Probing the mechanism of action (MOA) of Solanum nigrum Linn against breast cancer using network pharmacology and molecular docking
Abstract Solanum nigrum Linn is a medicinal herb widely used in traditional Chinese medicine to treat ailments such as fever, inflammation and cancer. Although quite a few compounds have been isolated and characterized, its anticancer mechanism remains elusive. Thus, in this study, we used network p...
Ausführliche Beschreibung
Autor*in: |
Yingying Song [verfasserIn] Meena Kishore Sakharkar [verfasserIn] Jian Yang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: SN Applied Sciences - Springer, 2021, 5(2023), 5, Seite 11 |
---|---|
Übergeordnetes Werk: |
volume:5 ; year:2023 ; number:5 ; pages:11 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.1007/s42452-023-05356-1 |
---|
Katalog-ID: |
DOAJ089244745 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ089244745 | ||
003 | DE-627 | ||
005 | 20230505004804.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230505s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s42452-023-05356-1 |2 doi | |
035 | |a (DE-627)DOAJ089244745 | ||
035 | |a (DE-599)DOAJ9332b91557b241e890b05146e9ba62c4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Yingying Song |e verfasserin |4 aut | |
245 | 1 | 0 | |a Probing the mechanism of action (MOA) of Solanum nigrum Linn against breast cancer using network pharmacology and molecular docking |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Solanum nigrum Linn is a medicinal herb widely used in traditional Chinese medicine to treat ailments such as fever, inflammation and cancer. Although quite a few compounds have been isolated and characterized, its anticancer mechanism remains elusive. Thus, in this study, we used network pharmacology and molecular docking strategies to identify the major active ingredients in S. nigrum and reveal its putative mechanism against human breast cancer. Six compounds, quercetin, cholesterol, 3-epi-beta-sitosterol, diosgenin, medioresinol and solanocapsine, were identified to be the major active ingredients. Target identification and analysis showed that they regulate 80 breast cancer-related targets. Furthermore, network analysis showed that the six active ingredients regulate multiple pathways including ErbB signaling pathway and estrogen signaling pathway and genes AKT1(AKT serine/threonine kinase 1), ESR1(estrogen receptor 1), EGFR(epidermal growth factor receptor), SRC(proto-oncogene tyrosine-protein kinase Src), AR(androgen receptor) and MMP9(matrix metalloproteinase 9) are crucial genes involved in the regulations. Molecular docking implied that quercetin could form good binding with AKT1, EGFR, SRC and MMP9. Our current study suggests that the anticancer function of S. nigrum is likely via synergistic/additive effects of multiple active ingredients’ regulations of different signaling pathways. Further studies are warranted to establish the standard for S. nuigrum to be used as a CAM (complementary and alternative medicine) in breast cancer treatment and dissect its potential interactions with chemotherapy drugs. | ||
650 | 4 | |a Solanum nigrum L. | |
650 | 4 | |a Breast cancer | |
650 | 4 | |a Mechanism of action | |
650 | 4 | |a Network pharmacology | |
650 | 4 | |a Molecular docking | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
700 | 0 | |a Meena Kishore Sakharkar |e verfasserin |4 aut | |
700 | 0 | |a Jian Yang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t SN Applied Sciences |d Springer, 2021 |g 5(2023), 5, Seite 11 |w (DE-627)103761139X |x 25233971 |7 nnns |
773 | 1 | 8 | |g volume:5 |g year:2023 |g number:5 |g pages:11 |
856 | 4 | 0 | |u https://doi.org/10.1007/s42452-023-05356-1 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/9332b91557b241e890b05146e9ba62c4 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1007/s42452-023-05356-1 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2523-3963 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2523-3971 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 5 |j 2023 |e 5 |h 11 |
author_variant |
y s ys m k s mks j y jy |
---|---|
matchkey_str |
article:25233971:2023----::rbnteehnsoatomafoaungulnaantratacrsnntok |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1007/s42452-023-05356-1 doi (DE-627)DOAJ089244745 (DE-599)DOAJ9332b91557b241e890b05146e9ba62c4 DE-627 ger DE-627 rakwb eng Yingying Song verfasserin aut Probing the mechanism of action (MOA) of Solanum nigrum Linn against breast cancer using network pharmacology and molecular docking 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Solanum nigrum Linn is a medicinal herb widely used in traditional Chinese medicine to treat ailments such as fever, inflammation and cancer. Although quite a few compounds have been isolated and characterized, its anticancer mechanism remains elusive. Thus, in this study, we used network pharmacology and molecular docking strategies to identify the major active ingredients in S. nigrum and reveal its putative mechanism against human breast cancer. Six compounds, quercetin, cholesterol, 3-epi-beta-sitosterol, diosgenin, medioresinol and solanocapsine, were identified to be the major active ingredients. Target identification and analysis showed that they regulate 80 breast cancer-related targets. Furthermore, network analysis showed that the six active ingredients regulate multiple pathways including ErbB signaling pathway and estrogen signaling pathway and genes AKT1(AKT serine/threonine kinase 1), ESR1(estrogen receptor 1), EGFR(epidermal growth factor receptor), SRC(proto-oncogene tyrosine-protein kinase Src), AR(androgen receptor) and MMP9(matrix metalloproteinase 9) are crucial genes involved in the regulations. Molecular docking implied that quercetin could form good binding with AKT1, EGFR, SRC and MMP9. Our current study suggests that the anticancer function of S. nigrum is likely via synergistic/additive effects of multiple active ingredients’ regulations of different signaling pathways. Further studies are warranted to establish the standard for S. nuigrum to be used as a CAM (complementary and alternative medicine) in breast cancer treatment and dissect its potential interactions with chemotherapy drugs. Solanum nigrum L. Breast cancer Mechanism of action Network pharmacology Molecular docking Science Q Technology T Meena Kishore Sakharkar verfasserin aut Jian Yang verfasserin aut In SN Applied Sciences Springer, 2021 5(2023), 5, Seite 11 (DE-627)103761139X 25233971 nnns volume:5 year:2023 number:5 pages:11 https://doi.org/10.1007/s42452-023-05356-1 kostenfrei https://doaj.org/article/9332b91557b241e890b05146e9ba62c4 kostenfrei https://doi.org/10.1007/s42452-023-05356-1 kostenfrei https://doaj.org/toc/2523-3963 Journal toc kostenfrei https://doaj.org/toc/2523-3971 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2023 5 11 |
spelling |
10.1007/s42452-023-05356-1 doi (DE-627)DOAJ089244745 (DE-599)DOAJ9332b91557b241e890b05146e9ba62c4 DE-627 ger DE-627 rakwb eng Yingying Song verfasserin aut Probing the mechanism of action (MOA) of Solanum nigrum Linn against breast cancer using network pharmacology and molecular docking 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Solanum nigrum Linn is a medicinal herb widely used in traditional Chinese medicine to treat ailments such as fever, inflammation and cancer. Although quite a few compounds have been isolated and characterized, its anticancer mechanism remains elusive. Thus, in this study, we used network pharmacology and molecular docking strategies to identify the major active ingredients in S. nigrum and reveal its putative mechanism against human breast cancer. Six compounds, quercetin, cholesterol, 3-epi-beta-sitosterol, diosgenin, medioresinol and solanocapsine, were identified to be the major active ingredients. Target identification and analysis showed that they regulate 80 breast cancer-related targets. Furthermore, network analysis showed that the six active ingredients regulate multiple pathways including ErbB signaling pathway and estrogen signaling pathway and genes AKT1(AKT serine/threonine kinase 1), ESR1(estrogen receptor 1), EGFR(epidermal growth factor receptor), SRC(proto-oncogene tyrosine-protein kinase Src), AR(androgen receptor) and MMP9(matrix metalloproteinase 9) are crucial genes involved in the regulations. Molecular docking implied that quercetin could form good binding with AKT1, EGFR, SRC and MMP9. Our current study suggests that the anticancer function of S. nigrum is likely via synergistic/additive effects of multiple active ingredients’ regulations of different signaling pathways. Further studies are warranted to establish the standard for S. nuigrum to be used as a CAM (complementary and alternative medicine) in breast cancer treatment and dissect its potential interactions with chemotherapy drugs. Solanum nigrum L. Breast cancer Mechanism of action Network pharmacology Molecular docking Science Q Technology T Meena Kishore Sakharkar verfasserin aut Jian Yang verfasserin aut In SN Applied Sciences Springer, 2021 5(2023), 5, Seite 11 (DE-627)103761139X 25233971 nnns volume:5 year:2023 number:5 pages:11 https://doi.org/10.1007/s42452-023-05356-1 kostenfrei https://doaj.org/article/9332b91557b241e890b05146e9ba62c4 kostenfrei https://doi.org/10.1007/s42452-023-05356-1 kostenfrei https://doaj.org/toc/2523-3963 Journal toc kostenfrei https://doaj.org/toc/2523-3971 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2023 5 11 |
allfields_unstemmed |
10.1007/s42452-023-05356-1 doi (DE-627)DOAJ089244745 (DE-599)DOAJ9332b91557b241e890b05146e9ba62c4 DE-627 ger DE-627 rakwb eng Yingying Song verfasserin aut Probing the mechanism of action (MOA) of Solanum nigrum Linn against breast cancer using network pharmacology and molecular docking 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Solanum nigrum Linn is a medicinal herb widely used in traditional Chinese medicine to treat ailments such as fever, inflammation and cancer. Although quite a few compounds have been isolated and characterized, its anticancer mechanism remains elusive. Thus, in this study, we used network pharmacology and molecular docking strategies to identify the major active ingredients in S. nigrum and reveal its putative mechanism against human breast cancer. Six compounds, quercetin, cholesterol, 3-epi-beta-sitosterol, diosgenin, medioresinol and solanocapsine, were identified to be the major active ingredients. Target identification and analysis showed that they regulate 80 breast cancer-related targets. Furthermore, network analysis showed that the six active ingredients regulate multiple pathways including ErbB signaling pathway and estrogen signaling pathway and genes AKT1(AKT serine/threonine kinase 1), ESR1(estrogen receptor 1), EGFR(epidermal growth factor receptor), SRC(proto-oncogene tyrosine-protein kinase Src), AR(androgen receptor) and MMP9(matrix metalloproteinase 9) are crucial genes involved in the regulations. Molecular docking implied that quercetin could form good binding with AKT1, EGFR, SRC and MMP9. Our current study suggests that the anticancer function of S. nigrum is likely via synergistic/additive effects of multiple active ingredients’ regulations of different signaling pathways. Further studies are warranted to establish the standard for S. nuigrum to be used as a CAM (complementary and alternative medicine) in breast cancer treatment and dissect its potential interactions with chemotherapy drugs. Solanum nigrum L. Breast cancer Mechanism of action Network pharmacology Molecular docking Science Q Technology T Meena Kishore Sakharkar verfasserin aut Jian Yang verfasserin aut In SN Applied Sciences Springer, 2021 5(2023), 5, Seite 11 (DE-627)103761139X 25233971 nnns volume:5 year:2023 number:5 pages:11 https://doi.org/10.1007/s42452-023-05356-1 kostenfrei https://doaj.org/article/9332b91557b241e890b05146e9ba62c4 kostenfrei https://doi.org/10.1007/s42452-023-05356-1 kostenfrei https://doaj.org/toc/2523-3963 Journal toc kostenfrei https://doaj.org/toc/2523-3971 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2023 5 11 |
allfieldsGer |
10.1007/s42452-023-05356-1 doi (DE-627)DOAJ089244745 (DE-599)DOAJ9332b91557b241e890b05146e9ba62c4 DE-627 ger DE-627 rakwb eng Yingying Song verfasserin aut Probing the mechanism of action (MOA) of Solanum nigrum Linn against breast cancer using network pharmacology and molecular docking 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Solanum nigrum Linn is a medicinal herb widely used in traditional Chinese medicine to treat ailments such as fever, inflammation and cancer. Although quite a few compounds have been isolated and characterized, its anticancer mechanism remains elusive. Thus, in this study, we used network pharmacology and molecular docking strategies to identify the major active ingredients in S. nigrum and reveal its putative mechanism against human breast cancer. Six compounds, quercetin, cholesterol, 3-epi-beta-sitosterol, diosgenin, medioresinol and solanocapsine, were identified to be the major active ingredients. Target identification and analysis showed that they regulate 80 breast cancer-related targets. Furthermore, network analysis showed that the six active ingredients regulate multiple pathways including ErbB signaling pathway and estrogen signaling pathway and genes AKT1(AKT serine/threonine kinase 1), ESR1(estrogen receptor 1), EGFR(epidermal growth factor receptor), SRC(proto-oncogene tyrosine-protein kinase Src), AR(androgen receptor) and MMP9(matrix metalloproteinase 9) are crucial genes involved in the regulations. Molecular docking implied that quercetin could form good binding with AKT1, EGFR, SRC and MMP9. Our current study suggests that the anticancer function of S. nigrum is likely via synergistic/additive effects of multiple active ingredients’ regulations of different signaling pathways. Further studies are warranted to establish the standard for S. nuigrum to be used as a CAM (complementary and alternative medicine) in breast cancer treatment and dissect its potential interactions with chemotherapy drugs. Solanum nigrum L. Breast cancer Mechanism of action Network pharmacology Molecular docking Science Q Technology T Meena Kishore Sakharkar verfasserin aut Jian Yang verfasserin aut In SN Applied Sciences Springer, 2021 5(2023), 5, Seite 11 (DE-627)103761139X 25233971 nnns volume:5 year:2023 number:5 pages:11 https://doi.org/10.1007/s42452-023-05356-1 kostenfrei https://doaj.org/article/9332b91557b241e890b05146e9ba62c4 kostenfrei https://doi.org/10.1007/s42452-023-05356-1 kostenfrei https://doaj.org/toc/2523-3963 Journal toc kostenfrei https://doaj.org/toc/2523-3971 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2023 5 11 |
allfieldsSound |
10.1007/s42452-023-05356-1 doi (DE-627)DOAJ089244745 (DE-599)DOAJ9332b91557b241e890b05146e9ba62c4 DE-627 ger DE-627 rakwb eng Yingying Song verfasserin aut Probing the mechanism of action (MOA) of Solanum nigrum Linn against breast cancer using network pharmacology and molecular docking 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Solanum nigrum Linn is a medicinal herb widely used in traditional Chinese medicine to treat ailments such as fever, inflammation and cancer. Although quite a few compounds have been isolated and characterized, its anticancer mechanism remains elusive. Thus, in this study, we used network pharmacology and molecular docking strategies to identify the major active ingredients in S. nigrum and reveal its putative mechanism against human breast cancer. Six compounds, quercetin, cholesterol, 3-epi-beta-sitosterol, diosgenin, medioresinol and solanocapsine, were identified to be the major active ingredients. Target identification and analysis showed that they regulate 80 breast cancer-related targets. Furthermore, network analysis showed that the six active ingredients regulate multiple pathways including ErbB signaling pathway and estrogen signaling pathway and genes AKT1(AKT serine/threonine kinase 1), ESR1(estrogen receptor 1), EGFR(epidermal growth factor receptor), SRC(proto-oncogene tyrosine-protein kinase Src), AR(androgen receptor) and MMP9(matrix metalloproteinase 9) are crucial genes involved in the regulations. Molecular docking implied that quercetin could form good binding with AKT1, EGFR, SRC and MMP9. Our current study suggests that the anticancer function of S. nigrum is likely via synergistic/additive effects of multiple active ingredients’ regulations of different signaling pathways. Further studies are warranted to establish the standard for S. nuigrum to be used as a CAM (complementary and alternative medicine) in breast cancer treatment and dissect its potential interactions with chemotherapy drugs. Solanum nigrum L. Breast cancer Mechanism of action Network pharmacology Molecular docking Science Q Technology T Meena Kishore Sakharkar verfasserin aut Jian Yang verfasserin aut In SN Applied Sciences Springer, 2021 5(2023), 5, Seite 11 (DE-627)103761139X 25233971 nnns volume:5 year:2023 number:5 pages:11 https://doi.org/10.1007/s42452-023-05356-1 kostenfrei https://doaj.org/article/9332b91557b241e890b05146e9ba62c4 kostenfrei https://doi.org/10.1007/s42452-023-05356-1 kostenfrei https://doaj.org/toc/2523-3963 Journal toc kostenfrei https://doaj.org/toc/2523-3971 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2023 5 11 |
language |
English |
source |
In SN Applied Sciences 5(2023), 5, Seite 11 volume:5 year:2023 number:5 pages:11 |
sourceStr |
In SN Applied Sciences 5(2023), 5, Seite 11 volume:5 year:2023 number:5 pages:11 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Solanum nigrum L. Breast cancer Mechanism of action Network pharmacology Molecular docking Science Q Technology T |
isfreeaccess_bool |
true |
container_title |
SN Applied Sciences |
authorswithroles_txt_mv |
Yingying Song @@aut@@ Meena Kishore Sakharkar @@aut@@ Jian Yang @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
103761139X |
id |
DOAJ089244745 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ089244745</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505004804.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s42452-023-05356-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ089244745</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ9332b91557b241e890b05146e9ba62c4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yingying Song</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Probing the mechanism of action (MOA) of Solanum nigrum Linn against breast cancer using network pharmacology and molecular docking</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Solanum nigrum Linn is a medicinal herb widely used in traditional Chinese medicine to treat ailments such as fever, inflammation and cancer. Although quite a few compounds have been isolated and characterized, its anticancer mechanism remains elusive. Thus, in this study, we used network pharmacology and molecular docking strategies to identify the major active ingredients in S. nigrum and reveal its putative mechanism against human breast cancer. Six compounds, quercetin, cholesterol, 3-epi-beta-sitosterol, diosgenin, medioresinol and solanocapsine, were identified to be the major active ingredients. Target identification and analysis showed that they regulate 80 breast cancer-related targets. Furthermore, network analysis showed that the six active ingredients regulate multiple pathways including ErbB signaling pathway and estrogen signaling pathway and genes AKT1(AKT serine/threonine kinase 1), ESR1(estrogen receptor 1), EGFR(epidermal growth factor receptor), SRC(proto-oncogene tyrosine-protein kinase Src), AR(androgen receptor) and MMP9(matrix metalloproteinase 9) are crucial genes involved in the regulations. Molecular docking implied that quercetin could form good binding with AKT1, EGFR, SRC and MMP9. Our current study suggests that the anticancer function of S. nigrum is likely via synergistic/additive effects of multiple active ingredients’ regulations of different signaling pathways. Further studies are warranted to establish the standard for S. nuigrum to be used as a CAM (complementary and alternative medicine) in breast cancer treatment and dissect its potential interactions with chemotherapy drugs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solanum nigrum L.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Breast cancer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanism of action</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Network pharmacology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecular docking</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Meena Kishore Sakharkar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jian Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">SN Applied Sciences</subfield><subfield code="d">Springer, 2021</subfield><subfield code="g">5(2023), 5, Seite 11</subfield><subfield code="w">(DE-627)103761139X</subfield><subfield code="x">25233971</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/s42452-023-05356-1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/9332b91557b241e890b05146e9ba62c4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/s42452-023-05356-1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2523-3963</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2523-3971</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2023</subfield><subfield code="e">5</subfield><subfield code="h">11</subfield></datafield></record></collection>
|
author |
Yingying Song |
spellingShingle |
Yingying Song misc Solanum nigrum L. misc Breast cancer misc Mechanism of action misc Network pharmacology misc Molecular docking misc Science misc Q misc Technology misc T Probing the mechanism of action (MOA) of Solanum nigrum Linn against breast cancer using network pharmacology and molecular docking |
authorStr |
Yingying Song |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)103761139X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
25233971 |
topic_title |
Probing the mechanism of action (MOA) of Solanum nigrum Linn against breast cancer using network pharmacology and molecular docking Solanum nigrum L. Breast cancer Mechanism of action Network pharmacology Molecular docking |
topic |
misc Solanum nigrum L. misc Breast cancer misc Mechanism of action misc Network pharmacology misc Molecular docking misc Science misc Q misc Technology misc T |
topic_unstemmed |
misc Solanum nigrum L. misc Breast cancer misc Mechanism of action misc Network pharmacology misc Molecular docking misc Science misc Q misc Technology misc T |
topic_browse |
misc Solanum nigrum L. misc Breast cancer misc Mechanism of action misc Network pharmacology misc Molecular docking misc Science misc Q misc Technology misc T |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
SN Applied Sciences |
hierarchy_parent_id |
103761139X |
hierarchy_top_title |
SN Applied Sciences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)103761139X |
title |
Probing the mechanism of action (MOA) of Solanum nigrum Linn against breast cancer using network pharmacology and molecular docking |
ctrlnum |
(DE-627)DOAJ089244745 (DE-599)DOAJ9332b91557b241e890b05146e9ba62c4 |
title_full |
Probing the mechanism of action (MOA) of Solanum nigrum Linn against breast cancer using network pharmacology and molecular docking |
author_sort |
Yingying Song |
journal |
SN Applied Sciences |
journalStr |
SN Applied Sciences |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
11 |
author_browse |
Yingying Song Meena Kishore Sakharkar Jian Yang |
container_volume |
5 |
format_se |
Elektronische Aufsätze |
author-letter |
Yingying Song |
doi_str_mv |
10.1007/s42452-023-05356-1 |
author2-role |
verfasserin |
title_sort |
probing the mechanism of action (moa) of solanum nigrum linn against breast cancer using network pharmacology and molecular docking |
title_auth |
Probing the mechanism of action (MOA) of Solanum nigrum Linn against breast cancer using network pharmacology and molecular docking |
abstract |
Abstract Solanum nigrum Linn is a medicinal herb widely used in traditional Chinese medicine to treat ailments such as fever, inflammation and cancer. Although quite a few compounds have been isolated and characterized, its anticancer mechanism remains elusive. Thus, in this study, we used network pharmacology and molecular docking strategies to identify the major active ingredients in S. nigrum and reveal its putative mechanism against human breast cancer. Six compounds, quercetin, cholesterol, 3-epi-beta-sitosterol, diosgenin, medioresinol and solanocapsine, were identified to be the major active ingredients. Target identification and analysis showed that they regulate 80 breast cancer-related targets. Furthermore, network analysis showed that the six active ingredients regulate multiple pathways including ErbB signaling pathway and estrogen signaling pathway and genes AKT1(AKT serine/threonine kinase 1), ESR1(estrogen receptor 1), EGFR(epidermal growth factor receptor), SRC(proto-oncogene tyrosine-protein kinase Src), AR(androgen receptor) and MMP9(matrix metalloproteinase 9) are crucial genes involved in the regulations. Molecular docking implied that quercetin could form good binding with AKT1, EGFR, SRC and MMP9. Our current study suggests that the anticancer function of S. nigrum is likely via synergistic/additive effects of multiple active ingredients’ regulations of different signaling pathways. Further studies are warranted to establish the standard for S. nuigrum to be used as a CAM (complementary and alternative medicine) in breast cancer treatment and dissect its potential interactions with chemotherapy drugs. |
abstractGer |
Abstract Solanum nigrum Linn is a medicinal herb widely used in traditional Chinese medicine to treat ailments such as fever, inflammation and cancer. Although quite a few compounds have been isolated and characterized, its anticancer mechanism remains elusive. Thus, in this study, we used network pharmacology and molecular docking strategies to identify the major active ingredients in S. nigrum and reveal its putative mechanism against human breast cancer. Six compounds, quercetin, cholesterol, 3-epi-beta-sitosterol, diosgenin, medioresinol and solanocapsine, were identified to be the major active ingredients. Target identification and analysis showed that they regulate 80 breast cancer-related targets. Furthermore, network analysis showed that the six active ingredients regulate multiple pathways including ErbB signaling pathway and estrogen signaling pathway and genes AKT1(AKT serine/threonine kinase 1), ESR1(estrogen receptor 1), EGFR(epidermal growth factor receptor), SRC(proto-oncogene tyrosine-protein kinase Src), AR(androgen receptor) and MMP9(matrix metalloproteinase 9) are crucial genes involved in the regulations. Molecular docking implied that quercetin could form good binding with AKT1, EGFR, SRC and MMP9. Our current study suggests that the anticancer function of S. nigrum is likely via synergistic/additive effects of multiple active ingredients’ regulations of different signaling pathways. Further studies are warranted to establish the standard for S. nuigrum to be used as a CAM (complementary and alternative medicine) in breast cancer treatment and dissect its potential interactions with chemotherapy drugs. |
abstract_unstemmed |
Abstract Solanum nigrum Linn is a medicinal herb widely used in traditional Chinese medicine to treat ailments such as fever, inflammation and cancer. Although quite a few compounds have been isolated and characterized, its anticancer mechanism remains elusive. Thus, in this study, we used network pharmacology and molecular docking strategies to identify the major active ingredients in S. nigrum and reveal its putative mechanism against human breast cancer. Six compounds, quercetin, cholesterol, 3-epi-beta-sitosterol, diosgenin, medioresinol and solanocapsine, were identified to be the major active ingredients. Target identification and analysis showed that they regulate 80 breast cancer-related targets. Furthermore, network analysis showed that the six active ingredients regulate multiple pathways including ErbB signaling pathway and estrogen signaling pathway and genes AKT1(AKT serine/threonine kinase 1), ESR1(estrogen receptor 1), EGFR(epidermal growth factor receptor), SRC(proto-oncogene tyrosine-protein kinase Src), AR(androgen receptor) and MMP9(matrix metalloproteinase 9) are crucial genes involved in the regulations. Molecular docking implied that quercetin could form good binding with AKT1, EGFR, SRC and MMP9. Our current study suggests that the anticancer function of S. nigrum is likely via synergistic/additive effects of multiple active ingredients’ regulations of different signaling pathways. Further studies are warranted to establish the standard for S. nuigrum to be used as a CAM (complementary and alternative medicine) in breast cancer treatment and dissect its potential interactions with chemotherapy drugs. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
5 |
title_short |
Probing the mechanism of action (MOA) of Solanum nigrum Linn against breast cancer using network pharmacology and molecular docking |
url |
https://doi.org/10.1007/s42452-023-05356-1 https://doaj.org/article/9332b91557b241e890b05146e9ba62c4 https://doaj.org/toc/2523-3963 https://doaj.org/toc/2523-3971 |
remote_bool |
true |
author2 |
Meena Kishore Sakharkar Jian Yang |
author2Str |
Meena Kishore Sakharkar Jian Yang |
ppnlink |
103761139X |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s42452-023-05356-1 |
up_date |
2024-07-03T22:03:41.626Z |
_version_ |
1803597089738850304 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ089244745</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505004804.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s42452-023-05356-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ089244745</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ9332b91557b241e890b05146e9ba62c4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yingying Song</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Probing the mechanism of action (MOA) of Solanum nigrum Linn against breast cancer using network pharmacology and molecular docking</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Solanum nigrum Linn is a medicinal herb widely used in traditional Chinese medicine to treat ailments such as fever, inflammation and cancer. Although quite a few compounds have been isolated and characterized, its anticancer mechanism remains elusive. Thus, in this study, we used network pharmacology and molecular docking strategies to identify the major active ingredients in S. nigrum and reveal its putative mechanism against human breast cancer. Six compounds, quercetin, cholesterol, 3-epi-beta-sitosterol, diosgenin, medioresinol and solanocapsine, were identified to be the major active ingredients. Target identification and analysis showed that they regulate 80 breast cancer-related targets. Furthermore, network analysis showed that the six active ingredients regulate multiple pathways including ErbB signaling pathway and estrogen signaling pathway and genes AKT1(AKT serine/threonine kinase 1), ESR1(estrogen receptor 1), EGFR(epidermal growth factor receptor), SRC(proto-oncogene tyrosine-protein kinase Src), AR(androgen receptor) and MMP9(matrix metalloproteinase 9) are crucial genes involved in the regulations. Molecular docking implied that quercetin could form good binding with AKT1, EGFR, SRC and MMP9. Our current study suggests that the anticancer function of S. nigrum is likely via synergistic/additive effects of multiple active ingredients’ regulations of different signaling pathways. Further studies are warranted to establish the standard for S. nuigrum to be used as a CAM (complementary and alternative medicine) in breast cancer treatment and dissect its potential interactions with chemotherapy drugs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solanum nigrum L.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Breast cancer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanism of action</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Network pharmacology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecular docking</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Meena Kishore Sakharkar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jian Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">SN Applied Sciences</subfield><subfield code="d">Springer, 2021</subfield><subfield code="g">5(2023), 5, Seite 11</subfield><subfield code="w">(DE-627)103761139X</subfield><subfield code="x">25233971</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/s42452-023-05356-1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/9332b91557b241e890b05146e9ba62c4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/s42452-023-05356-1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2523-3963</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2523-3971</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2023</subfield><subfield code="e">5</subfield><subfield code="h">11</subfield></datafield></record></collection>
|
score |
7.401865 |