Pseudo-redshifts of Gamma-Ray Bursts Derived from the L–T–E Correlation
The X-ray afterglow of many gamma-ray bursts (GRBs) exhibits a plateau phase before the normal power-law decay stage, which may be related to continued activities of the central engine. Tang et al. collected 174 such GRBs and confirmed the so-called L – T – E correlation which involves three key par...
Ausführliche Beschreibung
Autor*in: |
Chen Deng [verfasserIn] Yong-Feng Huang [verfasserIn] Fan Xu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: The Astrophysical Journal - IOP Publishing, 2022, 943(2023), 2, p 126 |
---|---|
Übergeordnetes Werk: |
volume:943 ; year:2023 ; number:2, p 126 |
Links: |
---|
DOI / URN: |
10.3847/1538-4357/acaefd |
---|
Katalog-ID: |
DOAJ089163133 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ089163133 | ||
003 | DE-627 | ||
005 | 20230505015859.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230505s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3847/1538-4357/acaefd |2 doi | |
035 | |a (DE-627)DOAJ089163133 | ||
035 | |a (DE-599)DOAJ6d05f1eeab794b55aa7fc06253b7c214 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QB460-466 | |
100 | 0 | |a Chen Deng |e verfasserin |4 aut | |
245 | 1 | 0 | |a Pseudo-redshifts of Gamma-Ray Bursts Derived from the L–T–E Correlation |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The X-ray afterglow of many gamma-ray bursts (GRBs) exhibits a plateau phase before the normal power-law decay stage, which may be related to continued activities of the central engine. Tang et al. collected 174 such GRBs and confirmed the so-called L – T – E correlation which involves three key parameters, i.e., the isotropic γ -ray energy E _γ _,iso of the prompt phase, the end time T _a of the plateau phase, and the corresponding X-ray luminosity L _X . In this study, the L – T – E correlation is confirmed and updated as ${L}_{{\rm{X}}}\propto {T}_{{\rm{a}}}^{-0.99}{E}_{\gamma ,\mathrm{iso}}^{0.86}$ with a large sample consisting of 210 plateau GRBs with known redshifts. The tight correlation is then applied to derive the pseudo-redshift of other 130 plateau GRBs whose redshifts are not directly measured. Statistical analysis is also carried out on this pseudo-redshift sample. | ||
650 | 4 | |a Gamma-ray bursts | |
650 | 4 | |a Magnetars | |
650 | 4 | |a Neutron stars | |
650 | 4 | |a Markov chain Monte Carlo | |
653 | 0 | |a Astrophysics | |
700 | 0 | |a Yong-Feng Huang |e verfasserin |4 aut | |
700 | 0 | |a Fan Xu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t The Astrophysical Journal |d IOP Publishing, 2022 |g 943(2023), 2, p 126 |w (DE-627)269019219 |w (DE-600)1473835-1 |x 15384357 |7 nnns |
773 | 1 | 8 | |g volume:943 |g year:2023 |g number:2, p 126 |
856 | 4 | 0 | |u https://doi.org/10.3847/1538-4357/acaefd |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/6d05f1eeab794b55aa7fc06253b7c214 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.3847/1538-4357/acaefd |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1538-4357 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 943 |j 2023 |e 2, p 126 |
author_variant |
c d cd y f h yfh f x fx |
---|---|
matchkey_str |
article:15384357:2023----::suoesitogmaabrtdrvdrm |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QB |
publishDate |
2023 |
allfields |
10.3847/1538-4357/acaefd doi (DE-627)DOAJ089163133 (DE-599)DOAJ6d05f1eeab794b55aa7fc06253b7c214 DE-627 ger DE-627 rakwb eng QB460-466 Chen Deng verfasserin aut Pseudo-redshifts of Gamma-Ray Bursts Derived from the L–T–E Correlation 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The X-ray afterglow of many gamma-ray bursts (GRBs) exhibits a plateau phase before the normal power-law decay stage, which may be related to continued activities of the central engine. Tang et al. collected 174 such GRBs and confirmed the so-called L – T – E correlation which involves three key parameters, i.e., the isotropic γ -ray energy E _γ _,iso of the prompt phase, the end time T _a of the plateau phase, and the corresponding X-ray luminosity L _X . In this study, the L – T – E correlation is confirmed and updated as ${L}_{{\rm{X}}}\propto {T}_{{\rm{a}}}^{-0.99}{E}_{\gamma ,\mathrm{iso}}^{0.86}$ with a large sample consisting of 210 plateau GRBs with known redshifts. The tight correlation is then applied to derive the pseudo-redshift of other 130 plateau GRBs whose redshifts are not directly measured. Statistical analysis is also carried out on this pseudo-redshift sample. Gamma-ray bursts Magnetars Neutron stars Markov chain Monte Carlo Astrophysics Yong-Feng Huang verfasserin aut Fan Xu verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 943(2023), 2, p 126 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:943 year:2023 number:2, p 126 https://doi.org/10.3847/1538-4357/acaefd kostenfrei https://doaj.org/article/6d05f1eeab794b55aa7fc06253b7c214 kostenfrei https://doi.org/10.3847/1538-4357/acaefd kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 943 2023 2, p 126 |
spelling |
10.3847/1538-4357/acaefd doi (DE-627)DOAJ089163133 (DE-599)DOAJ6d05f1eeab794b55aa7fc06253b7c214 DE-627 ger DE-627 rakwb eng QB460-466 Chen Deng verfasserin aut Pseudo-redshifts of Gamma-Ray Bursts Derived from the L–T–E Correlation 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The X-ray afterglow of many gamma-ray bursts (GRBs) exhibits a plateau phase before the normal power-law decay stage, which may be related to continued activities of the central engine. Tang et al. collected 174 such GRBs and confirmed the so-called L – T – E correlation which involves three key parameters, i.e., the isotropic γ -ray energy E _γ _,iso of the prompt phase, the end time T _a of the plateau phase, and the corresponding X-ray luminosity L _X . In this study, the L – T – E correlation is confirmed and updated as ${L}_{{\rm{X}}}\propto {T}_{{\rm{a}}}^{-0.99}{E}_{\gamma ,\mathrm{iso}}^{0.86}$ with a large sample consisting of 210 plateau GRBs with known redshifts. The tight correlation is then applied to derive the pseudo-redshift of other 130 plateau GRBs whose redshifts are not directly measured. Statistical analysis is also carried out on this pseudo-redshift sample. Gamma-ray bursts Magnetars Neutron stars Markov chain Monte Carlo Astrophysics Yong-Feng Huang verfasserin aut Fan Xu verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 943(2023), 2, p 126 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:943 year:2023 number:2, p 126 https://doi.org/10.3847/1538-4357/acaefd kostenfrei https://doaj.org/article/6d05f1eeab794b55aa7fc06253b7c214 kostenfrei https://doi.org/10.3847/1538-4357/acaefd kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 943 2023 2, p 126 |
allfields_unstemmed |
10.3847/1538-4357/acaefd doi (DE-627)DOAJ089163133 (DE-599)DOAJ6d05f1eeab794b55aa7fc06253b7c214 DE-627 ger DE-627 rakwb eng QB460-466 Chen Deng verfasserin aut Pseudo-redshifts of Gamma-Ray Bursts Derived from the L–T–E Correlation 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The X-ray afterglow of many gamma-ray bursts (GRBs) exhibits a plateau phase before the normal power-law decay stage, which may be related to continued activities of the central engine. Tang et al. collected 174 such GRBs and confirmed the so-called L – T – E correlation which involves three key parameters, i.e., the isotropic γ -ray energy E _γ _,iso of the prompt phase, the end time T _a of the plateau phase, and the corresponding X-ray luminosity L _X . In this study, the L – T – E correlation is confirmed and updated as ${L}_{{\rm{X}}}\propto {T}_{{\rm{a}}}^{-0.99}{E}_{\gamma ,\mathrm{iso}}^{0.86}$ with a large sample consisting of 210 plateau GRBs with known redshifts. The tight correlation is then applied to derive the pseudo-redshift of other 130 plateau GRBs whose redshifts are not directly measured. Statistical analysis is also carried out on this pseudo-redshift sample. Gamma-ray bursts Magnetars Neutron stars Markov chain Monte Carlo Astrophysics Yong-Feng Huang verfasserin aut Fan Xu verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 943(2023), 2, p 126 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:943 year:2023 number:2, p 126 https://doi.org/10.3847/1538-4357/acaefd kostenfrei https://doaj.org/article/6d05f1eeab794b55aa7fc06253b7c214 kostenfrei https://doi.org/10.3847/1538-4357/acaefd kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 943 2023 2, p 126 |
allfieldsGer |
10.3847/1538-4357/acaefd doi (DE-627)DOAJ089163133 (DE-599)DOAJ6d05f1eeab794b55aa7fc06253b7c214 DE-627 ger DE-627 rakwb eng QB460-466 Chen Deng verfasserin aut Pseudo-redshifts of Gamma-Ray Bursts Derived from the L–T–E Correlation 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The X-ray afterglow of many gamma-ray bursts (GRBs) exhibits a plateau phase before the normal power-law decay stage, which may be related to continued activities of the central engine. Tang et al. collected 174 such GRBs and confirmed the so-called L – T – E correlation which involves three key parameters, i.e., the isotropic γ -ray energy E _γ _,iso of the prompt phase, the end time T _a of the plateau phase, and the corresponding X-ray luminosity L _X . In this study, the L – T – E correlation is confirmed and updated as ${L}_{{\rm{X}}}\propto {T}_{{\rm{a}}}^{-0.99}{E}_{\gamma ,\mathrm{iso}}^{0.86}$ with a large sample consisting of 210 plateau GRBs with known redshifts. The tight correlation is then applied to derive the pseudo-redshift of other 130 plateau GRBs whose redshifts are not directly measured. Statistical analysis is also carried out on this pseudo-redshift sample. Gamma-ray bursts Magnetars Neutron stars Markov chain Monte Carlo Astrophysics Yong-Feng Huang verfasserin aut Fan Xu verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 943(2023), 2, p 126 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:943 year:2023 number:2, p 126 https://doi.org/10.3847/1538-4357/acaefd kostenfrei https://doaj.org/article/6d05f1eeab794b55aa7fc06253b7c214 kostenfrei https://doi.org/10.3847/1538-4357/acaefd kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 943 2023 2, p 126 |
allfieldsSound |
10.3847/1538-4357/acaefd doi (DE-627)DOAJ089163133 (DE-599)DOAJ6d05f1eeab794b55aa7fc06253b7c214 DE-627 ger DE-627 rakwb eng QB460-466 Chen Deng verfasserin aut Pseudo-redshifts of Gamma-Ray Bursts Derived from the L–T–E Correlation 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The X-ray afterglow of many gamma-ray bursts (GRBs) exhibits a plateau phase before the normal power-law decay stage, which may be related to continued activities of the central engine. Tang et al. collected 174 such GRBs and confirmed the so-called L – T – E correlation which involves three key parameters, i.e., the isotropic γ -ray energy E _γ _,iso of the prompt phase, the end time T _a of the plateau phase, and the corresponding X-ray luminosity L _X . In this study, the L – T – E correlation is confirmed and updated as ${L}_{{\rm{X}}}\propto {T}_{{\rm{a}}}^{-0.99}{E}_{\gamma ,\mathrm{iso}}^{0.86}$ with a large sample consisting of 210 plateau GRBs with known redshifts. The tight correlation is then applied to derive the pseudo-redshift of other 130 plateau GRBs whose redshifts are not directly measured. Statistical analysis is also carried out on this pseudo-redshift sample. Gamma-ray bursts Magnetars Neutron stars Markov chain Monte Carlo Astrophysics Yong-Feng Huang verfasserin aut Fan Xu verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 943(2023), 2, p 126 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:943 year:2023 number:2, p 126 https://doi.org/10.3847/1538-4357/acaefd kostenfrei https://doaj.org/article/6d05f1eeab794b55aa7fc06253b7c214 kostenfrei https://doi.org/10.3847/1538-4357/acaefd kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 943 2023 2, p 126 |
language |
English |
source |
In The Astrophysical Journal 943(2023), 2, p 126 volume:943 year:2023 number:2, p 126 |
sourceStr |
In The Astrophysical Journal 943(2023), 2, p 126 volume:943 year:2023 number:2, p 126 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Gamma-ray bursts Magnetars Neutron stars Markov chain Monte Carlo Astrophysics |
isfreeaccess_bool |
true |
container_title |
The Astrophysical Journal |
authorswithroles_txt_mv |
Chen Deng @@aut@@ Yong-Feng Huang @@aut@@ Fan Xu @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
269019219 |
id |
DOAJ089163133 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ089163133</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505015859.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3847/1538-4357/acaefd</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ089163133</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6d05f1eeab794b55aa7fc06253b7c214</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB460-466</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Chen Deng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pseudo-redshifts of Gamma-Ray Bursts Derived from the L–T–E Correlation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The X-ray afterglow of many gamma-ray bursts (GRBs) exhibits a plateau phase before the normal power-law decay stage, which may be related to continued activities of the central engine. Tang et al. collected 174 such GRBs and confirmed the so-called L – T – E correlation which involves three key parameters, i.e., the isotropic γ -ray energy E _γ _,iso of the prompt phase, the end time T _a of the plateau phase, and the corresponding X-ray luminosity L _X . In this study, the L – T – E correlation is confirmed and updated as ${L}_{{\rm{X}}}\propto {T}_{{\rm{a}}}^{-0.99}{E}_{\gamma ,\mathrm{iso}}^{0.86}$ with a large sample consisting of 210 plateau GRBs with known redshifts. The tight correlation is then applied to derive the pseudo-redshift of other 130 plateau GRBs whose redshifts are not directly measured. Statistical analysis is also carried out on this pseudo-redshift sample.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gamma-ray bursts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetars</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neutron stars</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Markov chain Monte Carlo</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yong-Feng Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fan Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">The Astrophysical Journal</subfield><subfield code="d">IOP Publishing, 2022</subfield><subfield code="g">943(2023), 2, p 126</subfield><subfield code="w">(DE-627)269019219</subfield><subfield code="w">(DE-600)1473835-1</subfield><subfield code="x">15384357</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:943</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:2, p 126</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/acaefd</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6d05f1eeab794b55aa7fc06253b7c214</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/acaefd</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1538-4357</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">943</subfield><subfield code="j">2023</subfield><subfield code="e">2, p 126</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Chen Deng |
spellingShingle |
Chen Deng misc QB460-466 misc Gamma-ray bursts misc Magnetars misc Neutron stars misc Markov chain Monte Carlo misc Astrophysics Pseudo-redshifts of Gamma-Ray Bursts Derived from the L–T–E Correlation |
authorStr |
Chen Deng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)269019219 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QB460-466 |
illustrated |
Not Illustrated |
issn |
15384357 |
topic_title |
QB460-466 Pseudo-redshifts of Gamma-Ray Bursts Derived from the L–T–E Correlation Gamma-ray bursts Magnetars Neutron stars Markov chain Monte Carlo |
topic |
misc QB460-466 misc Gamma-ray bursts misc Magnetars misc Neutron stars misc Markov chain Monte Carlo misc Astrophysics |
topic_unstemmed |
misc QB460-466 misc Gamma-ray bursts misc Magnetars misc Neutron stars misc Markov chain Monte Carlo misc Astrophysics |
topic_browse |
misc QB460-466 misc Gamma-ray bursts misc Magnetars misc Neutron stars misc Markov chain Monte Carlo misc Astrophysics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The Astrophysical Journal |
hierarchy_parent_id |
269019219 |
hierarchy_top_title |
The Astrophysical Journal |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)269019219 (DE-600)1473835-1 |
title |
Pseudo-redshifts of Gamma-Ray Bursts Derived from the L–T–E Correlation |
ctrlnum |
(DE-627)DOAJ089163133 (DE-599)DOAJ6d05f1eeab794b55aa7fc06253b7c214 |
title_full |
Pseudo-redshifts of Gamma-Ray Bursts Derived from the L–T–E Correlation |
author_sort |
Chen Deng |
journal |
The Astrophysical Journal |
journalStr |
The Astrophysical Journal |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Chen Deng Yong-Feng Huang Fan Xu |
container_volume |
943 |
class |
QB460-466 |
format_se |
Elektronische Aufsätze |
author-letter |
Chen Deng |
doi_str_mv |
10.3847/1538-4357/acaefd |
author2-role |
verfasserin |
title_sort |
pseudo-redshifts of gamma-ray bursts derived from the l–t–e correlation |
callnumber |
QB460-466 |
title_auth |
Pseudo-redshifts of Gamma-Ray Bursts Derived from the L–T–E Correlation |
abstract |
The X-ray afterglow of many gamma-ray bursts (GRBs) exhibits a plateau phase before the normal power-law decay stage, which may be related to continued activities of the central engine. Tang et al. collected 174 such GRBs and confirmed the so-called L – T – E correlation which involves three key parameters, i.e., the isotropic γ -ray energy E _γ _,iso of the prompt phase, the end time T _a of the plateau phase, and the corresponding X-ray luminosity L _X . In this study, the L – T – E correlation is confirmed and updated as ${L}_{{\rm{X}}}\propto {T}_{{\rm{a}}}^{-0.99}{E}_{\gamma ,\mathrm{iso}}^{0.86}$ with a large sample consisting of 210 plateau GRBs with known redshifts. The tight correlation is then applied to derive the pseudo-redshift of other 130 plateau GRBs whose redshifts are not directly measured. Statistical analysis is also carried out on this pseudo-redshift sample. |
abstractGer |
The X-ray afterglow of many gamma-ray bursts (GRBs) exhibits a plateau phase before the normal power-law decay stage, which may be related to continued activities of the central engine. Tang et al. collected 174 such GRBs and confirmed the so-called L – T – E correlation which involves three key parameters, i.e., the isotropic γ -ray energy E _γ _,iso of the prompt phase, the end time T _a of the plateau phase, and the corresponding X-ray luminosity L _X . In this study, the L – T – E correlation is confirmed and updated as ${L}_{{\rm{X}}}\propto {T}_{{\rm{a}}}^{-0.99}{E}_{\gamma ,\mathrm{iso}}^{0.86}$ with a large sample consisting of 210 plateau GRBs with known redshifts. The tight correlation is then applied to derive the pseudo-redshift of other 130 plateau GRBs whose redshifts are not directly measured. Statistical analysis is also carried out on this pseudo-redshift sample. |
abstract_unstemmed |
The X-ray afterglow of many gamma-ray bursts (GRBs) exhibits a plateau phase before the normal power-law decay stage, which may be related to continued activities of the central engine. Tang et al. collected 174 such GRBs and confirmed the so-called L – T – E correlation which involves three key parameters, i.e., the isotropic γ -ray energy E _γ _,iso of the prompt phase, the end time T _a of the plateau phase, and the corresponding X-ray luminosity L _X . In this study, the L – T – E correlation is confirmed and updated as ${L}_{{\rm{X}}}\propto {T}_{{\rm{a}}}^{-0.99}{E}_{\gamma ,\mathrm{iso}}^{0.86}$ with a large sample consisting of 210 plateau GRBs with known redshifts. The tight correlation is then applied to derive the pseudo-redshift of other 130 plateau GRBs whose redshifts are not directly measured. Statistical analysis is also carried out on this pseudo-redshift sample. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2, p 126 |
title_short |
Pseudo-redshifts of Gamma-Ray Bursts Derived from the L–T–E Correlation |
url |
https://doi.org/10.3847/1538-4357/acaefd https://doaj.org/article/6d05f1eeab794b55aa7fc06253b7c214 https://doaj.org/toc/1538-4357 |
remote_bool |
true |
author2 |
Yong-Feng Huang Fan Xu |
author2Str |
Yong-Feng Huang Fan Xu |
ppnlink |
269019219 |
callnumber-subject |
QB - Astronomy |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3847/1538-4357/acaefd |
callnumber-a |
QB460-466 |
up_date |
2024-07-03T21:37:37.634Z |
_version_ |
1803595449777520640 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ089163133</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505015859.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3847/1538-4357/acaefd</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ089163133</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6d05f1eeab794b55aa7fc06253b7c214</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB460-466</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Chen Deng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pseudo-redshifts of Gamma-Ray Bursts Derived from the L–T–E Correlation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The X-ray afterglow of many gamma-ray bursts (GRBs) exhibits a plateau phase before the normal power-law decay stage, which may be related to continued activities of the central engine. Tang et al. collected 174 such GRBs and confirmed the so-called L – T – E correlation which involves three key parameters, i.e., the isotropic γ -ray energy E _γ _,iso of the prompt phase, the end time T _a of the plateau phase, and the corresponding X-ray luminosity L _X . In this study, the L – T – E correlation is confirmed and updated as ${L}_{{\rm{X}}}\propto {T}_{{\rm{a}}}^{-0.99}{E}_{\gamma ,\mathrm{iso}}^{0.86}$ with a large sample consisting of 210 plateau GRBs with known redshifts. The tight correlation is then applied to derive the pseudo-redshift of other 130 plateau GRBs whose redshifts are not directly measured. Statistical analysis is also carried out on this pseudo-redshift sample.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gamma-ray bursts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetars</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neutron stars</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Markov chain Monte Carlo</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yong-Feng Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fan Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">The Astrophysical Journal</subfield><subfield code="d">IOP Publishing, 2022</subfield><subfield code="g">943(2023), 2, p 126</subfield><subfield code="w">(DE-627)269019219</subfield><subfield code="w">(DE-600)1473835-1</subfield><subfield code="x">15384357</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:943</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:2, p 126</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/acaefd</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6d05f1eeab794b55aa7fc06253b7c214</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/acaefd</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1538-4357</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">943</subfield><subfield code="j">2023</subfield><subfield code="e">2, p 126</subfield></datafield></record></collection>
|
score |
7.401078 |