Microstructures, Mechanical Properties and Electromagnetic Wave Absorption Performance of Porous SiC Ceramics by Direct Foaming Combined with Direct-Ink-Writing-Based 3D Printing
Direct-ink-writing (DIW)-based 3D-printing technology combined with the direct-foaming method provides a new strategy for the fabrication of porous materials. We herein report a novel method of preparing porous SiC ceramics using the DIW process and investigate their mechanical and wave absorption p...
Ausführliche Beschreibung
Autor*in: |
Jianqin Wu [verfasserIn] Lu Zhang [verfasserIn] Wenqing Wang [verfasserIn] Ruyue Su [verfasserIn] Xiong Gao [verfasserIn] Suwen Li [verfasserIn] Gang Wang [verfasserIn] Rujie He [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Materials - MDPI AG, 2009, 16(2023), 7, p 2861 |
---|---|
Übergeordnetes Werk: |
volume:16 ; year:2023 ; number:7, p 2861 |
Links: |
---|
DOI / URN: |
10.3390/ma16072861 |
---|
Katalog-ID: |
DOAJ089362594 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ089362594 | ||
003 | DE-627 | ||
005 | 20240413042955.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230505s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/ma16072861 |2 doi | |
035 | |a (DE-627)DOAJ089362594 | ||
035 | |a (DE-599)DOAJ4000377b45a848979bf7f65d86dfd981 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
050 | 0 | |a TA1-2040 | |
050 | 0 | |a QH201-278.5 | |
050 | 0 | |a QC120-168.85 | |
100 | 0 | |a Jianqin Wu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Microstructures, Mechanical Properties and Electromagnetic Wave Absorption Performance of Porous SiC Ceramics by Direct Foaming Combined with Direct-Ink-Writing-Based 3D Printing |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Direct-ink-writing (DIW)-based 3D-printing technology combined with the direct-foaming method provides a new strategy for the fabrication of porous materials. We herein report a novel method of preparing porous SiC ceramics using the DIW process and investigate their mechanical and wave absorption properties. We investigated the effects of nozzle diameter on the macroscopic shape and microstructure of the DIW SiC green bodies. Subsequently, the influences of the sintering temperature on the mechanical properties and electromagnetic (EM) wave absorption performance of the final porous SiC-sintered ceramics were also studied. The results showed that the nozzle diameter played an important role in maintaining the structure of the SiC green part. The printed products contained large amounts of closed pores with diameters of approximately 100–200 μm. As the sintering temperature increased, the porosity of porous SiC-sintered ceramics decreased while the compressive strength increased. The maximum open porosity and compressive strength were 65.4% and 7.9 MPa, respectively. The minimum reflection loss (<i<R<sub<L</sub<</i<) was −48.9 dB, and the maximum effective absorption bandwidth (EAB) value was 3.7 GHz. Notably, porous SiC ceramics after sintering at 1650 °C could meet the application requirements with a compressive strength of 7.9 MPa, a minimum R<sub<L</sub< of −27.1 dB, and an EAB value of 3.4 GHz. This study demonstrated the potential of direct foaming combined with DIW-based 3D printing to prepare porous SiC ceramics for high strength and excellent EM wave absorption applications. | ||
650 | 4 | |a direct foaming | |
650 | 4 | |a direct-ink writing | |
650 | 4 | |a mechanical properties | |
650 | 4 | |a electromagnetic (EM) wave absorption | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
653 | 0 | |a Engineering (General). Civil engineering (General) | |
653 | 0 | |a Microscopy | |
653 | 0 | |a Descriptive and experimental mechanics | |
700 | 0 | |a Lu Zhang |e verfasserin |4 aut | |
700 | 0 | |a Wenqing Wang |e verfasserin |4 aut | |
700 | 0 | |a Ruyue Su |e verfasserin |4 aut | |
700 | 0 | |a Xiong Gao |e verfasserin |4 aut | |
700 | 0 | |a Suwen Li |e verfasserin |4 aut | |
700 | 0 | |a Gang Wang |e verfasserin |4 aut | |
700 | 0 | |a Rujie He |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Materials |d MDPI AG, 2009 |g 16(2023), 7, p 2861 |w (DE-627)595712649 |w (DE-600)2487261-1 |x 19961944 |7 nnns |
773 | 1 | 8 | |g volume:16 |g year:2023 |g number:7, p 2861 |
856 | 4 | 0 | |u https://doi.org/10.3390/ma16072861 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/4000377b45a848979bf7f65d86dfd981 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1996-1944/16/7/2861 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1996-1944 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 16 |j 2023 |e 7, p 2861 |
author_variant |
j w jw l z lz w w ww r s rs x g xg s l sl g w gw r h rh |
---|---|
matchkey_str |
article:19961944:2023----::irsrcuemcaiapoeteadlcrmgeiwvasrtopromnefoosicrmcbdrcfaigo |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TK |
publishDate |
2023 |
allfields |
10.3390/ma16072861 doi (DE-627)DOAJ089362594 (DE-599)DOAJ4000377b45a848979bf7f65d86dfd981 DE-627 ger DE-627 rakwb eng TK1-9971 TA1-2040 QH201-278.5 QC120-168.85 Jianqin Wu verfasserin aut Microstructures, Mechanical Properties and Electromagnetic Wave Absorption Performance of Porous SiC Ceramics by Direct Foaming Combined with Direct-Ink-Writing-Based 3D Printing 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Direct-ink-writing (DIW)-based 3D-printing technology combined with the direct-foaming method provides a new strategy for the fabrication of porous materials. We herein report a novel method of preparing porous SiC ceramics using the DIW process and investigate their mechanical and wave absorption properties. We investigated the effects of nozzle diameter on the macroscopic shape and microstructure of the DIW SiC green bodies. Subsequently, the influences of the sintering temperature on the mechanical properties and electromagnetic (EM) wave absorption performance of the final porous SiC-sintered ceramics were also studied. The results showed that the nozzle diameter played an important role in maintaining the structure of the SiC green part. The printed products contained large amounts of closed pores with diameters of approximately 100–200 μm. As the sintering temperature increased, the porosity of porous SiC-sintered ceramics decreased while the compressive strength increased. The maximum open porosity and compressive strength were 65.4% and 7.9 MPa, respectively. The minimum reflection loss (<i<R<sub<L</sub<</i<) was −48.9 dB, and the maximum effective absorption bandwidth (EAB) value was 3.7 GHz. Notably, porous SiC ceramics after sintering at 1650 °C could meet the application requirements with a compressive strength of 7.9 MPa, a minimum R<sub<L</sub< of −27.1 dB, and an EAB value of 3.4 GHz. This study demonstrated the potential of direct foaming combined with DIW-based 3D printing to prepare porous SiC ceramics for high strength and excellent EM wave absorption applications. direct foaming direct-ink writing mechanical properties electromagnetic (EM) wave absorption Technology T Electrical engineering. Electronics. Nuclear engineering Engineering (General). Civil engineering (General) Microscopy Descriptive and experimental mechanics Lu Zhang verfasserin aut Wenqing Wang verfasserin aut Ruyue Su verfasserin aut Xiong Gao verfasserin aut Suwen Li verfasserin aut Gang Wang verfasserin aut Rujie He verfasserin aut In Materials MDPI AG, 2009 16(2023), 7, p 2861 (DE-627)595712649 (DE-600)2487261-1 19961944 nnns volume:16 year:2023 number:7, p 2861 https://doi.org/10.3390/ma16072861 kostenfrei https://doaj.org/article/4000377b45a848979bf7f65d86dfd981 kostenfrei https://www.mdpi.com/1996-1944/16/7/2861 kostenfrei https://doaj.org/toc/1996-1944 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2023 7, p 2861 |
spelling |
10.3390/ma16072861 doi (DE-627)DOAJ089362594 (DE-599)DOAJ4000377b45a848979bf7f65d86dfd981 DE-627 ger DE-627 rakwb eng TK1-9971 TA1-2040 QH201-278.5 QC120-168.85 Jianqin Wu verfasserin aut Microstructures, Mechanical Properties and Electromagnetic Wave Absorption Performance of Porous SiC Ceramics by Direct Foaming Combined with Direct-Ink-Writing-Based 3D Printing 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Direct-ink-writing (DIW)-based 3D-printing technology combined with the direct-foaming method provides a new strategy for the fabrication of porous materials. We herein report a novel method of preparing porous SiC ceramics using the DIW process and investigate their mechanical and wave absorption properties. We investigated the effects of nozzle diameter on the macroscopic shape and microstructure of the DIW SiC green bodies. Subsequently, the influences of the sintering temperature on the mechanical properties and electromagnetic (EM) wave absorption performance of the final porous SiC-sintered ceramics were also studied. The results showed that the nozzle diameter played an important role in maintaining the structure of the SiC green part. The printed products contained large amounts of closed pores with diameters of approximately 100–200 μm. As the sintering temperature increased, the porosity of porous SiC-sintered ceramics decreased while the compressive strength increased. The maximum open porosity and compressive strength were 65.4% and 7.9 MPa, respectively. The minimum reflection loss (<i<R<sub<L</sub<</i<) was −48.9 dB, and the maximum effective absorption bandwidth (EAB) value was 3.7 GHz. Notably, porous SiC ceramics after sintering at 1650 °C could meet the application requirements with a compressive strength of 7.9 MPa, a minimum R<sub<L</sub< of −27.1 dB, and an EAB value of 3.4 GHz. This study demonstrated the potential of direct foaming combined with DIW-based 3D printing to prepare porous SiC ceramics for high strength and excellent EM wave absorption applications. direct foaming direct-ink writing mechanical properties electromagnetic (EM) wave absorption Technology T Electrical engineering. Electronics. Nuclear engineering Engineering (General). Civil engineering (General) Microscopy Descriptive and experimental mechanics Lu Zhang verfasserin aut Wenqing Wang verfasserin aut Ruyue Su verfasserin aut Xiong Gao verfasserin aut Suwen Li verfasserin aut Gang Wang verfasserin aut Rujie He verfasserin aut In Materials MDPI AG, 2009 16(2023), 7, p 2861 (DE-627)595712649 (DE-600)2487261-1 19961944 nnns volume:16 year:2023 number:7, p 2861 https://doi.org/10.3390/ma16072861 kostenfrei https://doaj.org/article/4000377b45a848979bf7f65d86dfd981 kostenfrei https://www.mdpi.com/1996-1944/16/7/2861 kostenfrei https://doaj.org/toc/1996-1944 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2023 7, p 2861 |
allfields_unstemmed |
10.3390/ma16072861 doi (DE-627)DOAJ089362594 (DE-599)DOAJ4000377b45a848979bf7f65d86dfd981 DE-627 ger DE-627 rakwb eng TK1-9971 TA1-2040 QH201-278.5 QC120-168.85 Jianqin Wu verfasserin aut Microstructures, Mechanical Properties and Electromagnetic Wave Absorption Performance of Porous SiC Ceramics by Direct Foaming Combined with Direct-Ink-Writing-Based 3D Printing 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Direct-ink-writing (DIW)-based 3D-printing technology combined with the direct-foaming method provides a new strategy for the fabrication of porous materials. We herein report a novel method of preparing porous SiC ceramics using the DIW process and investigate their mechanical and wave absorption properties. We investigated the effects of nozzle diameter on the macroscopic shape and microstructure of the DIW SiC green bodies. Subsequently, the influences of the sintering temperature on the mechanical properties and electromagnetic (EM) wave absorption performance of the final porous SiC-sintered ceramics were also studied. The results showed that the nozzle diameter played an important role in maintaining the structure of the SiC green part. The printed products contained large amounts of closed pores with diameters of approximately 100–200 μm. As the sintering temperature increased, the porosity of porous SiC-sintered ceramics decreased while the compressive strength increased. The maximum open porosity and compressive strength were 65.4% and 7.9 MPa, respectively. The minimum reflection loss (<i<R<sub<L</sub<</i<) was −48.9 dB, and the maximum effective absorption bandwidth (EAB) value was 3.7 GHz. Notably, porous SiC ceramics after sintering at 1650 °C could meet the application requirements with a compressive strength of 7.9 MPa, a minimum R<sub<L</sub< of −27.1 dB, and an EAB value of 3.4 GHz. This study demonstrated the potential of direct foaming combined with DIW-based 3D printing to prepare porous SiC ceramics for high strength and excellent EM wave absorption applications. direct foaming direct-ink writing mechanical properties electromagnetic (EM) wave absorption Technology T Electrical engineering. Electronics. Nuclear engineering Engineering (General). Civil engineering (General) Microscopy Descriptive and experimental mechanics Lu Zhang verfasserin aut Wenqing Wang verfasserin aut Ruyue Su verfasserin aut Xiong Gao verfasserin aut Suwen Li verfasserin aut Gang Wang verfasserin aut Rujie He verfasserin aut In Materials MDPI AG, 2009 16(2023), 7, p 2861 (DE-627)595712649 (DE-600)2487261-1 19961944 nnns volume:16 year:2023 number:7, p 2861 https://doi.org/10.3390/ma16072861 kostenfrei https://doaj.org/article/4000377b45a848979bf7f65d86dfd981 kostenfrei https://www.mdpi.com/1996-1944/16/7/2861 kostenfrei https://doaj.org/toc/1996-1944 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2023 7, p 2861 |
allfieldsGer |
10.3390/ma16072861 doi (DE-627)DOAJ089362594 (DE-599)DOAJ4000377b45a848979bf7f65d86dfd981 DE-627 ger DE-627 rakwb eng TK1-9971 TA1-2040 QH201-278.5 QC120-168.85 Jianqin Wu verfasserin aut Microstructures, Mechanical Properties and Electromagnetic Wave Absorption Performance of Porous SiC Ceramics by Direct Foaming Combined with Direct-Ink-Writing-Based 3D Printing 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Direct-ink-writing (DIW)-based 3D-printing technology combined with the direct-foaming method provides a new strategy for the fabrication of porous materials. We herein report a novel method of preparing porous SiC ceramics using the DIW process and investigate their mechanical and wave absorption properties. We investigated the effects of nozzle diameter on the macroscopic shape and microstructure of the DIW SiC green bodies. Subsequently, the influences of the sintering temperature on the mechanical properties and electromagnetic (EM) wave absorption performance of the final porous SiC-sintered ceramics were also studied. The results showed that the nozzle diameter played an important role in maintaining the structure of the SiC green part. The printed products contained large amounts of closed pores with diameters of approximately 100–200 μm. As the sintering temperature increased, the porosity of porous SiC-sintered ceramics decreased while the compressive strength increased. The maximum open porosity and compressive strength were 65.4% and 7.9 MPa, respectively. The minimum reflection loss (<i<R<sub<L</sub<</i<) was −48.9 dB, and the maximum effective absorption bandwidth (EAB) value was 3.7 GHz. Notably, porous SiC ceramics after sintering at 1650 °C could meet the application requirements with a compressive strength of 7.9 MPa, a minimum R<sub<L</sub< of −27.1 dB, and an EAB value of 3.4 GHz. This study demonstrated the potential of direct foaming combined with DIW-based 3D printing to prepare porous SiC ceramics for high strength and excellent EM wave absorption applications. direct foaming direct-ink writing mechanical properties electromagnetic (EM) wave absorption Technology T Electrical engineering. Electronics. Nuclear engineering Engineering (General). Civil engineering (General) Microscopy Descriptive and experimental mechanics Lu Zhang verfasserin aut Wenqing Wang verfasserin aut Ruyue Su verfasserin aut Xiong Gao verfasserin aut Suwen Li verfasserin aut Gang Wang verfasserin aut Rujie He verfasserin aut In Materials MDPI AG, 2009 16(2023), 7, p 2861 (DE-627)595712649 (DE-600)2487261-1 19961944 nnns volume:16 year:2023 number:7, p 2861 https://doi.org/10.3390/ma16072861 kostenfrei https://doaj.org/article/4000377b45a848979bf7f65d86dfd981 kostenfrei https://www.mdpi.com/1996-1944/16/7/2861 kostenfrei https://doaj.org/toc/1996-1944 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2023 7, p 2861 |
allfieldsSound |
10.3390/ma16072861 doi (DE-627)DOAJ089362594 (DE-599)DOAJ4000377b45a848979bf7f65d86dfd981 DE-627 ger DE-627 rakwb eng TK1-9971 TA1-2040 QH201-278.5 QC120-168.85 Jianqin Wu verfasserin aut Microstructures, Mechanical Properties and Electromagnetic Wave Absorption Performance of Porous SiC Ceramics by Direct Foaming Combined with Direct-Ink-Writing-Based 3D Printing 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Direct-ink-writing (DIW)-based 3D-printing technology combined with the direct-foaming method provides a new strategy for the fabrication of porous materials. We herein report a novel method of preparing porous SiC ceramics using the DIW process and investigate their mechanical and wave absorption properties. We investigated the effects of nozzle diameter on the macroscopic shape and microstructure of the DIW SiC green bodies. Subsequently, the influences of the sintering temperature on the mechanical properties and electromagnetic (EM) wave absorption performance of the final porous SiC-sintered ceramics were also studied. The results showed that the nozzle diameter played an important role in maintaining the structure of the SiC green part. The printed products contained large amounts of closed pores with diameters of approximately 100–200 μm. As the sintering temperature increased, the porosity of porous SiC-sintered ceramics decreased while the compressive strength increased. The maximum open porosity and compressive strength were 65.4% and 7.9 MPa, respectively. The minimum reflection loss (<i<R<sub<L</sub<</i<) was −48.9 dB, and the maximum effective absorption bandwidth (EAB) value was 3.7 GHz. Notably, porous SiC ceramics after sintering at 1650 °C could meet the application requirements with a compressive strength of 7.9 MPa, a minimum R<sub<L</sub< of −27.1 dB, and an EAB value of 3.4 GHz. This study demonstrated the potential of direct foaming combined with DIW-based 3D printing to prepare porous SiC ceramics for high strength and excellent EM wave absorption applications. direct foaming direct-ink writing mechanical properties electromagnetic (EM) wave absorption Technology T Electrical engineering. Electronics. Nuclear engineering Engineering (General). Civil engineering (General) Microscopy Descriptive and experimental mechanics Lu Zhang verfasserin aut Wenqing Wang verfasserin aut Ruyue Su verfasserin aut Xiong Gao verfasserin aut Suwen Li verfasserin aut Gang Wang verfasserin aut Rujie He verfasserin aut In Materials MDPI AG, 2009 16(2023), 7, p 2861 (DE-627)595712649 (DE-600)2487261-1 19961944 nnns volume:16 year:2023 number:7, p 2861 https://doi.org/10.3390/ma16072861 kostenfrei https://doaj.org/article/4000377b45a848979bf7f65d86dfd981 kostenfrei https://www.mdpi.com/1996-1944/16/7/2861 kostenfrei https://doaj.org/toc/1996-1944 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2023 7, p 2861 |
language |
English |
source |
In Materials 16(2023), 7, p 2861 volume:16 year:2023 number:7, p 2861 |
sourceStr |
In Materials 16(2023), 7, p 2861 volume:16 year:2023 number:7, p 2861 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
direct foaming direct-ink writing mechanical properties electromagnetic (EM) wave absorption Technology T Electrical engineering. Electronics. Nuclear engineering Engineering (General). Civil engineering (General) Microscopy Descriptive and experimental mechanics |
isfreeaccess_bool |
true |
container_title |
Materials |
authorswithroles_txt_mv |
Jianqin Wu @@aut@@ Lu Zhang @@aut@@ Wenqing Wang @@aut@@ Ruyue Su @@aut@@ Xiong Gao @@aut@@ Suwen Li @@aut@@ Gang Wang @@aut@@ Rujie He @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
595712649 |
id |
DOAJ089362594 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ089362594</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413042955.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ma16072861</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ089362594</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4000377b45a848979bf7f65d86dfd981</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH201-278.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC120-168.85</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jianqin Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Microstructures, Mechanical Properties and Electromagnetic Wave Absorption Performance of Porous SiC Ceramics by Direct Foaming Combined with Direct-Ink-Writing-Based 3D Printing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Direct-ink-writing (DIW)-based 3D-printing technology combined with the direct-foaming method provides a new strategy for the fabrication of porous materials. We herein report a novel method of preparing porous SiC ceramics using the DIW process and investigate their mechanical and wave absorption properties. We investigated the effects of nozzle diameter on the macroscopic shape and microstructure of the DIW SiC green bodies. Subsequently, the influences of the sintering temperature on the mechanical properties and electromagnetic (EM) wave absorption performance of the final porous SiC-sintered ceramics were also studied. The results showed that the nozzle diameter played an important role in maintaining the structure of the SiC green part. The printed products contained large amounts of closed pores with diameters of approximately 100–200 μm. As the sintering temperature increased, the porosity of porous SiC-sintered ceramics decreased while the compressive strength increased. The maximum open porosity and compressive strength were 65.4% and 7.9 MPa, respectively. The minimum reflection loss (<i<R<sub<L</sub<</i<) was −48.9 dB, and the maximum effective absorption bandwidth (EAB) value was 3.7 GHz. Notably, porous SiC ceramics after sintering at 1650 °C could meet the application requirements with a compressive strength of 7.9 MPa, a minimum R<sub<L</sub< of −27.1 dB, and an EAB value of 3.4 GHz. This study demonstrated the potential of direct foaming combined with DIW-based 3D printing to prepare porous SiC ceramics for high strength and excellent EM wave absorption applications.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">direct foaming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">direct-ink writing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mechanical properties</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electromagnetic (EM) wave absorption</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Microscopy</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Descriptive and experimental mechanics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lu Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenqing Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ruyue Su</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiong Gao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Suwen Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gang Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rujie He</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Materials</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">16(2023), 7, p 2861</subfield><subfield code="w">(DE-627)595712649</subfield><subfield code="w">(DE-600)2487261-1</subfield><subfield code="x">19961944</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:7, p 2861</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ma16072861</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4000377b45a848979bf7f65d86dfd981</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1996-1944/16/7/2861</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1944</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2023</subfield><subfield code="e">7, p 2861</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Jianqin Wu |
spellingShingle |
Jianqin Wu misc TK1-9971 misc TA1-2040 misc QH201-278.5 misc QC120-168.85 misc direct foaming misc direct-ink writing misc mechanical properties misc electromagnetic (EM) wave absorption misc Technology misc T misc Electrical engineering. Electronics. Nuclear engineering misc Engineering (General). Civil engineering (General) misc Microscopy misc Descriptive and experimental mechanics Microstructures, Mechanical Properties and Electromagnetic Wave Absorption Performance of Porous SiC Ceramics by Direct Foaming Combined with Direct-Ink-Writing-Based 3D Printing |
authorStr |
Jianqin Wu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)595712649 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
19961944 |
topic_title |
TK1-9971 TA1-2040 QH201-278.5 QC120-168.85 Microstructures, Mechanical Properties and Electromagnetic Wave Absorption Performance of Porous SiC Ceramics by Direct Foaming Combined with Direct-Ink-Writing-Based 3D Printing direct foaming direct-ink writing mechanical properties electromagnetic (EM) wave absorption |
topic |
misc TK1-9971 misc TA1-2040 misc QH201-278.5 misc QC120-168.85 misc direct foaming misc direct-ink writing misc mechanical properties misc electromagnetic (EM) wave absorption misc Technology misc T misc Electrical engineering. Electronics. Nuclear engineering misc Engineering (General). Civil engineering (General) misc Microscopy misc Descriptive and experimental mechanics |
topic_unstemmed |
misc TK1-9971 misc TA1-2040 misc QH201-278.5 misc QC120-168.85 misc direct foaming misc direct-ink writing misc mechanical properties misc electromagnetic (EM) wave absorption misc Technology misc T misc Electrical engineering. Electronics. Nuclear engineering misc Engineering (General). Civil engineering (General) misc Microscopy misc Descriptive and experimental mechanics |
topic_browse |
misc TK1-9971 misc TA1-2040 misc QH201-278.5 misc QC120-168.85 misc direct foaming misc direct-ink writing misc mechanical properties misc electromagnetic (EM) wave absorption misc Technology misc T misc Electrical engineering. Electronics. Nuclear engineering misc Engineering (General). Civil engineering (General) misc Microscopy misc Descriptive and experimental mechanics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Materials |
hierarchy_parent_id |
595712649 |
hierarchy_top_title |
Materials |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)595712649 (DE-600)2487261-1 |
title |
Microstructures, Mechanical Properties and Electromagnetic Wave Absorption Performance of Porous SiC Ceramics by Direct Foaming Combined with Direct-Ink-Writing-Based 3D Printing |
ctrlnum |
(DE-627)DOAJ089362594 (DE-599)DOAJ4000377b45a848979bf7f65d86dfd981 |
title_full |
Microstructures, Mechanical Properties and Electromagnetic Wave Absorption Performance of Porous SiC Ceramics by Direct Foaming Combined with Direct-Ink-Writing-Based 3D Printing |
author_sort |
Jianqin Wu |
journal |
Materials |
journalStr |
Materials |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Jianqin Wu Lu Zhang Wenqing Wang Ruyue Su Xiong Gao Suwen Li Gang Wang Rujie He |
container_volume |
16 |
class |
TK1-9971 TA1-2040 QH201-278.5 QC120-168.85 |
format_se |
Elektronische Aufsätze |
author-letter |
Jianqin Wu |
doi_str_mv |
10.3390/ma16072861 |
author2-role |
verfasserin |
title_sort |
microstructures, mechanical properties and electromagnetic wave absorption performance of porous sic ceramics by direct foaming combined with direct-ink-writing-based 3d printing |
callnumber |
TK1-9971 |
title_auth |
Microstructures, Mechanical Properties and Electromagnetic Wave Absorption Performance of Porous SiC Ceramics by Direct Foaming Combined with Direct-Ink-Writing-Based 3D Printing |
abstract |
Direct-ink-writing (DIW)-based 3D-printing technology combined with the direct-foaming method provides a new strategy for the fabrication of porous materials. We herein report a novel method of preparing porous SiC ceramics using the DIW process and investigate their mechanical and wave absorption properties. We investigated the effects of nozzle diameter on the macroscopic shape and microstructure of the DIW SiC green bodies. Subsequently, the influences of the sintering temperature on the mechanical properties and electromagnetic (EM) wave absorption performance of the final porous SiC-sintered ceramics were also studied. The results showed that the nozzle diameter played an important role in maintaining the structure of the SiC green part. The printed products contained large amounts of closed pores with diameters of approximately 100–200 μm. As the sintering temperature increased, the porosity of porous SiC-sintered ceramics decreased while the compressive strength increased. The maximum open porosity and compressive strength were 65.4% and 7.9 MPa, respectively. The minimum reflection loss (<i<R<sub<L</sub<</i<) was −48.9 dB, and the maximum effective absorption bandwidth (EAB) value was 3.7 GHz. Notably, porous SiC ceramics after sintering at 1650 °C could meet the application requirements with a compressive strength of 7.9 MPa, a minimum R<sub<L</sub< of −27.1 dB, and an EAB value of 3.4 GHz. This study demonstrated the potential of direct foaming combined with DIW-based 3D printing to prepare porous SiC ceramics for high strength and excellent EM wave absorption applications. |
abstractGer |
Direct-ink-writing (DIW)-based 3D-printing technology combined with the direct-foaming method provides a new strategy for the fabrication of porous materials. We herein report a novel method of preparing porous SiC ceramics using the DIW process and investigate their mechanical and wave absorption properties. We investigated the effects of nozzle diameter on the macroscopic shape and microstructure of the DIW SiC green bodies. Subsequently, the influences of the sintering temperature on the mechanical properties and electromagnetic (EM) wave absorption performance of the final porous SiC-sintered ceramics were also studied. The results showed that the nozzle diameter played an important role in maintaining the structure of the SiC green part. The printed products contained large amounts of closed pores with diameters of approximately 100–200 μm. As the sintering temperature increased, the porosity of porous SiC-sintered ceramics decreased while the compressive strength increased. The maximum open porosity and compressive strength were 65.4% and 7.9 MPa, respectively. The minimum reflection loss (<i<R<sub<L</sub<</i<) was −48.9 dB, and the maximum effective absorption bandwidth (EAB) value was 3.7 GHz. Notably, porous SiC ceramics after sintering at 1650 °C could meet the application requirements with a compressive strength of 7.9 MPa, a minimum R<sub<L</sub< of −27.1 dB, and an EAB value of 3.4 GHz. This study demonstrated the potential of direct foaming combined with DIW-based 3D printing to prepare porous SiC ceramics for high strength and excellent EM wave absorption applications. |
abstract_unstemmed |
Direct-ink-writing (DIW)-based 3D-printing technology combined with the direct-foaming method provides a new strategy for the fabrication of porous materials. We herein report a novel method of preparing porous SiC ceramics using the DIW process and investigate their mechanical and wave absorption properties. We investigated the effects of nozzle diameter on the macroscopic shape and microstructure of the DIW SiC green bodies. Subsequently, the influences of the sintering temperature on the mechanical properties and electromagnetic (EM) wave absorption performance of the final porous SiC-sintered ceramics were also studied. The results showed that the nozzle diameter played an important role in maintaining the structure of the SiC green part. The printed products contained large amounts of closed pores with diameters of approximately 100–200 μm. As the sintering temperature increased, the porosity of porous SiC-sintered ceramics decreased while the compressive strength increased. The maximum open porosity and compressive strength were 65.4% and 7.9 MPa, respectively. The minimum reflection loss (<i<R<sub<L</sub<</i<) was −48.9 dB, and the maximum effective absorption bandwidth (EAB) value was 3.7 GHz. Notably, porous SiC ceramics after sintering at 1650 °C could meet the application requirements with a compressive strength of 7.9 MPa, a minimum R<sub<L</sub< of −27.1 dB, and an EAB value of 3.4 GHz. This study demonstrated the potential of direct foaming combined with DIW-based 3D printing to prepare porous SiC ceramics for high strength and excellent EM wave absorption applications. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
7, p 2861 |
title_short |
Microstructures, Mechanical Properties and Electromagnetic Wave Absorption Performance of Porous SiC Ceramics by Direct Foaming Combined with Direct-Ink-Writing-Based 3D Printing |
url |
https://doi.org/10.3390/ma16072861 https://doaj.org/article/4000377b45a848979bf7f65d86dfd981 https://www.mdpi.com/1996-1944/16/7/2861 https://doaj.org/toc/1996-1944 |
remote_bool |
true |
author2 |
Lu Zhang Wenqing Wang Ruyue Su Xiong Gao Suwen Li Gang Wang Rujie He |
author2Str |
Lu Zhang Wenqing Wang Ruyue Su Xiong Gao Suwen Li Gang Wang Rujie He |
ppnlink |
595712649 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/ma16072861 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T22:41:23.652Z |
_version_ |
1803599461643976704 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ089362594</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413042955.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ma16072861</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ089362594</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4000377b45a848979bf7f65d86dfd981</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH201-278.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC120-168.85</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jianqin Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Microstructures, Mechanical Properties and Electromagnetic Wave Absorption Performance of Porous SiC Ceramics by Direct Foaming Combined with Direct-Ink-Writing-Based 3D Printing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Direct-ink-writing (DIW)-based 3D-printing technology combined with the direct-foaming method provides a new strategy for the fabrication of porous materials. We herein report a novel method of preparing porous SiC ceramics using the DIW process and investigate their mechanical and wave absorption properties. We investigated the effects of nozzle diameter on the macroscopic shape and microstructure of the DIW SiC green bodies. Subsequently, the influences of the sintering temperature on the mechanical properties and electromagnetic (EM) wave absorption performance of the final porous SiC-sintered ceramics were also studied. The results showed that the nozzle diameter played an important role in maintaining the structure of the SiC green part. The printed products contained large amounts of closed pores with diameters of approximately 100–200 μm. As the sintering temperature increased, the porosity of porous SiC-sintered ceramics decreased while the compressive strength increased. The maximum open porosity and compressive strength were 65.4% and 7.9 MPa, respectively. The minimum reflection loss (<i<R<sub<L</sub<</i<) was −48.9 dB, and the maximum effective absorption bandwidth (EAB) value was 3.7 GHz. Notably, porous SiC ceramics after sintering at 1650 °C could meet the application requirements with a compressive strength of 7.9 MPa, a minimum R<sub<L</sub< of −27.1 dB, and an EAB value of 3.4 GHz. This study demonstrated the potential of direct foaming combined with DIW-based 3D printing to prepare porous SiC ceramics for high strength and excellent EM wave absorption applications.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">direct foaming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">direct-ink writing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mechanical properties</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electromagnetic (EM) wave absorption</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Microscopy</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Descriptive and experimental mechanics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lu Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenqing Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ruyue Su</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiong Gao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Suwen Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gang Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rujie He</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Materials</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">16(2023), 7, p 2861</subfield><subfield code="w">(DE-627)595712649</subfield><subfield code="w">(DE-600)2487261-1</subfield><subfield code="x">19961944</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:7, p 2861</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ma16072861</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4000377b45a848979bf7f65d86dfd981</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1996-1944/16/7/2861</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1944</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2023</subfield><subfield code="e">7, p 2861</subfield></datafield></record></collection>
|
score |
7.401615 |