Dynamics and length distributions of microtubules with a multistep catastrophe mechanism
Regarding the experimental observation that microtubule (MT) catastrophe can be described as a multistep process, we extend the Dogterom–Leibler model for dynamic instability in order to discuss the effect that such a multistep catastrophe mechanism has on the distribution of MT lengths in the two r...
Ausführliche Beschreibung
Autor*in: |
Felix Schwietert [verfasserIn] Lina Heydenreich [verfasserIn] Jan Kierfeld [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: New Journal of Physics - IOP Publishing, 2003, 25(2023), 1, p 013017 |
---|---|
Übergeordnetes Werk: |
volume:25 ; year:2023 ; number:1, p 013017 |
Links: |
---|
DOI / URN: |
10.1088/1367-2630/acb07b |
---|
Katalog-ID: |
DOAJ089157680 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ089157680 | ||
003 | DE-627 | ||
005 | 20230505015839.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230505s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1088/1367-2630/acb07b |2 doi | |
035 | |a (DE-627)DOAJ089157680 | ||
035 | |a (DE-599)DOAJ98a3904b0a83439cb5345e60c15efe61 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QC1-999 | |
100 | 0 | |a Felix Schwietert |e verfasserin |4 aut | |
245 | 1 | 0 | |a Dynamics and length distributions of microtubules with a multistep catastrophe mechanism |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Regarding the experimental observation that microtubule (MT) catastrophe can be described as a multistep process, we extend the Dogterom–Leibler model for dynamic instability in order to discuss the effect that such a multistep catastrophe mechanism has on the distribution of MT lengths in the two regimes of bounded and unbounded growth. We show that in the former case, the steady state length distribution is non-exponential and has a lighter tail if multiple steps are required to undergo a catastrophe. If rescue events are possible, we detect a maximum in the distribution, i.e. the MT has a most probable length greater than zero. In the regime of unbounded growth, the length distribution converges to a Gaussian distribution whose variance decreases with the number of catastrophe steps. We extend our work by applying the multistep catastrophe model to MTs that grow against an opposing force and to MTs that are confined between two rigid walls. We determine critical forces below which the MT is in the bounded regime, and show that the multistep characteristics of the length distribution are largely lost if the growth of an MT in the unbounded regime is restricted by a rigid wall. All results are verified by stochastic simulations. | ||
650 | 4 | |a microtubule | |
650 | 4 | |a dynamic instability | |
650 | 4 | |a catastrophe | |
650 | 4 | |a multistep | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
653 | 0 | |a Physics | |
700 | 0 | |a Lina Heydenreich |e verfasserin |4 aut | |
700 | 0 | |a Jan Kierfeld |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t New Journal of Physics |d IOP Publishing, 2003 |g 25(2023), 1, p 013017 |w (DE-627)265510562 |w (DE-600)1464444-7 |x 13672630 |7 nnns |
773 | 1 | 8 | |g volume:25 |g year:2023 |g number:1, p 013017 |
856 | 4 | 0 | |u https://doi.org/10.1088/1367-2630/acb07b |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/98a3904b0a83439cb5345e60c15efe61 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1088/1367-2630/acb07b |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1367-2630 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_374 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2884 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 25 |j 2023 |e 1, p 013017 |
author_variant |
f s fs l h lh j k jk |
---|---|
matchkey_str |
article:13672630:2023----::yaisnlntdsrbtosfirtblsihmlit |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QC |
publishDate |
2023 |
allfields |
10.1088/1367-2630/acb07b doi (DE-627)DOAJ089157680 (DE-599)DOAJ98a3904b0a83439cb5345e60c15efe61 DE-627 ger DE-627 rakwb eng QC1-999 Felix Schwietert verfasserin aut Dynamics and length distributions of microtubules with a multistep catastrophe mechanism 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Regarding the experimental observation that microtubule (MT) catastrophe can be described as a multistep process, we extend the Dogterom–Leibler model for dynamic instability in order to discuss the effect that such a multistep catastrophe mechanism has on the distribution of MT lengths in the two regimes of bounded and unbounded growth. We show that in the former case, the steady state length distribution is non-exponential and has a lighter tail if multiple steps are required to undergo a catastrophe. If rescue events are possible, we detect a maximum in the distribution, i.e. the MT has a most probable length greater than zero. In the regime of unbounded growth, the length distribution converges to a Gaussian distribution whose variance decreases with the number of catastrophe steps. We extend our work by applying the multistep catastrophe model to MTs that grow against an opposing force and to MTs that are confined between two rigid walls. We determine critical forces below which the MT is in the bounded regime, and show that the multistep characteristics of the length distribution are largely lost if the growth of an MT in the unbounded regime is restricted by a rigid wall. All results are verified by stochastic simulations. microtubule dynamic instability catastrophe multistep Science Q Physics Lina Heydenreich verfasserin aut Jan Kierfeld verfasserin aut In New Journal of Physics IOP Publishing, 2003 25(2023), 1, p 013017 (DE-627)265510562 (DE-600)1464444-7 13672630 nnns volume:25 year:2023 number:1, p 013017 https://doi.org/10.1088/1367-2630/acb07b kostenfrei https://doaj.org/article/98a3904b0a83439cb5345e60c15efe61 kostenfrei https://doi.org/10.1088/1367-2630/acb07b kostenfrei https://doaj.org/toc/1367-2630 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_267 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2522 GBV_ILN_2884 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2023 1, p 013017 |
spelling |
10.1088/1367-2630/acb07b doi (DE-627)DOAJ089157680 (DE-599)DOAJ98a3904b0a83439cb5345e60c15efe61 DE-627 ger DE-627 rakwb eng QC1-999 Felix Schwietert verfasserin aut Dynamics and length distributions of microtubules with a multistep catastrophe mechanism 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Regarding the experimental observation that microtubule (MT) catastrophe can be described as a multistep process, we extend the Dogterom–Leibler model for dynamic instability in order to discuss the effect that such a multistep catastrophe mechanism has on the distribution of MT lengths in the two regimes of bounded and unbounded growth. We show that in the former case, the steady state length distribution is non-exponential and has a lighter tail if multiple steps are required to undergo a catastrophe. If rescue events are possible, we detect a maximum in the distribution, i.e. the MT has a most probable length greater than zero. In the regime of unbounded growth, the length distribution converges to a Gaussian distribution whose variance decreases with the number of catastrophe steps. We extend our work by applying the multistep catastrophe model to MTs that grow against an opposing force and to MTs that are confined between two rigid walls. We determine critical forces below which the MT is in the bounded regime, and show that the multistep characteristics of the length distribution are largely lost if the growth of an MT in the unbounded regime is restricted by a rigid wall. All results are verified by stochastic simulations. microtubule dynamic instability catastrophe multistep Science Q Physics Lina Heydenreich verfasserin aut Jan Kierfeld verfasserin aut In New Journal of Physics IOP Publishing, 2003 25(2023), 1, p 013017 (DE-627)265510562 (DE-600)1464444-7 13672630 nnns volume:25 year:2023 number:1, p 013017 https://doi.org/10.1088/1367-2630/acb07b kostenfrei https://doaj.org/article/98a3904b0a83439cb5345e60c15efe61 kostenfrei https://doi.org/10.1088/1367-2630/acb07b kostenfrei https://doaj.org/toc/1367-2630 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_267 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2522 GBV_ILN_2884 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2023 1, p 013017 |
allfields_unstemmed |
10.1088/1367-2630/acb07b doi (DE-627)DOAJ089157680 (DE-599)DOAJ98a3904b0a83439cb5345e60c15efe61 DE-627 ger DE-627 rakwb eng QC1-999 Felix Schwietert verfasserin aut Dynamics and length distributions of microtubules with a multistep catastrophe mechanism 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Regarding the experimental observation that microtubule (MT) catastrophe can be described as a multistep process, we extend the Dogterom–Leibler model for dynamic instability in order to discuss the effect that such a multistep catastrophe mechanism has on the distribution of MT lengths in the two regimes of bounded and unbounded growth. We show that in the former case, the steady state length distribution is non-exponential and has a lighter tail if multiple steps are required to undergo a catastrophe. If rescue events are possible, we detect a maximum in the distribution, i.e. the MT has a most probable length greater than zero. In the regime of unbounded growth, the length distribution converges to a Gaussian distribution whose variance decreases with the number of catastrophe steps. We extend our work by applying the multistep catastrophe model to MTs that grow against an opposing force and to MTs that are confined between two rigid walls. We determine critical forces below which the MT is in the bounded regime, and show that the multistep characteristics of the length distribution are largely lost if the growth of an MT in the unbounded regime is restricted by a rigid wall. All results are verified by stochastic simulations. microtubule dynamic instability catastrophe multistep Science Q Physics Lina Heydenreich verfasserin aut Jan Kierfeld verfasserin aut In New Journal of Physics IOP Publishing, 2003 25(2023), 1, p 013017 (DE-627)265510562 (DE-600)1464444-7 13672630 nnns volume:25 year:2023 number:1, p 013017 https://doi.org/10.1088/1367-2630/acb07b kostenfrei https://doaj.org/article/98a3904b0a83439cb5345e60c15efe61 kostenfrei https://doi.org/10.1088/1367-2630/acb07b kostenfrei https://doaj.org/toc/1367-2630 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_267 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2522 GBV_ILN_2884 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2023 1, p 013017 |
allfieldsGer |
10.1088/1367-2630/acb07b doi (DE-627)DOAJ089157680 (DE-599)DOAJ98a3904b0a83439cb5345e60c15efe61 DE-627 ger DE-627 rakwb eng QC1-999 Felix Schwietert verfasserin aut Dynamics and length distributions of microtubules with a multistep catastrophe mechanism 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Regarding the experimental observation that microtubule (MT) catastrophe can be described as a multistep process, we extend the Dogterom–Leibler model for dynamic instability in order to discuss the effect that such a multistep catastrophe mechanism has on the distribution of MT lengths in the two regimes of bounded and unbounded growth. We show that in the former case, the steady state length distribution is non-exponential and has a lighter tail if multiple steps are required to undergo a catastrophe. If rescue events are possible, we detect a maximum in the distribution, i.e. the MT has a most probable length greater than zero. In the regime of unbounded growth, the length distribution converges to a Gaussian distribution whose variance decreases with the number of catastrophe steps. We extend our work by applying the multistep catastrophe model to MTs that grow against an opposing force and to MTs that are confined between two rigid walls. We determine critical forces below which the MT is in the bounded regime, and show that the multistep characteristics of the length distribution are largely lost if the growth of an MT in the unbounded regime is restricted by a rigid wall. All results are verified by stochastic simulations. microtubule dynamic instability catastrophe multistep Science Q Physics Lina Heydenreich verfasserin aut Jan Kierfeld verfasserin aut In New Journal of Physics IOP Publishing, 2003 25(2023), 1, p 013017 (DE-627)265510562 (DE-600)1464444-7 13672630 nnns volume:25 year:2023 number:1, p 013017 https://doi.org/10.1088/1367-2630/acb07b kostenfrei https://doaj.org/article/98a3904b0a83439cb5345e60c15efe61 kostenfrei https://doi.org/10.1088/1367-2630/acb07b kostenfrei https://doaj.org/toc/1367-2630 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_267 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2522 GBV_ILN_2884 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2023 1, p 013017 |
allfieldsSound |
10.1088/1367-2630/acb07b doi (DE-627)DOAJ089157680 (DE-599)DOAJ98a3904b0a83439cb5345e60c15efe61 DE-627 ger DE-627 rakwb eng QC1-999 Felix Schwietert verfasserin aut Dynamics and length distributions of microtubules with a multistep catastrophe mechanism 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Regarding the experimental observation that microtubule (MT) catastrophe can be described as a multistep process, we extend the Dogterom–Leibler model for dynamic instability in order to discuss the effect that such a multistep catastrophe mechanism has on the distribution of MT lengths in the two regimes of bounded and unbounded growth. We show that in the former case, the steady state length distribution is non-exponential and has a lighter tail if multiple steps are required to undergo a catastrophe. If rescue events are possible, we detect a maximum in the distribution, i.e. the MT has a most probable length greater than zero. In the regime of unbounded growth, the length distribution converges to a Gaussian distribution whose variance decreases with the number of catastrophe steps. We extend our work by applying the multistep catastrophe model to MTs that grow against an opposing force and to MTs that are confined between two rigid walls. We determine critical forces below which the MT is in the bounded regime, and show that the multistep characteristics of the length distribution are largely lost if the growth of an MT in the unbounded regime is restricted by a rigid wall. All results are verified by stochastic simulations. microtubule dynamic instability catastrophe multistep Science Q Physics Lina Heydenreich verfasserin aut Jan Kierfeld verfasserin aut In New Journal of Physics IOP Publishing, 2003 25(2023), 1, p 013017 (DE-627)265510562 (DE-600)1464444-7 13672630 nnns volume:25 year:2023 number:1, p 013017 https://doi.org/10.1088/1367-2630/acb07b kostenfrei https://doaj.org/article/98a3904b0a83439cb5345e60c15efe61 kostenfrei https://doi.org/10.1088/1367-2630/acb07b kostenfrei https://doaj.org/toc/1367-2630 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_267 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2522 GBV_ILN_2884 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2023 1, p 013017 |
language |
English |
source |
In New Journal of Physics 25(2023), 1, p 013017 volume:25 year:2023 number:1, p 013017 |
sourceStr |
In New Journal of Physics 25(2023), 1, p 013017 volume:25 year:2023 number:1, p 013017 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
microtubule dynamic instability catastrophe multistep Science Q Physics |
isfreeaccess_bool |
true |
container_title |
New Journal of Physics |
authorswithroles_txt_mv |
Felix Schwietert @@aut@@ Lina Heydenreich @@aut@@ Jan Kierfeld @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
265510562 |
id |
DOAJ089157680 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ089157680</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505015839.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1088/1367-2630/acb07b</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ089157680</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ98a3904b0a83439cb5345e60c15efe61</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Felix Schwietert</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamics and length distributions of microtubules with a multistep catastrophe mechanism</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Regarding the experimental observation that microtubule (MT) catastrophe can be described as a multistep process, we extend the Dogterom–Leibler model for dynamic instability in order to discuss the effect that such a multistep catastrophe mechanism has on the distribution of MT lengths in the two regimes of bounded and unbounded growth. We show that in the former case, the steady state length distribution is non-exponential and has a lighter tail if multiple steps are required to undergo a catastrophe. If rescue events are possible, we detect a maximum in the distribution, i.e. the MT has a most probable length greater than zero. In the regime of unbounded growth, the length distribution converges to a Gaussian distribution whose variance decreases with the number of catastrophe steps. We extend our work by applying the multistep catastrophe model to MTs that grow against an opposing force and to MTs that are confined between two rigid walls. We determine critical forces below which the MT is in the bounded regime, and show that the multistep characteristics of the length distribution are largely lost if the growth of an MT in the unbounded regime is restricted by a rigid wall. All results are verified by stochastic simulations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microtubule</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dynamic instability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">catastrophe</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multistep</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lina Heydenreich</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jan Kierfeld</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">New Journal of Physics</subfield><subfield code="d">IOP Publishing, 2003</subfield><subfield code="g">25(2023), 1, p 013017</subfield><subfield code="w">(DE-627)265510562</subfield><subfield code="w">(DE-600)1464444-7</subfield><subfield code="x">13672630</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1, p 013017</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1088/1367-2630/acb07b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/98a3904b0a83439cb5345e60c15efe61</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1088/1367-2630/acb07b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1367-2630</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_374</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2884</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2023</subfield><subfield code="e">1, p 013017</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Felix Schwietert |
spellingShingle |
Felix Schwietert misc QC1-999 misc microtubule misc dynamic instability misc catastrophe misc multistep misc Science misc Q misc Physics Dynamics and length distributions of microtubules with a multistep catastrophe mechanism |
authorStr |
Felix Schwietert |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)265510562 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QC1-999 |
illustrated |
Not Illustrated |
issn |
13672630 |
topic_title |
QC1-999 Dynamics and length distributions of microtubules with a multistep catastrophe mechanism microtubule dynamic instability catastrophe multistep |
topic |
misc QC1-999 misc microtubule misc dynamic instability misc catastrophe misc multistep misc Science misc Q misc Physics |
topic_unstemmed |
misc QC1-999 misc microtubule misc dynamic instability misc catastrophe misc multistep misc Science misc Q misc Physics |
topic_browse |
misc QC1-999 misc microtubule misc dynamic instability misc catastrophe misc multistep misc Science misc Q misc Physics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
New Journal of Physics |
hierarchy_parent_id |
265510562 |
hierarchy_top_title |
New Journal of Physics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)265510562 (DE-600)1464444-7 |
title |
Dynamics and length distributions of microtubules with a multistep catastrophe mechanism |
ctrlnum |
(DE-627)DOAJ089157680 (DE-599)DOAJ98a3904b0a83439cb5345e60c15efe61 |
title_full |
Dynamics and length distributions of microtubules with a multistep catastrophe mechanism |
author_sort |
Felix Schwietert |
journal |
New Journal of Physics |
journalStr |
New Journal of Physics |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Felix Schwietert Lina Heydenreich Jan Kierfeld |
container_volume |
25 |
class |
QC1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Felix Schwietert |
doi_str_mv |
10.1088/1367-2630/acb07b |
author2-role |
verfasserin |
title_sort |
dynamics and length distributions of microtubules with a multistep catastrophe mechanism |
callnumber |
QC1-999 |
title_auth |
Dynamics and length distributions of microtubules with a multistep catastrophe mechanism |
abstract |
Regarding the experimental observation that microtubule (MT) catastrophe can be described as a multistep process, we extend the Dogterom–Leibler model for dynamic instability in order to discuss the effect that such a multistep catastrophe mechanism has on the distribution of MT lengths in the two regimes of bounded and unbounded growth. We show that in the former case, the steady state length distribution is non-exponential and has a lighter tail if multiple steps are required to undergo a catastrophe. If rescue events are possible, we detect a maximum in the distribution, i.e. the MT has a most probable length greater than zero. In the regime of unbounded growth, the length distribution converges to a Gaussian distribution whose variance decreases with the number of catastrophe steps. We extend our work by applying the multistep catastrophe model to MTs that grow against an opposing force and to MTs that are confined between two rigid walls. We determine critical forces below which the MT is in the bounded regime, and show that the multistep characteristics of the length distribution are largely lost if the growth of an MT in the unbounded regime is restricted by a rigid wall. All results are verified by stochastic simulations. |
abstractGer |
Regarding the experimental observation that microtubule (MT) catastrophe can be described as a multistep process, we extend the Dogterom–Leibler model for dynamic instability in order to discuss the effect that such a multistep catastrophe mechanism has on the distribution of MT lengths in the two regimes of bounded and unbounded growth. We show that in the former case, the steady state length distribution is non-exponential and has a lighter tail if multiple steps are required to undergo a catastrophe. If rescue events are possible, we detect a maximum in the distribution, i.e. the MT has a most probable length greater than zero. In the regime of unbounded growth, the length distribution converges to a Gaussian distribution whose variance decreases with the number of catastrophe steps. We extend our work by applying the multistep catastrophe model to MTs that grow against an opposing force and to MTs that are confined between two rigid walls. We determine critical forces below which the MT is in the bounded regime, and show that the multistep characteristics of the length distribution are largely lost if the growth of an MT in the unbounded regime is restricted by a rigid wall. All results are verified by stochastic simulations. |
abstract_unstemmed |
Regarding the experimental observation that microtubule (MT) catastrophe can be described as a multistep process, we extend the Dogterom–Leibler model for dynamic instability in order to discuss the effect that such a multistep catastrophe mechanism has on the distribution of MT lengths in the two regimes of bounded and unbounded growth. We show that in the former case, the steady state length distribution is non-exponential and has a lighter tail if multiple steps are required to undergo a catastrophe. If rescue events are possible, we detect a maximum in the distribution, i.e. the MT has a most probable length greater than zero. In the regime of unbounded growth, the length distribution converges to a Gaussian distribution whose variance decreases with the number of catastrophe steps. We extend our work by applying the multistep catastrophe model to MTs that grow against an opposing force and to MTs that are confined between two rigid walls. We determine critical forces below which the MT is in the bounded regime, and show that the multistep characteristics of the length distribution are largely lost if the growth of an MT in the unbounded regime is restricted by a rigid wall. All results are verified by stochastic simulations. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_267 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2522 GBV_ILN_2884 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1, p 013017 |
title_short |
Dynamics and length distributions of microtubules with a multistep catastrophe mechanism |
url |
https://doi.org/10.1088/1367-2630/acb07b https://doaj.org/article/98a3904b0a83439cb5345e60c15efe61 https://doaj.org/toc/1367-2630 |
remote_bool |
true |
author2 |
Lina Heydenreich Jan Kierfeld |
author2Str |
Lina Heydenreich Jan Kierfeld |
ppnlink |
265510562 |
callnumber-subject |
QC - Physics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1088/1367-2630/acb07b |
callnumber-a |
QC1-999 |
up_date |
2024-07-03T21:35:21.890Z |
_version_ |
1803595307434377216 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ089157680</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505015839.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1088/1367-2630/acb07b</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ089157680</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ98a3904b0a83439cb5345e60c15efe61</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Felix Schwietert</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamics and length distributions of microtubules with a multistep catastrophe mechanism</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Regarding the experimental observation that microtubule (MT) catastrophe can be described as a multistep process, we extend the Dogterom–Leibler model for dynamic instability in order to discuss the effect that such a multistep catastrophe mechanism has on the distribution of MT lengths in the two regimes of bounded and unbounded growth. We show that in the former case, the steady state length distribution is non-exponential and has a lighter tail if multiple steps are required to undergo a catastrophe. If rescue events are possible, we detect a maximum in the distribution, i.e. the MT has a most probable length greater than zero. In the regime of unbounded growth, the length distribution converges to a Gaussian distribution whose variance decreases with the number of catastrophe steps. We extend our work by applying the multistep catastrophe model to MTs that grow against an opposing force and to MTs that are confined between two rigid walls. We determine critical forces below which the MT is in the bounded regime, and show that the multistep characteristics of the length distribution are largely lost if the growth of an MT in the unbounded regime is restricted by a rigid wall. All results are verified by stochastic simulations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microtubule</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dynamic instability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">catastrophe</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multistep</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lina Heydenreich</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jan Kierfeld</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">New Journal of Physics</subfield><subfield code="d">IOP Publishing, 2003</subfield><subfield code="g">25(2023), 1, p 013017</subfield><subfield code="w">(DE-627)265510562</subfield><subfield code="w">(DE-600)1464444-7</subfield><subfield code="x">13672630</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1, p 013017</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1088/1367-2630/acb07b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/98a3904b0a83439cb5345e60c15efe61</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1088/1367-2630/acb07b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1367-2630</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_374</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2884</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2023</subfield><subfield code="e">1, p 013017</subfield></datafield></record></collection>
|
score |
7.4022093 |