics can be obtained by (1) including only the Sun and the eight planets, (2) using a simple Wisdom–Holman scheme without correctors, (3) using a basic representation of general relativity, and (4) using a time step of 3.16 days. By combining our solar system ensembles with previous ensembles, we form a 9601-member ensemble of ensembles. In this ensemble of ensembles, the logarithm of the frequency of a Mercury instability event increases linearly with time between 1.3 and 5 Gyr, suggesting that a single mechanism is responsible for Mercury instabilities in this time range and that this mechanism becomes more active as time progresses. Our work provides a robust estimate of Mercury instability statistics over the next five billion years, outlines methodologies that may be useful for exoplanet system investigations, and provides two large ensembles of publicly available solar system integrations that can serve as test beds for theoretical ideas as well as training sets for artificial intelligence schemes. Solar system Mercury (planet) Planetary dynamics Astrophysics David M. Hernandez verfasserin aut Sam Hadden verfasserin aut Robert J. Webber verfasserin aut Georgios P. Afentakis verfasserin aut Jonathan Weare verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 944(2023), 2, p 190 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:944 year:2023 number:2, p 190 https://doi.org/10.3847/1538-4357/acb6ff kostenfrei https://doaj.org/article/148066b7cb154fbdae7d710991dd654d kostenfrei https://doi.org/10.3847/1538-4357/acb6ff kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 944 2023 2, p 190 |
allfieldsSound |
10.3847/1538-4357/acb6ff doi (DE-627)DOAJ089157656 (DE-599)DOAJ148066b7cb154fbdae7d710991dd654d DE-627 ger DE-627 rakwb eng QB460-466 Dorian S. Abbot verfasserin aut Simple Physics and Integrators Accurately Reproduce Mercury Instability Statistics 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The long-term stability of the solar system is an issue of significant scientific and philosophical interest. The mechanism leading to instability is Mercury’s eccentricity being pumped up so high that Mercury either collides with Venus or is scattered into the Sun. Previously, only three five-billion-year N -body ensembles of the solar system with thousands of simulations have been run to assess long-term stability. We generate two additional ensembles, each with 2750 members, and make them publicly available at https://archive.org/details/dorianabbot . We find that accurate Mercury instability statistics can be obtained by (1) including only the Sun and the eight planets, (2) using a simple Wisdom–Holman scheme without correctors, (3) using a basic representation of general relativity, and (4) using a time step of 3.16 days. By combining our solar system ensembles with previous ensembles, we form a 9601-member ensemble of ensembles. In this ensemble of ensembles, the logarithm of the frequency of a Mercury instability event increases linearly with time between 1.3 and 5 Gyr, suggesting that a single mechanism is responsible for Mercury instabilities in this time range and that this mechanism becomes more active as time progresses. Our work provides a robust estimate of Mercury instability statistics over the next five billion years, outlines methodologies that may be useful for exoplanet system investigations, and provides two large ensembles of publicly available solar system integrations that can serve as test beds for theoretical ideas as well as training sets for artificial intelligence schemes. Solar system Mercury (planet) Planetary dynamics Astrophysics David M. Hernandez verfasserin aut Sam Hadden verfasserin aut Robert J. Webber verfasserin aut Georgios P. Afentakis verfasserin aut Jonathan Weare verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 944(2023), 2, p 190 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:944 year:2023 number:2, p 190 https://doi.org/10.3847/1538-4357/acb6ff kostenfrei https://doaj.org/article/148066b7cb154fbdae7d710991dd654d kostenfrei https://doi.org/10.3847/1538-4357/acb6ff kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 944 2023 2, p 190 |
language |
English |
source |
In The Astrophysical Journal 944(2023), 2, p 190 volume:944 year:2023 number:2, p 190 |
sourceStr |
In The Astrophysical Journal 944(2023), 2, p 190 volume:944 year:2023 number:2, p 190 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Solar system Mercury (planet) Planetary dynamics Astrophysics |
isfreeaccess_bool |
true |
container_title |
The Astrophysical Journal |
authorswithroles_txt_mv |
Dorian S. Abbot @@aut@@ David M. Hernandez @@aut@@ Sam Hadden @@aut@@ Robert J. Webber @@aut@@ Georgios P. Afentakis @@aut@@ Jonathan Weare @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
269019219 |
id |
DOAJ089157656 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ089157656</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505015839.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3847/1538-4357/acb6ff</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ089157656</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ148066b7cb154fbdae7d710991dd654d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB460-466</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Dorian S. Abbot</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Simple Physics and Integrators Accurately Reproduce Mercury Instability Statistics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The long-term stability of the solar system is an issue of significant scientific and philosophical interest. The mechanism leading to instability is Mercury’s eccentricity being pumped up so high that Mercury either collides with Venus or is scattered into the Sun. Previously, only three five-billion-year N -body ensembles of the solar system with thousands of simulations have been run to assess long-term stability. We generate two additional ensembles, each with 2750 members, and make them publicly available at https://archive.org/details/dorianabbot . We find that accurate Mercury instability statistics can be obtained by (1) including only the Sun and the eight planets, (2) using a simple Wisdom–Holman scheme without correctors, (3) using a basic representation of general relativity, and (4) using a time step of 3.16 days. By combining our solar system ensembles with previous ensembles, we form a 9601-member ensemble of ensembles. In this ensemble of ensembles, the logarithm of the frequency of a Mercury instability event increases linearly with time between 1.3 and 5 Gyr, suggesting that a single mechanism is responsible for Mercury instabilities in this time range and that this mechanism becomes more active as time progresses. Our work provides a robust estimate of Mercury instability statistics over the next five billion years, outlines methodologies that may be useful for exoplanet system investigations, and provides two large ensembles of publicly available solar system integrations that can serve as test beds for theoretical ideas as well as training sets for artificial intelligence schemes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solar system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mercury (planet)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Planetary dynamics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">David M. Hernandez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sam Hadden</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Robert J. Webber</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Georgios P. Afentakis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jonathan Weare</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">The Astrophysical Journal</subfield><subfield code="d">IOP Publishing, 2022</subfield><subfield code="g">944(2023), 2, p 190</subfield><subfield code="w">(DE-627)269019219</subfield><subfield code="w">(DE-600)1473835-1</subfield><subfield code="x">15384357</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:944</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:2, p 190</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/acb6ff</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/148066b7cb154fbdae7d710991dd654d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/acb6ff</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1538-4357</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">944</subfield><subfield code="j">2023</subfield><subfield code="e">2, p 190</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Dorian S. Abbot |
spellingShingle |
Dorian S. Abbot misc QB460-466 misc Solar system misc Mercury (planet) misc Planetary dynamics misc Astrophysics Simple Physics and Integrators Accurately Reproduce Mercury Instability Statistics |
authorStr |
Dorian S. Abbot |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)269019219 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QB460-466 |
illustrated |
Not Illustrated |
issn |
15384357 |
topic_title |
QB460-466 Simple Physics and Integrators Accurately Reproduce Mercury Instability Statistics Solar system Mercury (planet) Planetary dynamics |
topic |
misc QB460-466 misc Solar system misc Mercury (planet) misc Planetary dynamics misc Astrophysics |
topic_unstemmed |
misc QB460-466 misc Solar system misc Mercury (planet) misc Planetary dynamics misc Astrophysics |
topic_browse |
misc QB460-466 misc Solar system misc Mercury (planet) misc Planetary dynamics misc Astrophysics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The Astrophysical Journal |
hierarchy_parent_id |
269019219 |
hierarchy_top_title |
The Astrophysical Journal |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)269019219 (DE-600)1473835-1 |
title |
Simple Physics and Integrators Accurately Reproduce Mercury Instability Statistics |
ctrlnum |
(DE-627)DOAJ089157656 (DE-599)DOAJ148066b7cb154fbdae7d710991dd654d |
title_full |
Simple Physics and Integrators Accurately Reproduce Mercury Instability Statistics |
author_sort |
Dorian S. Abbot |
journal |
The Astrophysical Journal |
journalStr |
The Astrophysical Journal |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Dorian S. Abbot David M. Hernandez Sam Hadden Robert J. Webber Georgios P. Afentakis Jonathan Weare |
container_volume |
944 |
class |
QB460-466 |
format_se |
Elektronische Aufsätze |
author-letter |
Dorian S. Abbot |
doi_str_mv |
10.3847/1538-4357/acb6ff |
author2-role |
verfasserin |
title_sort |
simple physics and integrators accurately reproduce mercury instability statistics |
callnumber |
QB460-466 |
title_auth |
Simple Physics and Integrators Accurately Reproduce Mercury Instability Statistics |
abstract |
The long-term stability of the solar system is an issue of significant scientific and philosophical interest. The mechanism leading to instability is Mercury’s eccentricity being pumped up so high that Mercury either collides with Venus or is scattered into the Sun. Previously, only three five-billion-year N -body ensembles of the solar system with thousands of simulations have been run to assess long-term stability. We generate two additional ensembles, each with 2750 members, and make them publicly available at https://archive.org/details/dorianabbot . We find that accurate Mercury instability statistics can be obtained by (1) including only the Sun and the eight planets, (2) using a simple Wisdom–Holman scheme without correctors, (3) using a basic representation of general relativity, and (4) using a time step of 3.16 days. By combining our solar system ensembles with previous ensembles, we form a 9601-member ensemble of ensembles. In this ensemble of ensembles, the logarithm of the frequency of a Mercury instability event increases linearly with time between 1.3 and 5 Gyr, suggesting that a single mechanism is responsible for Mercury instabilities in this time range and that this mechanism becomes more active as time progresses. Our work provides a robust estimate of Mercury instability statistics over the next five billion years, outlines methodologies that may be useful for exoplanet system investigations, and provides two large ensembles of publicly available solar system integrations that can serve as test beds for theoretical ideas as well as training sets for artificial intelligence schemes. |
abstractGer |
The long-term stability of the solar system is an issue of significant scientific and philosophical interest. The mechanism leading to instability is Mercury’s eccentricity being pumped up so high that Mercury either collides with Venus or is scattered into the Sun. Previously, only three five-billion-year N -body ensembles of the solar system with thousands of simulations have been run to assess long-term stability. We generate two additional ensembles, each with 2750 members, and make them publicly available at https://archive.org/details/dorianabbot . We find that accurate Mercury instability statistics can be obtained by (1) including only the Sun and the eight planets, (2) using a simple Wisdom–Holman scheme without correctors, (3) using a basic representation of general relativity, and (4) using a time step of 3.16 days. By combining our solar system ensembles with previous ensembles, we form a 9601-member ensemble of ensembles. In this ensemble of ensembles, the logarithm of the frequency of a Mercury instability event increases linearly with time between 1.3 and 5 Gyr, suggesting that a single mechanism is responsible for Mercury instabilities in this time range and that this mechanism becomes more active as time progresses. Our work provides a robust estimate of Mercury instability statistics over the next five billion years, outlines methodologies that may be useful for exoplanet system investigations, and provides two large ensembles of publicly available solar system integrations that can serve as test beds for theoretical ideas as well as training sets for artificial intelligence schemes. |
abstract_unstemmed |
The long-term stability of the solar system is an issue of significant scientific and philosophical interest. The mechanism leading to instability is Mercury’s eccentricity being pumped up so high that Mercury either collides with Venus or is scattered into the Sun. Previously, only three five-billion-year N -body ensembles of the solar system with thousands of simulations have been run to assess long-term stability. We generate two additional ensembles, each with 2750 members, and make them publicly available at https://archive.org/details/dorianabbot . We find that accurate Mercury instability statistics can be obtained by (1) including only the Sun and the eight planets, (2) using a simple Wisdom–Holman scheme without correctors, (3) using a basic representation of general relativity, and (4) using a time step of 3.16 days. By combining our solar system ensembles with previous ensembles, we form a 9601-member ensemble of ensembles. In this ensemble of ensembles, the logarithm of the frequency of a Mercury instability event increases linearly with time between 1.3 and 5 Gyr, suggesting that a single mechanism is responsible for Mercury instabilities in this time range and that this mechanism becomes more active as time progresses. Our work provides a robust estimate of Mercury instability statistics over the next five billion years, outlines methodologies that may be useful for exoplanet system investigations, and provides two large ensembles of publicly available solar system integrations that can serve as test beds for theoretical ideas as well as training sets for artificial intelligence schemes. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2, p 190 |
title_short |
Simple Physics and Integrators Accurately Reproduce Mercury Instability Statistics |
url |
https://doi.org/10.3847/1538-4357/acb6ff https://doaj.org/article/148066b7cb154fbdae7d710991dd654d https://doaj.org/toc/1538-4357 |
remote_bool |
true |
author2 |
David M. Hernandez Sam Hadden Robert J. Webber Georgios P. Afentakis Jonathan Weare |
author2Str |
David M. Hernandez Sam Hadden Robert J. Webber Georgios P. Afentakis Jonathan Weare |
ppnlink |
269019219 |
callnumber-subject |
QB - Astronomy |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3847/1538-4357/acb6ff |
callnumber-a |
QB460-466 |
up_date |
2024-07-03T21:35:21.068Z |
_version_ |
1803595306575593472 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ089157656</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505015839.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3847/1538-4357/acb6ff</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ089157656</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ148066b7cb154fbdae7d710991dd654d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB460-466</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Dorian S. Abbot</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Simple Physics and Integrators Accurately Reproduce Mercury Instability Statistics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The long-term stability of the solar system is an issue of significant scientific and philosophical interest. The mechanism leading to instability is Mercury’s eccentricity being pumped up so high that Mercury either collides with Venus or is scattered into the Sun. Previously, only three five-billion-year N -body ensembles of the solar system with thousands of simulations have been run to assess long-term stability. We generate two additional ensembles, each with 2750 members, and make them publicly available at https://archive.org/details/dorianabbot . We find that accurate Mercury instability statistics can be obtained by (1) including only the Sun and the eight planets, (2) using a simple Wisdom–Holman scheme without correctors, (3) using a basic representation of general relativity, and (4) using a time step of 3.16 days. By combining our solar system ensembles with previous ensembles, we form a 9601-member ensemble of ensembles. In this ensemble of ensembles, the logarithm of the frequency of a Mercury instability event increases linearly with time between 1.3 and 5 Gyr, suggesting that a single mechanism is responsible for Mercury instabilities in this time range and that this mechanism becomes more active as time progresses. Our work provides a robust estimate of Mercury instability statistics over the next five billion years, outlines methodologies that may be useful for exoplanet system investigations, and provides two large ensembles of publicly available solar system integrations that can serve as test beds for theoretical ideas as well as training sets for artificial intelligence schemes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solar system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mercury (planet)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Planetary dynamics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">David M. Hernandez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sam Hadden</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Robert J. Webber</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Georgios P. Afentakis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jonathan Weare</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">The Astrophysical Journal</subfield><subfield code="d">IOP Publishing, 2022</subfield><subfield code="g">944(2023), 2, p 190</subfield><subfield code="w">(DE-627)269019219</subfield><subfield code="w">(DE-600)1473835-1</subfield><subfield code="x">15384357</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:944</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:2, p 190</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/acb6ff</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/148066b7cb154fbdae7d710991dd654d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/acb6ff</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1538-4357</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">944</subfield><subfield code="j">2023</subfield><subfield code="e">2, p 190</subfield></datafield></record></collection>
|
score |
7.402112 |