Robust Field-level Inference of Cosmological Parameters with Dark Matter Halos
We train graph neural networks on halo catalogs from Gadget N -body simulations to perform field-level likelihood-free inference of cosmological parameters. The catalogs contain ≲5000 halos with masses ≳10 ^10 h ^−1 M _⊙ in a periodic volume of ${(25\,{h}^{-1}\,\mathrm{Mpc})}^{3}$ ; every halo in th...
Ausführliche Beschreibung
Autor*in: |
Helen Shao [verfasserIn] Francisco Villaescusa-Navarro [verfasserIn] Pablo Villanueva-Domingo [verfasserIn] Romain Teyssier [verfasserIn] Lehman H. Garrison [verfasserIn] Marco Gatti [verfasserIn] Derek Inman [verfasserIn] Yueying Ni [verfasserIn] Ulrich P. Steinwandel [verfasserIn] Mihir Kulkarni [verfasserIn] Eli Visbal [verfasserIn] Greg L. Bryan [verfasserIn] Daniel Anglés-Alcázar [verfasserIn] Tiago Castro [verfasserIn] Elena Hernández-Martínez [verfasserIn] Klaus Dolag [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: The Astrophysical Journal - IOP Publishing, 2022, 944(2023), 1, p 27 |
---|---|
Übergeordnetes Werk: |
volume:944 ; year:2023 ; number:1, p 27 |
Links: |
---|
DOI / URN: |
10.3847/1538-4357/acac7a |
---|
Katalog-ID: |
DOAJ089163990 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ089163990 | ||
003 | DE-627 | ||
005 | 20230505015902.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230505s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3847/1538-4357/acac7a |2 doi | |
035 | |a (DE-627)DOAJ089163990 | ||
035 | |a (DE-599)DOAJa8c3ad9a6b294721a0554fb79a931eb1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QB460-466 | |
100 | 0 | |a Helen Shao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Robust Field-level Inference of Cosmological Parameters with Dark Matter Halos |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a We train graph neural networks on halo catalogs from Gadget N -body simulations to perform field-level likelihood-free inference of cosmological parameters. The catalogs contain ≲5000 halos with masses ≳10 ^10 h ^−1 M _⊙ in a periodic volume of ${(25\,{h}^{-1}\,\mathrm{Mpc})}^{3}$ ; every halo in the catalog is characterized by several properties such as position, mass, velocity, concentration, and maximum circular velocity. Our models, built to be permutationally, translationally, and rotationally invariant, do not impose a minimum scale on which to extract information and are able to infer the values of Ω _m and σ _8 with a mean relative error of ∼6%, when using positions plus velocities and positions plus masses, respectively. More importantly, we find that our models are very robust: they can infer the value of Ω _m and σ _8 when tested using halo catalogs from thousands of N -body simulations run with five different N -body codes: Abacus, CUBEP ^3 M, Enzo, PKDGrav3, and Ramses. Surprisingly, the model trained to infer Ω _m also works when tested on thousands of state-of-the-art CAMELS hydrodynamic simulations run with four different codes and subgrid physics implementations. Using halo properties such as concentration and maximum circular velocity allow our models to extract more information, at the expense of breaking the robustness of the models. This may happen because the different N -body codes are not converged on the relevant scales corresponding to these parameters. | ||
650 | 4 | |a Cosmology | |
650 | 4 | |a Sigma8 | |
650 | 4 | |a Density parameters | |
650 | 4 | |a Cosmological parameters from large-scale structure | |
653 | 0 | |a Astrophysics | |
700 | 0 | |a Francisco Villaescusa-Navarro |e verfasserin |4 aut | |
700 | 0 | |a Pablo Villanueva-Domingo |e verfasserin |4 aut | |
700 | 0 | |a Romain Teyssier |e verfasserin |4 aut | |
700 | 0 | |a Lehman H. Garrison |e verfasserin |4 aut | |
700 | 0 | |a Marco Gatti |e verfasserin |4 aut | |
700 | 0 | |a Derek Inman |e verfasserin |4 aut | |
700 | 0 | |a Yueying Ni |e verfasserin |4 aut | |
700 | 0 | |a Ulrich P. Steinwandel |e verfasserin |4 aut | |
700 | 0 | |a Mihir Kulkarni |e verfasserin |4 aut | |
700 | 0 | |a Eli Visbal |e verfasserin |4 aut | |
700 | 0 | |a Greg L. Bryan |e verfasserin |4 aut | |
700 | 0 | |a Daniel Anglés-Alcázar |e verfasserin |4 aut | |
700 | 0 | |a Tiago Castro |e verfasserin |4 aut | |
700 | 0 | |a Elena Hernández-Martínez |e verfasserin |4 aut | |
700 | 0 | |a Klaus Dolag |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t The Astrophysical Journal |d IOP Publishing, 2022 |g 944(2023), 1, p 27 |w (DE-627)269019219 |w (DE-600)1473835-1 |x 15384357 |7 nnns |
773 | 1 | 8 | |g volume:944 |g year:2023 |g number:1, p 27 |
856 | 4 | 0 | |u https://doi.org/10.3847/1538-4357/acac7a |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/a8c3ad9a6b294721a0554fb79a931eb1 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.3847/1538-4357/acac7a |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1538-4357 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 944 |j 2023 |e 1, p 27 |
author_variant |
h s hs f v n fvn p v d pvd r t rt l h g lhg m g mg d i di y n yn u p s ups m k mk e v ev g l b glb d a a daa t c tc e h m ehm k d kd |
---|---|
matchkey_str |
article:15384357:2023----::outillvlneecocsooiaprmtrw |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QB |
publishDate |
2023 |
allfields |
10.3847/1538-4357/acac7a doi (DE-627)DOAJ089163990 (DE-599)DOAJa8c3ad9a6b294721a0554fb79a931eb1 DE-627 ger DE-627 rakwb eng QB460-466 Helen Shao verfasserin aut Robust Field-level Inference of Cosmological Parameters with Dark Matter Halos 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We train graph neural networks on halo catalogs from Gadget N -body simulations to perform field-level likelihood-free inference of cosmological parameters. The catalogs contain ≲5000 halos with masses ≳10 ^10 h ^−1 M _⊙ in a periodic volume of ${(25\,{h}^{-1}\,\mathrm{Mpc})}^{3}$ ; every halo in the catalog is characterized by several properties such as position, mass, velocity, concentration, and maximum circular velocity. Our models, built to be permutationally, translationally, and rotationally invariant, do not impose a minimum scale on which to extract information and are able to infer the values of Ω _m and σ _8 with a mean relative error of ∼6%, when using positions plus velocities and positions plus masses, respectively. More importantly, we find that our models are very robust: they can infer the value of Ω _m and σ _8 when tested using halo catalogs from thousands of N -body simulations run with five different N -body codes: Abacus, CUBEP ^3 M, Enzo, PKDGrav3, and Ramses. Surprisingly, the model trained to infer Ω _m also works when tested on thousands of state-of-the-art CAMELS hydrodynamic simulations run with four different codes and subgrid physics implementations. Using halo properties such as concentration and maximum circular velocity allow our models to extract more information, at the expense of breaking the robustness of the models. This may happen because the different N -body codes are not converged on the relevant scales corresponding to these parameters. Cosmology Sigma8 Density parameters Cosmological parameters from large-scale structure Astrophysics Francisco Villaescusa-Navarro verfasserin aut Pablo Villanueva-Domingo verfasserin aut Romain Teyssier verfasserin aut Lehman H. Garrison verfasserin aut Marco Gatti verfasserin aut Derek Inman verfasserin aut Yueying Ni verfasserin aut Ulrich P. Steinwandel verfasserin aut Mihir Kulkarni verfasserin aut Eli Visbal verfasserin aut Greg L. Bryan verfasserin aut Daniel Anglés-Alcázar verfasserin aut Tiago Castro verfasserin aut Elena Hernández-Martínez verfasserin aut Klaus Dolag verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 944(2023), 1, p 27 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:944 year:2023 number:1, p 27 https://doi.org/10.3847/1538-4357/acac7a kostenfrei https://doaj.org/article/a8c3ad9a6b294721a0554fb79a931eb1 kostenfrei https://doi.org/10.3847/1538-4357/acac7a kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 944 2023 1, p 27 |
spelling |
10.3847/1538-4357/acac7a doi (DE-627)DOAJ089163990 (DE-599)DOAJa8c3ad9a6b294721a0554fb79a931eb1 DE-627 ger DE-627 rakwb eng QB460-466 Helen Shao verfasserin aut Robust Field-level Inference of Cosmological Parameters with Dark Matter Halos 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We train graph neural networks on halo catalogs from Gadget N -body simulations to perform field-level likelihood-free inference of cosmological parameters. The catalogs contain ≲5000 halos with masses ≳10 ^10 h ^−1 M _⊙ in a periodic volume of ${(25\,{h}^{-1}\,\mathrm{Mpc})}^{3}$ ; every halo in the catalog is characterized by several properties such as position, mass, velocity, concentration, and maximum circular velocity. Our models, built to be permutationally, translationally, and rotationally invariant, do not impose a minimum scale on which to extract information and are able to infer the values of Ω _m and σ _8 with a mean relative error of ∼6%, when using positions plus velocities and positions plus masses, respectively. More importantly, we find that our models are very robust: they can infer the value of Ω _m and σ _8 when tested using halo catalogs from thousands of N -body simulations run with five different N -body codes: Abacus, CUBEP ^3 M, Enzo, PKDGrav3, and Ramses. Surprisingly, the model trained to infer Ω _m also works when tested on thousands of state-of-the-art CAMELS hydrodynamic simulations run with four different codes and subgrid physics implementations. Using halo properties such as concentration and maximum circular velocity allow our models to extract more information, at the expense of breaking the robustness of the models. This may happen because the different N -body codes are not converged on the relevant scales corresponding to these parameters. Cosmology Sigma8 Density parameters Cosmological parameters from large-scale structure Astrophysics Francisco Villaescusa-Navarro verfasserin aut Pablo Villanueva-Domingo verfasserin aut Romain Teyssier verfasserin aut Lehman H. Garrison verfasserin aut Marco Gatti verfasserin aut Derek Inman verfasserin aut Yueying Ni verfasserin aut Ulrich P. Steinwandel verfasserin aut Mihir Kulkarni verfasserin aut Eli Visbal verfasserin aut Greg L. Bryan verfasserin aut Daniel Anglés-Alcázar verfasserin aut Tiago Castro verfasserin aut Elena Hernández-Martínez verfasserin aut Klaus Dolag verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 944(2023), 1, p 27 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:944 year:2023 number:1, p 27 https://doi.org/10.3847/1538-4357/acac7a kostenfrei https://doaj.org/article/a8c3ad9a6b294721a0554fb79a931eb1 kostenfrei https://doi.org/10.3847/1538-4357/acac7a kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 944 2023 1, p 27 |
allfields_unstemmed |
10.3847/1538-4357/acac7a doi (DE-627)DOAJ089163990 (DE-599)DOAJa8c3ad9a6b294721a0554fb79a931eb1 DE-627 ger DE-627 rakwb eng QB460-466 Helen Shao verfasserin aut Robust Field-level Inference of Cosmological Parameters with Dark Matter Halos 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We train graph neural networks on halo catalogs from Gadget N -body simulations to perform field-level likelihood-free inference of cosmological parameters. The catalogs contain ≲5000 halos with masses ≳10 ^10 h ^−1 M _⊙ in a periodic volume of ${(25\,{h}^{-1}\,\mathrm{Mpc})}^{3}$ ; every halo in the catalog is characterized by several properties such as position, mass, velocity, concentration, and maximum circular velocity. Our models, built to be permutationally, translationally, and rotationally invariant, do not impose a minimum scale on which to extract information and are able to infer the values of Ω _m and σ _8 with a mean relative error of ∼6%, when using positions plus velocities and positions plus masses, respectively. More importantly, we find that our models are very robust: they can infer the value of Ω _m and σ _8 when tested using halo catalogs from thousands of N -body simulations run with five different N -body codes: Abacus, CUBEP ^3 M, Enzo, PKDGrav3, and Ramses. Surprisingly, the model trained to infer Ω _m also works when tested on thousands of state-of-the-art CAMELS hydrodynamic simulations run with four different codes and subgrid physics implementations. Using halo properties such as concentration and maximum circular velocity allow our models to extract more information, at the expense of breaking the robustness of the models. This may happen because the different N -body codes are not converged on the relevant scales corresponding to these parameters. Cosmology Sigma8 Density parameters Cosmological parameters from large-scale structure Astrophysics Francisco Villaescusa-Navarro verfasserin aut Pablo Villanueva-Domingo verfasserin aut Romain Teyssier verfasserin aut Lehman H. Garrison verfasserin aut Marco Gatti verfasserin aut Derek Inman verfasserin aut Yueying Ni verfasserin aut Ulrich P. Steinwandel verfasserin aut Mihir Kulkarni verfasserin aut Eli Visbal verfasserin aut Greg L. Bryan verfasserin aut Daniel Anglés-Alcázar verfasserin aut Tiago Castro verfasserin aut Elena Hernández-Martínez verfasserin aut Klaus Dolag verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 944(2023), 1, p 27 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:944 year:2023 number:1, p 27 https://doi.org/10.3847/1538-4357/acac7a kostenfrei https://doaj.org/article/a8c3ad9a6b294721a0554fb79a931eb1 kostenfrei https://doi.org/10.3847/1538-4357/acac7a kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 944 2023 1, p 27 |
allfieldsGer |
10.3847/1538-4357/acac7a doi (DE-627)DOAJ089163990 (DE-599)DOAJa8c3ad9a6b294721a0554fb79a931eb1 DE-627 ger DE-627 rakwb eng QB460-466 Helen Shao verfasserin aut Robust Field-level Inference of Cosmological Parameters with Dark Matter Halos 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We train graph neural networks on halo catalogs from Gadget N -body simulations to perform field-level likelihood-free inference of cosmological parameters. The catalogs contain ≲5000 halos with masses ≳10 ^10 h ^−1 M _⊙ in a periodic volume of ${(25\,{h}^{-1}\,\mathrm{Mpc})}^{3}$ ; every halo in the catalog is characterized by several properties such as position, mass, velocity, concentration, and maximum circular velocity. Our models, built to be permutationally, translationally, and rotationally invariant, do not impose a minimum scale on which to extract information and are able to infer the values of Ω _m and σ _8 with a mean relative error of ∼6%, when using positions plus velocities and positions plus masses, respectively. More importantly, we find that our models are very robust: they can infer the value of Ω _m and σ _8 when tested using halo catalogs from thousands of N -body simulations run with five different N -body codes: Abacus, CUBEP ^3 M, Enzo, PKDGrav3, and Ramses. Surprisingly, the model trained to infer Ω _m also works when tested on thousands of state-of-the-art CAMELS hydrodynamic simulations run with four different codes and subgrid physics implementations. Using halo properties such as concentration and maximum circular velocity allow our models to extract more information, at the expense of breaking the robustness of the models. This may happen because the different N -body codes are not converged on the relevant scales corresponding to these parameters. Cosmology Sigma8 Density parameters Cosmological parameters from large-scale structure Astrophysics Francisco Villaescusa-Navarro verfasserin aut Pablo Villanueva-Domingo verfasserin aut Romain Teyssier verfasserin aut Lehman H. Garrison verfasserin aut Marco Gatti verfasserin aut Derek Inman verfasserin aut Yueying Ni verfasserin aut Ulrich P. Steinwandel verfasserin aut Mihir Kulkarni verfasserin aut Eli Visbal verfasserin aut Greg L. Bryan verfasserin aut Daniel Anglés-Alcázar verfasserin aut Tiago Castro verfasserin aut Elena Hernández-Martínez verfasserin aut Klaus Dolag verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 944(2023), 1, p 27 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:944 year:2023 number:1, p 27 https://doi.org/10.3847/1538-4357/acac7a kostenfrei https://doaj.org/article/a8c3ad9a6b294721a0554fb79a931eb1 kostenfrei https://doi.org/10.3847/1538-4357/acac7a kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 944 2023 1, p 27 |
allfieldsSound |
10.3847/1538-4357/acac7a doi (DE-627)DOAJ089163990 (DE-599)DOAJa8c3ad9a6b294721a0554fb79a931eb1 DE-627 ger DE-627 rakwb eng QB460-466 Helen Shao verfasserin aut Robust Field-level Inference of Cosmological Parameters with Dark Matter Halos 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We train graph neural networks on halo catalogs from Gadget N -body simulations to perform field-level likelihood-free inference of cosmological parameters. The catalogs contain ≲5000 halos with masses ≳10 ^10 h ^−1 M _⊙ in a periodic volume of ${(25\,{h}^{-1}\,\mathrm{Mpc})}^{3}$ ; every halo in the catalog is characterized by several properties such as position, mass, velocity, concentration, and maximum circular velocity. Our models, built to be permutationally, translationally, and rotationally invariant, do not impose a minimum scale on which to extract information and are able to infer the values of Ω _m and σ _8 with a mean relative error of ∼6%, when using positions plus velocities and positions plus masses, respectively. More importantly, we find that our models are very robust: they can infer the value of Ω _m and σ _8 when tested using halo catalogs from thousands of N -body simulations run with five different N -body codes: Abacus, CUBEP ^3 M, Enzo, PKDGrav3, and Ramses. Surprisingly, the model trained to infer Ω _m also works when tested on thousands of state-of-the-art CAMELS hydrodynamic simulations run with four different codes and subgrid physics implementations. Using halo properties such as concentration and maximum circular velocity allow our models to extract more information, at the expense of breaking the robustness of the models. This may happen because the different N -body codes are not converged on the relevant scales corresponding to these parameters. Cosmology Sigma8 Density parameters Cosmological parameters from large-scale structure Astrophysics Francisco Villaescusa-Navarro verfasserin aut Pablo Villanueva-Domingo verfasserin aut Romain Teyssier verfasserin aut Lehman H. Garrison verfasserin aut Marco Gatti verfasserin aut Derek Inman verfasserin aut Yueying Ni verfasserin aut Ulrich P. Steinwandel verfasserin aut Mihir Kulkarni verfasserin aut Eli Visbal verfasserin aut Greg L. Bryan verfasserin aut Daniel Anglés-Alcázar verfasserin aut Tiago Castro verfasserin aut Elena Hernández-Martínez verfasserin aut Klaus Dolag verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 944(2023), 1, p 27 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:944 year:2023 number:1, p 27 https://doi.org/10.3847/1538-4357/acac7a kostenfrei https://doaj.org/article/a8c3ad9a6b294721a0554fb79a931eb1 kostenfrei https://doi.org/10.3847/1538-4357/acac7a kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 944 2023 1, p 27 |
language |
English |
source |
In The Astrophysical Journal 944(2023), 1, p 27 volume:944 year:2023 number:1, p 27 |
sourceStr |
In The Astrophysical Journal 944(2023), 1, p 27 volume:944 year:2023 number:1, p 27 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Cosmology Sigma8 Density parameters Cosmological parameters from large-scale structure Astrophysics |
isfreeaccess_bool |
true |
container_title |
The Astrophysical Journal |
authorswithroles_txt_mv |
Helen Shao @@aut@@ Francisco Villaescusa-Navarro @@aut@@ Pablo Villanueva-Domingo @@aut@@ Romain Teyssier @@aut@@ Lehman H. Garrison @@aut@@ Marco Gatti @@aut@@ Derek Inman @@aut@@ Yueying Ni @@aut@@ Ulrich P. Steinwandel @@aut@@ Mihir Kulkarni @@aut@@ Eli Visbal @@aut@@ Greg L. Bryan @@aut@@ Daniel Anglés-Alcázar @@aut@@ Tiago Castro @@aut@@ Elena Hernández-Martínez @@aut@@ Klaus Dolag @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
269019219 |
id |
DOAJ089163990 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ089163990</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505015902.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3847/1538-4357/acac7a</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ089163990</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa8c3ad9a6b294721a0554fb79a931eb1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB460-466</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Helen Shao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Robust Field-level Inference of Cosmological Parameters with Dark Matter Halos</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We train graph neural networks on halo catalogs from Gadget N -body simulations to perform field-level likelihood-free inference of cosmological parameters. The catalogs contain ≲5000 halos with masses ≳10 ^10 h ^−1 M _⊙ in a periodic volume of ${(25\,{h}^{-1}\,\mathrm{Mpc})}^{3}$ ; every halo in the catalog is characterized by several properties such as position, mass, velocity, concentration, and maximum circular velocity. Our models, built to be permutationally, translationally, and rotationally invariant, do not impose a minimum scale on which to extract information and are able to infer the values of Ω _m and σ _8 with a mean relative error of ∼6%, when using positions plus velocities and positions plus masses, respectively. More importantly, we find that our models are very robust: they can infer the value of Ω _m and σ _8 when tested using halo catalogs from thousands of N -body simulations run with five different N -body codes: Abacus, CUBEP ^3 M, Enzo, PKDGrav3, and Ramses. Surprisingly, the model trained to infer Ω _m also works when tested on thousands of state-of-the-art CAMELS hydrodynamic simulations run with four different codes and subgrid physics implementations. Using halo properties such as concentration and maximum circular velocity allow our models to extract more information, at the expense of breaking the robustness of the models. This may happen because the different N -body codes are not converged on the relevant scales corresponding to these parameters.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cosmology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sigma8</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Density parameters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cosmological parameters from large-scale structure</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Francisco Villaescusa-Navarro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pablo Villanueva-Domingo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Romain Teyssier</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lehman H. Garrison</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marco Gatti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Derek Inman</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yueying Ni</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ulrich P. Steinwandel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mihir Kulkarni</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Eli Visbal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Greg L. Bryan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Daniel Anglés-Alcázar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tiago Castro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Elena Hernández-Martínez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Klaus Dolag</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">The Astrophysical Journal</subfield><subfield code="d">IOP Publishing, 2022</subfield><subfield code="g">944(2023), 1, p 27</subfield><subfield code="w">(DE-627)269019219</subfield><subfield code="w">(DE-600)1473835-1</subfield><subfield code="x">15384357</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:944</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1, p 27</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/acac7a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a8c3ad9a6b294721a0554fb79a931eb1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/acac7a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1538-4357</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">944</subfield><subfield code="j">2023</subfield><subfield code="e">1, p 27</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Helen Shao |
spellingShingle |
Helen Shao misc QB460-466 misc Cosmology misc Sigma8 misc Density parameters misc Cosmological parameters from large-scale structure misc Astrophysics Robust Field-level Inference of Cosmological Parameters with Dark Matter Halos |
authorStr |
Helen Shao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)269019219 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QB460-466 |
illustrated |
Not Illustrated |
issn |
15384357 |
topic_title |
QB460-466 Robust Field-level Inference of Cosmological Parameters with Dark Matter Halos Cosmology Sigma8 Density parameters Cosmological parameters from large-scale structure |
topic |
misc QB460-466 misc Cosmology misc Sigma8 misc Density parameters misc Cosmological parameters from large-scale structure misc Astrophysics |
topic_unstemmed |
misc QB460-466 misc Cosmology misc Sigma8 misc Density parameters misc Cosmological parameters from large-scale structure misc Astrophysics |
topic_browse |
misc QB460-466 misc Cosmology misc Sigma8 misc Density parameters misc Cosmological parameters from large-scale structure misc Astrophysics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The Astrophysical Journal |
hierarchy_parent_id |
269019219 |
hierarchy_top_title |
The Astrophysical Journal |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)269019219 (DE-600)1473835-1 |
title |
Robust Field-level Inference of Cosmological Parameters with Dark Matter Halos |
ctrlnum |
(DE-627)DOAJ089163990 (DE-599)DOAJa8c3ad9a6b294721a0554fb79a931eb1 |
title_full |
Robust Field-level Inference of Cosmological Parameters with Dark Matter Halos |
author_sort |
Helen Shao |
journal |
The Astrophysical Journal |
journalStr |
The Astrophysical Journal |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Helen Shao Francisco Villaescusa-Navarro Pablo Villanueva-Domingo Romain Teyssier Lehman H. Garrison Marco Gatti Derek Inman Yueying Ni Ulrich P. Steinwandel Mihir Kulkarni Eli Visbal Greg L. Bryan Daniel Anglés-Alcázar Tiago Castro Elena Hernández-Martínez Klaus Dolag |
container_volume |
944 |
class |
QB460-466 |
format_se |
Elektronische Aufsätze |
author-letter |
Helen Shao |
doi_str_mv |
10.3847/1538-4357/acac7a |
author2-role |
verfasserin |
title_sort |
robust field-level inference of cosmological parameters with dark matter halos |
callnumber |
QB460-466 |
title_auth |
Robust Field-level Inference of Cosmological Parameters with Dark Matter Halos |
abstract |
We train graph neural networks on halo catalogs from Gadget N -body simulations to perform field-level likelihood-free inference of cosmological parameters. The catalogs contain ≲5000 halos with masses ≳10 ^10 h ^−1 M _⊙ in a periodic volume of ${(25\,{h}^{-1}\,\mathrm{Mpc})}^{3}$ ; every halo in the catalog is characterized by several properties such as position, mass, velocity, concentration, and maximum circular velocity. Our models, built to be permutationally, translationally, and rotationally invariant, do not impose a minimum scale on which to extract information and are able to infer the values of Ω _m and σ _8 with a mean relative error of ∼6%, when using positions plus velocities and positions plus masses, respectively. More importantly, we find that our models are very robust: they can infer the value of Ω _m and σ _8 when tested using halo catalogs from thousands of N -body simulations run with five different N -body codes: Abacus, CUBEP ^3 M, Enzo, PKDGrav3, and Ramses. Surprisingly, the model trained to infer Ω _m also works when tested on thousands of state-of-the-art CAMELS hydrodynamic simulations run with four different codes and subgrid physics implementations. Using halo properties such as concentration and maximum circular velocity allow our models to extract more information, at the expense of breaking the robustness of the models. This may happen because the different N -body codes are not converged on the relevant scales corresponding to these parameters. |
abstractGer |
We train graph neural networks on halo catalogs from Gadget N -body simulations to perform field-level likelihood-free inference of cosmological parameters. The catalogs contain ≲5000 halos with masses ≳10 ^10 h ^−1 M _⊙ in a periodic volume of ${(25\,{h}^{-1}\,\mathrm{Mpc})}^{3}$ ; every halo in the catalog is characterized by several properties such as position, mass, velocity, concentration, and maximum circular velocity. Our models, built to be permutationally, translationally, and rotationally invariant, do not impose a minimum scale on which to extract information and are able to infer the values of Ω _m and σ _8 with a mean relative error of ∼6%, when using positions plus velocities and positions plus masses, respectively. More importantly, we find that our models are very robust: they can infer the value of Ω _m and σ _8 when tested using halo catalogs from thousands of N -body simulations run with five different N -body codes: Abacus, CUBEP ^3 M, Enzo, PKDGrav3, and Ramses. Surprisingly, the model trained to infer Ω _m also works when tested on thousands of state-of-the-art CAMELS hydrodynamic simulations run with four different codes and subgrid physics implementations. Using halo properties such as concentration and maximum circular velocity allow our models to extract more information, at the expense of breaking the robustness of the models. This may happen because the different N -body codes are not converged on the relevant scales corresponding to these parameters. |
abstract_unstemmed |
We train graph neural networks on halo catalogs from Gadget N -body simulations to perform field-level likelihood-free inference of cosmological parameters. The catalogs contain ≲5000 halos with masses ≳10 ^10 h ^−1 M _⊙ in a periodic volume of ${(25\,{h}^{-1}\,\mathrm{Mpc})}^{3}$ ; every halo in the catalog is characterized by several properties such as position, mass, velocity, concentration, and maximum circular velocity. Our models, built to be permutationally, translationally, and rotationally invariant, do not impose a minimum scale on which to extract information and are able to infer the values of Ω _m and σ _8 with a mean relative error of ∼6%, when using positions plus velocities and positions plus masses, respectively. More importantly, we find that our models are very robust: they can infer the value of Ω _m and σ _8 when tested using halo catalogs from thousands of N -body simulations run with five different N -body codes: Abacus, CUBEP ^3 M, Enzo, PKDGrav3, and Ramses. Surprisingly, the model trained to infer Ω _m also works when tested on thousands of state-of-the-art CAMELS hydrodynamic simulations run with four different codes and subgrid physics implementations. Using halo properties such as concentration and maximum circular velocity allow our models to extract more information, at the expense of breaking the robustness of the models. This may happen because the different N -body codes are not converged on the relevant scales corresponding to these parameters. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1, p 27 |
title_short |
Robust Field-level Inference of Cosmological Parameters with Dark Matter Halos |
url |
https://doi.org/10.3847/1538-4357/acac7a https://doaj.org/article/a8c3ad9a6b294721a0554fb79a931eb1 https://doaj.org/toc/1538-4357 |
remote_bool |
true |
author2 |
Francisco Villaescusa-Navarro Pablo Villanueva-Domingo Romain Teyssier Lehman H. Garrison Marco Gatti Derek Inman Yueying Ni Ulrich P. Steinwandel Mihir Kulkarni Eli Visbal Greg L. Bryan Daniel Anglés-Alcázar Tiago Castro Elena Hernández-Martínez Klaus Dolag |
author2Str |
Francisco Villaescusa-Navarro Pablo Villanueva-Domingo Romain Teyssier Lehman H. Garrison Marco Gatti Derek Inman Yueying Ni Ulrich P. Steinwandel Mihir Kulkarni Eli Visbal Greg L. Bryan Daniel Anglés-Alcázar Tiago Castro Elena Hernández-Martínez Klaus Dolag |
ppnlink |
269019219 |
callnumber-subject |
QB - Astronomy |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3847/1538-4357/acac7a |
callnumber-a |
QB460-466 |
up_date |
2024-07-03T21:37:55.147Z |
_version_ |
1803595468134940672 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ089163990</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505015902.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3847/1538-4357/acac7a</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ089163990</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa8c3ad9a6b294721a0554fb79a931eb1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB460-466</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Helen Shao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Robust Field-level Inference of Cosmological Parameters with Dark Matter Halos</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We train graph neural networks on halo catalogs from Gadget N -body simulations to perform field-level likelihood-free inference of cosmological parameters. The catalogs contain ≲5000 halos with masses ≳10 ^10 h ^−1 M _⊙ in a periodic volume of ${(25\,{h}^{-1}\,\mathrm{Mpc})}^{3}$ ; every halo in the catalog is characterized by several properties such as position, mass, velocity, concentration, and maximum circular velocity. Our models, built to be permutationally, translationally, and rotationally invariant, do not impose a minimum scale on which to extract information and are able to infer the values of Ω _m and σ _8 with a mean relative error of ∼6%, when using positions plus velocities and positions plus masses, respectively. More importantly, we find that our models are very robust: they can infer the value of Ω _m and σ _8 when tested using halo catalogs from thousands of N -body simulations run with five different N -body codes: Abacus, CUBEP ^3 M, Enzo, PKDGrav3, and Ramses. Surprisingly, the model trained to infer Ω _m also works when tested on thousands of state-of-the-art CAMELS hydrodynamic simulations run with four different codes and subgrid physics implementations. Using halo properties such as concentration and maximum circular velocity allow our models to extract more information, at the expense of breaking the robustness of the models. This may happen because the different N -body codes are not converged on the relevant scales corresponding to these parameters.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cosmology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sigma8</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Density parameters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cosmological parameters from large-scale structure</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Francisco Villaescusa-Navarro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pablo Villanueva-Domingo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Romain Teyssier</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lehman H. Garrison</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marco Gatti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Derek Inman</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yueying Ni</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ulrich P. Steinwandel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mihir Kulkarni</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Eli Visbal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Greg L. Bryan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Daniel Anglés-Alcázar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tiago Castro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Elena Hernández-Martínez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Klaus Dolag</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">The Astrophysical Journal</subfield><subfield code="d">IOP Publishing, 2022</subfield><subfield code="g">944(2023), 1, p 27</subfield><subfield code="w">(DE-627)269019219</subfield><subfield code="w">(DE-600)1473835-1</subfield><subfield code="x">15384357</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:944</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1, p 27</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/acac7a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a8c3ad9a6b294721a0554fb79a931eb1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/acac7a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1538-4357</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">944</subfield><subfield code="j">2023</subfield><subfield code="e">1, p 27</subfield></datafield></record></collection>
|
score |
7.399042 |