The DESI PRObabilistic Value-added Bright Galaxy Survey (PROVABGS) Mock Challenge
The PRObabilistic Value-added Bright Galaxy Survey (PROVABGS) catalog will provide measurements of galaxy properties, such as stellar mass ( M _* ), star formation rate (SFR), stellar metallicity ( Z ), and stellar age ( t _age ), for <10 million galaxies of the Dark Energy Spectroscopic Instrume...
Ausführliche Beschreibung
Autor*in: |
ChangHoon Hahn [verfasserIn] K. J. Kwon [verfasserIn] Rita Tojeiro [verfasserIn] Malgorzata Siudek [verfasserIn] Rebecca E. A. Canning [verfasserIn] Mar Mezcua [verfasserIn] Jeremy L. Tinker [verfasserIn] David Brooks [verfasserIn] Peter Doel [verfasserIn] Kevin Fanning [verfasserIn] Enrique Gaztañaga [verfasserIn] Robert Kehoe [verfasserIn] Martin Landriau [verfasserIn] Aaron Meisner [verfasserIn] John Moustakas [verfasserIn] Claire Poppett [verfasserIn] Gregory Tarle [verfasserIn] Benjamin Weiner [verfasserIn] Hu Zou [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: The Astrophysical Journal - IOP Publishing, 2022, 945(2023), 1, p 16 |
---|---|
Übergeordnetes Werk: |
volume:945 ; year:2023 ; number:1, p 16 |
Links: |
---|
DOI / URN: |
10.3847/1538-4357/ac8983 |
---|
Katalog-ID: |
DOAJ089160029 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ089160029 | ||
003 | DE-627 | ||
005 | 20230505015848.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230505s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3847/1538-4357/ac8983 |2 doi | |
035 | |a (DE-627)DOAJ089160029 | ||
035 | |a (DE-599)DOAJ031b60c5ad6a4c26bdc21f8431bf68e0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QB460-466 | |
100 | 0 | |a ChangHoon Hahn |e verfasserin |4 aut | |
245 | 1 | 4 | |a The DESI PRObabilistic Value-added Bright Galaxy Survey (PROVABGS) Mock Challenge |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The PRObabilistic Value-added Bright Galaxy Survey (PROVABGS) catalog will provide measurements of galaxy properties, such as stellar mass ( M _* ), star formation rate (SFR), stellar metallicity ( Z ), and stellar age ( t _age ), for <10 million galaxies of the Dark Energy Spectroscopic Instrument (DESI) Bright Galaxy Survey. Full posterior distributions of the galaxy properties will be inferred using state-of-the-art Bayesian spectral energy distribution (SED) modeling of DESI spectroscopy and Legacy Surveys photometry. In this work, we present the SED model, the neural emulator for the model, and the Bayesian inference framework of PROVABGS. Furthermore, we apply the PROVABGS SED modeling on realistic synthetic DESI spectra and photometry, constructed using the L-Galaxies semi-analytic model. We compare the inferred galaxy properties to the true values of the simulation using a hierarchical Bayesian framework to quantify accuracy and precision. Overall, we accurately infer the true M _* , SFR, Z , and t _age of the simulated galaxies. However, the priors on galaxy properties induced by the SED model have a significant impact on the posteriors, which we characterize in detail. This work also demonstrates that a joint analysis of spectra and photometry significantly improves the constraints on galaxy properties over photometry alone and is necessary to mitigate the impact of the priors. With the methodology presented and validated in this work, PROVABGS will maximize information extracted from DESI observations and extend current galaxy studies to new regimes and unlock cutting-edge probabilistic analyses. https://github.com/changhoonhahn/provabgs/ | ||
650 | 4 | |a Galactic and extragalactic astronomy | |
650 | 4 | |a Galaxies | |
650 | 4 | |a Galaxy spectroscopy | |
650 | 4 | |a Redshift surveys | |
650 | 4 | |a Spectrophotometry | |
650 | 4 | |a Spectral energy distribution | |
653 | 0 | |a Astrophysics | |
700 | 0 | |a K. J. Kwon |e verfasserin |4 aut | |
700 | 0 | |a Rita Tojeiro |e verfasserin |4 aut | |
700 | 0 | |a Malgorzata Siudek |e verfasserin |4 aut | |
700 | 0 | |a Rebecca E. A. Canning |e verfasserin |4 aut | |
700 | 0 | |a Mar Mezcua |e verfasserin |4 aut | |
700 | 0 | |a Jeremy L. Tinker |e verfasserin |4 aut | |
700 | 0 | |a David Brooks |e verfasserin |4 aut | |
700 | 0 | |a Peter Doel |e verfasserin |4 aut | |
700 | 0 | |a Kevin Fanning |e verfasserin |4 aut | |
700 | 0 | |a Enrique Gaztañaga |e verfasserin |4 aut | |
700 | 0 | |a Robert Kehoe |e verfasserin |4 aut | |
700 | 0 | |a Martin Landriau |e verfasserin |4 aut | |
700 | 0 | |a Aaron Meisner |e verfasserin |4 aut | |
700 | 0 | |a John Moustakas |e verfasserin |4 aut | |
700 | 0 | |a Claire Poppett |e verfasserin |4 aut | |
700 | 0 | |a Gregory Tarle |e verfasserin |4 aut | |
700 | 0 | |a Benjamin Weiner |e verfasserin |4 aut | |
700 | 0 | |a Hu Zou |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t The Astrophysical Journal |d IOP Publishing, 2022 |g 945(2023), 1, p 16 |w (DE-627)269019219 |w (DE-600)1473835-1 |x 15384357 |7 nnns |
773 | 1 | 8 | |g volume:945 |g year:2023 |g number:1, p 16 |
856 | 4 | 0 | |u https://doi.org/10.3847/1538-4357/ac8983 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/031b60c5ad6a4c26bdc21f8431bf68e0 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.3847/1538-4357/ac8983 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1538-4357 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 945 |j 2023 |e 1, p 16 |
author_variant |
c h ch k j k kjk r t rt m s ms r e a c reac m m mm j l t jlt d b db p d pd k f kf e g eg r k rk m l ml a m am j m jm c p cp g t gt b w bw h z hz |
---|---|
matchkey_str |
article:15384357:2023----::hdspoaiitcauaddrgtaayuvyr |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QB |
publishDate |
2023 |
allfields |
10.3847/1538-4357/ac8983 doi (DE-627)DOAJ089160029 (DE-599)DOAJ031b60c5ad6a4c26bdc21f8431bf68e0 DE-627 ger DE-627 rakwb eng QB460-466 ChangHoon Hahn verfasserin aut The DESI PRObabilistic Value-added Bright Galaxy Survey (PROVABGS) Mock Challenge 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The PRObabilistic Value-added Bright Galaxy Survey (PROVABGS) catalog will provide measurements of galaxy properties, such as stellar mass ( M _* ), star formation rate (SFR), stellar metallicity ( Z ), and stellar age ( t _age ), for <10 million galaxies of the Dark Energy Spectroscopic Instrument (DESI) Bright Galaxy Survey. Full posterior distributions of the galaxy properties will be inferred using state-of-the-art Bayesian spectral energy distribution (SED) modeling of DESI spectroscopy and Legacy Surveys photometry. In this work, we present the SED model, the neural emulator for the model, and the Bayesian inference framework of PROVABGS. Furthermore, we apply the PROVABGS SED modeling on realistic synthetic DESI spectra and photometry, constructed using the L-Galaxies semi-analytic model. We compare the inferred galaxy properties to the true values of the simulation using a hierarchical Bayesian framework to quantify accuracy and precision. Overall, we accurately infer the true M _* , SFR, Z , and t _age of the simulated galaxies. However, the priors on galaxy properties induced by the SED model have a significant impact on the posteriors, which we characterize in detail. This work also demonstrates that a joint analysis of spectra and photometry significantly improves the constraints on galaxy properties over photometry alone and is necessary to mitigate the impact of the priors. With the methodology presented and validated in this work, PROVABGS will maximize information extracted from DESI observations and extend current galaxy studies to new regimes and unlock cutting-edge probabilistic analyses. https://github.com/changhoonhahn/provabgs/ Galactic and extragalactic astronomy Galaxies Galaxy spectroscopy Redshift surveys Spectrophotometry Spectral energy distribution Astrophysics K. J. Kwon verfasserin aut Rita Tojeiro verfasserin aut Malgorzata Siudek verfasserin aut Rebecca E. A. Canning verfasserin aut Mar Mezcua verfasserin aut Jeremy L. Tinker verfasserin aut David Brooks verfasserin aut Peter Doel verfasserin aut Kevin Fanning verfasserin aut Enrique Gaztañaga verfasserin aut Robert Kehoe verfasserin aut Martin Landriau verfasserin aut Aaron Meisner verfasserin aut John Moustakas verfasserin aut Claire Poppett verfasserin aut Gregory Tarle verfasserin aut Benjamin Weiner verfasserin aut Hu Zou verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 945(2023), 1, p 16 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:945 year:2023 number:1, p 16 https://doi.org/10.3847/1538-4357/ac8983 kostenfrei https://doaj.org/article/031b60c5ad6a4c26bdc21f8431bf68e0 kostenfrei https://doi.org/10.3847/1538-4357/ac8983 kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 945 2023 1, p 16 |
spelling |
10.3847/1538-4357/ac8983 doi (DE-627)DOAJ089160029 (DE-599)DOAJ031b60c5ad6a4c26bdc21f8431bf68e0 DE-627 ger DE-627 rakwb eng QB460-466 ChangHoon Hahn verfasserin aut The DESI PRObabilistic Value-added Bright Galaxy Survey (PROVABGS) Mock Challenge 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The PRObabilistic Value-added Bright Galaxy Survey (PROVABGS) catalog will provide measurements of galaxy properties, such as stellar mass ( M _* ), star formation rate (SFR), stellar metallicity ( Z ), and stellar age ( t _age ), for <10 million galaxies of the Dark Energy Spectroscopic Instrument (DESI) Bright Galaxy Survey. Full posterior distributions of the galaxy properties will be inferred using state-of-the-art Bayesian spectral energy distribution (SED) modeling of DESI spectroscopy and Legacy Surveys photometry. In this work, we present the SED model, the neural emulator for the model, and the Bayesian inference framework of PROVABGS. Furthermore, we apply the PROVABGS SED modeling on realistic synthetic DESI spectra and photometry, constructed using the L-Galaxies semi-analytic model. We compare the inferred galaxy properties to the true values of the simulation using a hierarchical Bayesian framework to quantify accuracy and precision. Overall, we accurately infer the true M _* , SFR, Z , and t _age of the simulated galaxies. However, the priors on galaxy properties induced by the SED model have a significant impact on the posteriors, which we characterize in detail. This work also demonstrates that a joint analysis of spectra and photometry significantly improves the constraints on galaxy properties over photometry alone and is necessary to mitigate the impact of the priors. With the methodology presented and validated in this work, PROVABGS will maximize information extracted from DESI observations and extend current galaxy studies to new regimes and unlock cutting-edge probabilistic analyses. https://github.com/changhoonhahn/provabgs/ Galactic and extragalactic astronomy Galaxies Galaxy spectroscopy Redshift surveys Spectrophotometry Spectral energy distribution Astrophysics K. J. Kwon verfasserin aut Rita Tojeiro verfasserin aut Malgorzata Siudek verfasserin aut Rebecca E. A. Canning verfasserin aut Mar Mezcua verfasserin aut Jeremy L. Tinker verfasserin aut David Brooks verfasserin aut Peter Doel verfasserin aut Kevin Fanning verfasserin aut Enrique Gaztañaga verfasserin aut Robert Kehoe verfasserin aut Martin Landriau verfasserin aut Aaron Meisner verfasserin aut John Moustakas verfasserin aut Claire Poppett verfasserin aut Gregory Tarle verfasserin aut Benjamin Weiner verfasserin aut Hu Zou verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 945(2023), 1, p 16 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:945 year:2023 number:1, p 16 https://doi.org/10.3847/1538-4357/ac8983 kostenfrei https://doaj.org/article/031b60c5ad6a4c26bdc21f8431bf68e0 kostenfrei https://doi.org/10.3847/1538-4357/ac8983 kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 945 2023 1, p 16 |
allfields_unstemmed |
10.3847/1538-4357/ac8983 doi (DE-627)DOAJ089160029 (DE-599)DOAJ031b60c5ad6a4c26bdc21f8431bf68e0 DE-627 ger DE-627 rakwb eng QB460-466 ChangHoon Hahn verfasserin aut The DESI PRObabilistic Value-added Bright Galaxy Survey (PROVABGS) Mock Challenge 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The PRObabilistic Value-added Bright Galaxy Survey (PROVABGS) catalog will provide measurements of galaxy properties, such as stellar mass ( M _* ), star formation rate (SFR), stellar metallicity ( Z ), and stellar age ( t _age ), for <10 million galaxies of the Dark Energy Spectroscopic Instrument (DESI) Bright Galaxy Survey. Full posterior distributions of the galaxy properties will be inferred using state-of-the-art Bayesian spectral energy distribution (SED) modeling of DESI spectroscopy and Legacy Surveys photometry. In this work, we present the SED model, the neural emulator for the model, and the Bayesian inference framework of PROVABGS. Furthermore, we apply the PROVABGS SED modeling on realistic synthetic DESI spectra and photometry, constructed using the L-Galaxies semi-analytic model. We compare the inferred galaxy properties to the true values of the simulation using a hierarchical Bayesian framework to quantify accuracy and precision. Overall, we accurately infer the true M _* , SFR, Z , and t _age of the simulated galaxies. However, the priors on galaxy properties induced by the SED model have a significant impact on the posteriors, which we characterize in detail. This work also demonstrates that a joint analysis of spectra and photometry significantly improves the constraints on galaxy properties over photometry alone and is necessary to mitigate the impact of the priors. With the methodology presented and validated in this work, PROVABGS will maximize information extracted from DESI observations and extend current galaxy studies to new regimes and unlock cutting-edge probabilistic analyses. https://github.com/changhoonhahn/provabgs/ Galactic and extragalactic astronomy Galaxies Galaxy spectroscopy Redshift surveys Spectrophotometry Spectral energy distribution Astrophysics K. J. Kwon verfasserin aut Rita Tojeiro verfasserin aut Malgorzata Siudek verfasserin aut Rebecca E. A. Canning verfasserin aut Mar Mezcua verfasserin aut Jeremy L. Tinker verfasserin aut David Brooks verfasserin aut Peter Doel verfasserin aut Kevin Fanning verfasserin aut Enrique Gaztañaga verfasserin aut Robert Kehoe verfasserin aut Martin Landriau verfasserin aut Aaron Meisner verfasserin aut John Moustakas verfasserin aut Claire Poppett verfasserin aut Gregory Tarle verfasserin aut Benjamin Weiner verfasserin aut Hu Zou verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 945(2023), 1, p 16 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:945 year:2023 number:1, p 16 https://doi.org/10.3847/1538-4357/ac8983 kostenfrei https://doaj.org/article/031b60c5ad6a4c26bdc21f8431bf68e0 kostenfrei https://doi.org/10.3847/1538-4357/ac8983 kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 945 2023 1, p 16 |
allfieldsGer |
10.3847/1538-4357/ac8983 doi (DE-627)DOAJ089160029 (DE-599)DOAJ031b60c5ad6a4c26bdc21f8431bf68e0 DE-627 ger DE-627 rakwb eng QB460-466 ChangHoon Hahn verfasserin aut The DESI PRObabilistic Value-added Bright Galaxy Survey (PROVABGS) Mock Challenge 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The PRObabilistic Value-added Bright Galaxy Survey (PROVABGS) catalog will provide measurements of galaxy properties, such as stellar mass ( M _* ), star formation rate (SFR), stellar metallicity ( Z ), and stellar age ( t _age ), for <10 million galaxies of the Dark Energy Spectroscopic Instrument (DESI) Bright Galaxy Survey. Full posterior distributions of the galaxy properties will be inferred using state-of-the-art Bayesian spectral energy distribution (SED) modeling of DESI spectroscopy and Legacy Surveys photometry. In this work, we present the SED model, the neural emulator for the model, and the Bayesian inference framework of PROVABGS. Furthermore, we apply the PROVABGS SED modeling on realistic synthetic DESI spectra and photometry, constructed using the L-Galaxies semi-analytic model. We compare the inferred galaxy properties to the true values of the simulation using a hierarchical Bayesian framework to quantify accuracy and precision. Overall, we accurately infer the true M _* , SFR, Z , and t _age of the simulated galaxies. However, the priors on galaxy properties induced by the SED model have a significant impact on the posteriors, which we characterize in detail. This work also demonstrates that a joint analysis of spectra and photometry significantly improves the constraints on galaxy properties over photometry alone and is necessary to mitigate the impact of the priors. With the methodology presented and validated in this work, PROVABGS will maximize information extracted from DESI observations and extend current galaxy studies to new regimes and unlock cutting-edge probabilistic analyses. https://github.com/changhoonhahn/provabgs/ Galactic and extragalactic astronomy Galaxies Galaxy spectroscopy Redshift surveys Spectrophotometry Spectral energy distribution Astrophysics K. J. Kwon verfasserin aut Rita Tojeiro verfasserin aut Malgorzata Siudek verfasserin aut Rebecca E. A. Canning verfasserin aut Mar Mezcua verfasserin aut Jeremy L. Tinker verfasserin aut David Brooks verfasserin aut Peter Doel verfasserin aut Kevin Fanning verfasserin aut Enrique Gaztañaga verfasserin aut Robert Kehoe verfasserin aut Martin Landriau verfasserin aut Aaron Meisner verfasserin aut John Moustakas verfasserin aut Claire Poppett verfasserin aut Gregory Tarle verfasserin aut Benjamin Weiner verfasserin aut Hu Zou verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 945(2023), 1, p 16 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:945 year:2023 number:1, p 16 https://doi.org/10.3847/1538-4357/ac8983 kostenfrei https://doaj.org/article/031b60c5ad6a4c26bdc21f8431bf68e0 kostenfrei https://doi.org/10.3847/1538-4357/ac8983 kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 945 2023 1, p 16 |
allfieldsSound |
10.3847/1538-4357/ac8983 doi (DE-627)DOAJ089160029 (DE-599)DOAJ031b60c5ad6a4c26bdc21f8431bf68e0 DE-627 ger DE-627 rakwb eng QB460-466 ChangHoon Hahn verfasserin aut The DESI PRObabilistic Value-added Bright Galaxy Survey (PROVABGS) Mock Challenge 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The PRObabilistic Value-added Bright Galaxy Survey (PROVABGS) catalog will provide measurements of galaxy properties, such as stellar mass ( M _* ), star formation rate (SFR), stellar metallicity ( Z ), and stellar age ( t _age ), for <10 million galaxies of the Dark Energy Spectroscopic Instrument (DESI) Bright Galaxy Survey. Full posterior distributions of the galaxy properties will be inferred using state-of-the-art Bayesian spectral energy distribution (SED) modeling of DESI spectroscopy and Legacy Surveys photometry. In this work, we present the SED model, the neural emulator for the model, and the Bayesian inference framework of PROVABGS. Furthermore, we apply the PROVABGS SED modeling on realistic synthetic DESI spectra and photometry, constructed using the L-Galaxies semi-analytic model. We compare the inferred galaxy properties to the true values of the simulation using a hierarchical Bayesian framework to quantify accuracy and precision. Overall, we accurately infer the true M _* , SFR, Z , and t _age of the simulated galaxies. However, the priors on galaxy properties induced by the SED model have a significant impact on the posteriors, which we characterize in detail. This work also demonstrates that a joint analysis of spectra and photometry significantly improves the constraints on galaxy properties over photometry alone and is necessary to mitigate the impact of the priors. With the methodology presented and validated in this work, PROVABGS will maximize information extracted from DESI observations and extend current galaxy studies to new regimes and unlock cutting-edge probabilistic analyses. https://github.com/changhoonhahn/provabgs/ Galactic and extragalactic astronomy Galaxies Galaxy spectroscopy Redshift surveys Spectrophotometry Spectral energy distribution Astrophysics K. J. Kwon verfasserin aut Rita Tojeiro verfasserin aut Malgorzata Siudek verfasserin aut Rebecca E. A. Canning verfasserin aut Mar Mezcua verfasserin aut Jeremy L. Tinker verfasserin aut David Brooks verfasserin aut Peter Doel verfasserin aut Kevin Fanning verfasserin aut Enrique Gaztañaga verfasserin aut Robert Kehoe verfasserin aut Martin Landriau verfasserin aut Aaron Meisner verfasserin aut John Moustakas verfasserin aut Claire Poppett verfasserin aut Gregory Tarle verfasserin aut Benjamin Weiner verfasserin aut Hu Zou verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 945(2023), 1, p 16 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:945 year:2023 number:1, p 16 https://doi.org/10.3847/1538-4357/ac8983 kostenfrei https://doaj.org/article/031b60c5ad6a4c26bdc21f8431bf68e0 kostenfrei https://doi.org/10.3847/1538-4357/ac8983 kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 945 2023 1, p 16 |
language |
English |
source |
In The Astrophysical Journal 945(2023), 1, p 16 volume:945 year:2023 number:1, p 16 |
sourceStr |
In The Astrophysical Journal 945(2023), 1, p 16 volume:945 year:2023 number:1, p 16 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Galactic and extragalactic astronomy Galaxies Galaxy spectroscopy Redshift surveys Spectrophotometry Spectral energy distribution Astrophysics |
isfreeaccess_bool |
true |
container_title |
The Astrophysical Journal |
authorswithroles_txt_mv |
ChangHoon Hahn @@aut@@ K. J. Kwon @@aut@@ Rita Tojeiro @@aut@@ Malgorzata Siudek @@aut@@ Rebecca E. A. Canning @@aut@@ Mar Mezcua @@aut@@ Jeremy L. Tinker @@aut@@ David Brooks @@aut@@ Peter Doel @@aut@@ Kevin Fanning @@aut@@ Enrique Gaztañaga @@aut@@ Robert Kehoe @@aut@@ Martin Landriau @@aut@@ Aaron Meisner @@aut@@ John Moustakas @@aut@@ Claire Poppett @@aut@@ Gregory Tarle @@aut@@ Benjamin Weiner @@aut@@ Hu Zou @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
269019219 |
id |
DOAJ089160029 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ089160029</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505015848.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3847/1538-4357/ac8983</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ089160029</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ031b60c5ad6a4c26bdc21f8431bf68e0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB460-466</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">ChangHoon Hahn</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The DESI PRObabilistic Value-added Bright Galaxy Survey (PROVABGS) Mock Challenge</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The PRObabilistic Value-added Bright Galaxy Survey (PROVABGS) catalog will provide measurements of galaxy properties, such as stellar mass ( M _* ), star formation rate (SFR), stellar metallicity ( Z ), and stellar age ( t _age ), for <10 million galaxies of the Dark Energy Spectroscopic Instrument (DESI) Bright Galaxy Survey. Full posterior distributions of the galaxy properties will be inferred using state-of-the-art Bayesian spectral energy distribution (SED) modeling of DESI spectroscopy and Legacy Surveys photometry. In this work, we present the SED model, the neural emulator for the model, and the Bayesian inference framework of PROVABGS. Furthermore, we apply the PROVABGS SED modeling on realistic synthetic DESI spectra and photometry, constructed using the L-Galaxies semi-analytic model. We compare the inferred galaxy properties to the true values of the simulation using a hierarchical Bayesian framework to quantify accuracy and precision. Overall, we accurately infer the true M _* , SFR, Z , and t _age of the simulated galaxies. However, the priors on galaxy properties induced by the SED model have a significant impact on the posteriors, which we characterize in detail. This work also demonstrates that a joint analysis of spectra and photometry significantly improves the constraints on galaxy properties over photometry alone and is necessary to mitigate the impact of the priors. With the methodology presented and validated in this work, PROVABGS will maximize information extracted from DESI observations and extend current galaxy studies to new regimes and unlock cutting-edge probabilistic analyses. https://github.com/changhoonhahn/provabgs/</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Galactic and extragalactic astronomy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Galaxies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Galaxy spectroscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Redshift surveys</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectrophotometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectral energy distribution</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">K. J. Kwon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rita Tojeiro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Malgorzata Siudek</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rebecca E. A. Canning</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mar Mezcua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jeremy L. Tinker</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">David Brooks</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Peter Doel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kevin Fanning</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Enrique Gaztañaga</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Robert Kehoe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Martin Landriau</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Aaron Meisner</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">John Moustakas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Claire Poppett</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gregory Tarle</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Benjamin Weiner</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hu Zou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">The Astrophysical Journal</subfield><subfield code="d">IOP Publishing, 2022</subfield><subfield code="g">945(2023), 1, p 16</subfield><subfield code="w">(DE-627)269019219</subfield><subfield code="w">(DE-600)1473835-1</subfield><subfield code="x">15384357</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:945</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1, p 16</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/ac8983</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/031b60c5ad6a4c26bdc21f8431bf68e0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/ac8983</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1538-4357</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">945</subfield><subfield code="j">2023</subfield><subfield code="e">1, p 16</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
ChangHoon Hahn |
spellingShingle |
ChangHoon Hahn misc QB460-466 misc Galactic and extragalactic astronomy misc Galaxies misc Galaxy spectroscopy misc Redshift surveys misc Spectrophotometry misc Spectral energy distribution misc Astrophysics The DESI PRObabilistic Value-added Bright Galaxy Survey (PROVABGS) Mock Challenge |
authorStr |
ChangHoon Hahn |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)269019219 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QB460-466 |
illustrated |
Not Illustrated |
issn |
15384357 |
topic_title |
QB460-466 The DESI PRObabilistic Value-added Bright Galaxy Survey (PROVABGS) Mock Challenge Galactic and extragalactic astronomy Galaxies Galaxy spectroscopy Redshift surveys Spectrophotometry Spectral energy distribution |
topic |
misc QB460-466 misc Galactic and extragalactic astronomy misc Galaxies misc Galaxy spectroscopy misc Redshift surveys misc Spectrophotometry misc Spectral energy distribution misc Astrophysics |
topic_unstemmed |
misc QB460-466 misc Galactic and extragalactic astronomy misc Galaxies misc Galaxy spectroscopy misc Redshift surveys misc Spectrophotometry misc Spectral energy distribution misc Astrophysics |
topic_browse |
misc QB460-466 misc Galactic and extragalactic astronomy misc Galaxies misc Galaxy spectroscopy misc Redshift surveys misc Spectrophotometry misc Spectral energy distribution misc Astrophysics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The Astrophysical Journal |
hierarchy_parent_id |
269019219 |
hierarchy_top_title |
The Astrophysical Journal |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)269019219 (DE-600)1473835-1 |
title |
The DESI PRObabilistic Value-added Bright Galaxy Survey (PROVABGS) Mock Challenge |
ctrlnum |
(DE-627)DOAJ089160029 (DE-599)DOAJ031b60c5ad6a4c26bdc21f8431bf68e0 |
title_full |
The DESI PRObabilistic Value-added Bright Galaxy Survey (PROVABGS) Mock Challenge |
author_sort |
ChangHoon Hahn |
journal |
The Astrophysical Journal |
journalStr |
The Astrophysical Journal |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
ChangHoon Hahn K. J. Kwon Rita Tojeiro Malgorzata Siudek Rebecca E. A. Canning Mar Mezcua Jeremy L. Tinker David Brooks Peter Doel Kevin Fanning Enrique Gaztañaga Robert Kehoe Martin Landriau Aaron Meisner John Moustakas Claire Poppett Gregory Tarle Benjamin Weiner Hu Zou |
container_volume |
945 |
class |
QB460-466 |
format_se |
Elektronische Aufsätze |
author-letter |
ChangHoon Hahn |
doi_str_mv |
10.3847/1538-4357/ac8983 |
author2-role |
verfasserin |
title_sort |
desi probabilistic value-added bright galaxy survey (provabgs) mock challenge |
callnumber |
QB460-466 |
title_auth |
The DESI PRObabilistic Value-added Bright Galaxy Survey (PROVABGS) Mock Challenge |
abstract |
The PRObabilistic Value-added Bright Galaxy Survey (PROVABGS) catalog will provide measurements of galaxy properties, such as stellar mass ( M _* ), star formation rate (SFR), stellar metallicity ( Z ), and stellar age ( t _age ), for <10 million galaxies of the Dark Energy Spectroscopic Instrument (DESI) Bright Galaxy Survey. Full posterior distributions of the galaxy properties will be inferred using state-of-the-art Bayesian spectral energy distribution (SED) modeling of DESI spectroscopy and Legacy Surveys photometry. In this work, we present the SED model, the neural emulator for the model, and the Bayesian inference framework of PROVABGS. Furthermore, we apply the PROVABGS SED modeling on realistic synthetic DESI spectra and photometry, constructed using the L-Galaxies semi-analytic model. We compare the inferred galaxy properties to the true values of the simulation using a hierarchical Bayesian framework to quantify accuracy and precision. Overall, we accurately infer the true M _* , SFR, Z , and t _age of the simulated galaxies. However, the priors on galaxy properties induced by the SED model have a significant impact on the posteriors, which we characterize in detail. This work also demonstrates that a joint analysis of spectra and photometry significantly improves the constraints on galaxy properties over photometry alone and is necessary to mitigate the impact of the priors. With the methodology presented and validated in this work, PROVABGS will maximize information extracted from DESI observations and extend current galaxy studies to new regimes and unlock cutting-edge probabilistic analyses. https://github.com/changhoonhahn/provabgs/ |
abstractGer |
The PRObabilistic Value-added Bright Galaxy Survey (PROVABGS) catalog will provide measurements of galaxy properties, such as stellar mass ( M _* ), star formation rate (SFR), stellar metallicity ( Z ), and stellar age ( t _age ), for <10 million galaxies of the Dark Energy Spectroscopic Instrument (DESI) Bright Galaxy Survey. Full posterior distributions of the galaxy properties will be inferred using state-of-the-art Bayesian spectral energy distribution (SED) modeling of DESI spectroscopy and Legacy Surveys photometry. In this work, we present the SED model, the neural emulator for the model, and the Bayesian inference framework of PROVABGS. Furthermore, we apply the PROVABGS SED modeling on realistic synthetic DESI spectra and photometry, constructed using the L-Galaxies semi-analytic model. We compare the inferred galaxy properties to the true values of the simulation using a hierarchical Bayesian framework to quantify accuracy and precision. Overall, we accurately infer the true M _* , SFR, Z , and t _age of the simulated galaxies. However, the priors on galaxy properties induced by the SED model have a significant impact on the posteriors, which we characterize in detail. This work also demonstrates that a joint analysis of spectra and photometry significantly improves the constraints on galaxy properties over photometry alone and is necessary to mitigate the impact of the priors. With the methodology presented and validated in this work, PROVABGS will maximize information extracted from DESI observations and extend current galaxy studies to new regimes and unlock cutting-edge probabilistic analyses. https://github.com/changhoonhahn/provabgs/ |
abstract_unstemmed |
The PRObabilistic Value-added Bright Galaxy Survey (PROVABGS) catalog will provide measurements of galaxy properties, such as stellar mass ( M _* ), star formation rate (SFR), stellar metallicity ( Z ), and stellar age ( t _age ), for <10 million galaxies of the Dark Energy Spectroscopic Instrument (DESI) Bright Galaxy Survey. Full posterior distributions of the galaxy properties will be inferred using state-of-the-art Bayesian spectral energy distribution (SED) modeling of DESI spectroscopy and Legacy Surveys photometry. In this work, we present the SED model, the neural emulator for the model, and the Bayesian inference framework of PROVABGS. Furthermore, we apply the PROVABGS SED modeling on realistic synthetic DESI spectra and photometry, constructed using the L-Galaxies semi-analytic model. We compare the inferred galaxy properties to the true values of the simulation using a hierarchical Bayesian framework to quantify accuracy and precision. Overall, we accurately infer the true M _* , SFR, Z , and t _age of the simulated galaxies. However, the priors on galaxy properties induced by the SED model have a significant impact on the posteriors, which we characterize in detail. This work also demonstrates that a joint analysis of spectra and photometry significantly improves the constraints on galaxy properties over photometry alone and is necessary to mitigate the impact of the priors. With the methodology presented and validated in this work, PROVABGS will maximize information extracted from DESI observations and extend current galaxy studies to new regimes and unlock cutting-edge probabilistic analyses. https://github.com/changhoonhahn/provabgs/ |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1, p 16 |
title_short |
The DESI PRObabilistic Value-added Bright Galaxy Survey (PROVABGS) Mock Challenge |
url |
https://doi.org/10.3847/1538-4357/ac8983 https://doaj.org/article/031b60c5ad6a4c26bdc21f8431bf68e0 https://doaj.org/toc/1538-4357 |
remote_bool |
true |
author2 |
K. J. Kwon Rita Tojeiro Malgorzata Siudek Rebecca E. A. Canning Mar Mezcua Jeremy L. Tinker David Brooks Peter Doel Kevin Fanning Enrique Gaztañaga Robert Kehoe Martin Landriau Aaron Meisner John Moustakas Claire Poppett Gregory Tarle Benjamin Weiner Hu Zou |
author2Str |
K. J. Kwon Rita Tojeiro Malgorzata Siudek Rebecca E. A. Canning Mar Mezcua Jeremy L. Tinker David Brooks Peter Doel Kevin Fanning Enrique Gaztañaga Robert Kehoe Martin Landriau Aaron Meisner John Moustakas Claire Poppett Gregory Tarle Benjamin Weiner Hu Zou |
ppnlink |
269019219 |
callnumber-subject |
QB - Astronomy |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3847/1538-4357/ac8983 |
callnumber-a |
QB460-466 |
up_date |
2024-07-03T21:36:19.153Z |
_version_ |
1803595367481081856 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ089160029</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505015848.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3847/1538-4357/ac8983</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ089160029</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ031b60c5ad6a4c26bdc21f8431bf68e0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB460-466</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">ChangHoon Hahn</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The DESI PRObabilistic Value-added Bright Galaxy Survey (PROVABGS) Mock Challenge</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The PRObabilistic Value-added Bright Galaxy Survey (PROVABGS) catalog will provide measurements of galaxy properties, such as stellar mass ( M _* ), star formation rate (SFR), stellar metallicity ( Z ), and stellar age ( t _age ), for <10 million galaxies of the Dark Energy Spectroscopic Instrument (DESI) Bright Galaxy Survey. Full posterior distributions of the galaxy properties will be inferred using state-of-the-art Bayesian spectral energy distribution (SED) modeling of DESI spectroscopy and Legacy Surveys photometry. In this work, we present the SED model, the neural emulator for the model, and the Bayesian inference framework of PROVABGS. Furthermore, we apply the PROVABGS SED modeling on realistic synthetic DESI spectra and photometry, constructed using the L-Galaxies semi-analytic model. We compare the inferred galaxy properties to the true values of the simulation using a hierarchical Bayesian framework to quantify accuracy and precision. Overall, we accurately infer the true M _* , SFR, Z , and t _age of the simulated galaxies. However, the priors on galaxy properties induced by the SED model have a significant impact on the posteriors, which we characterize in detail. This work also demonstrates that a joint analysis of spectra and photometry significantly improves the constraints on galaxy properties over photometry alone and is necessary to mitigate the impact of the priors. With the methodology presented and validated in this work, PROVABGS will maximize information extracted from DESI observations and extend current galaxy studies to new regimes and unlock cutting-edge probabilistic analyses. https://github.com/changhoonhahn/provabgs/</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Galactic and extragalactic astronomy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Galaxies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Galaxy spectroscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Redshift surveys</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectrophotometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectral energy distribution</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">K. J. Kwon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rita Tojeiro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Malgorzata Siudek</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rebecca E. A. Canning</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mar Mezcua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jeremy L. Tinker</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">David Brooks</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Peter Doel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kevin Fanning</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Enrique Gaztañaga</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Robert Kehoe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Martin Landriau</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Aaron Meisner</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">John Moustakas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Claire Poppett</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gregory Tarle</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Benjamin Weiner</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hu Zou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">The Astrophysical Journal</subfield><subfield code="d">IOP Publishing, 2022</subfield><subfield code="g">945(2023), 1, p 16</subfield><subfield code="w">(DE-627)269019219</subfield><subfield code="w">(DE-600)1473835-1</subfield><subfield code="x">15384357</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:945</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1, p 16</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/ac8983</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/031b60c5ad6a4c26bdc21f8431bf68e0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/ac8983</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1538-4357</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">945</subfield><subfield code="j">2023</subfield><subfield code="e">1, p 16</subfield></datafield></record></collection>
|
score |
7.401784 |