Power aware air quality sensing system with efficient data storage capability
Introduction: This paper presents a portable device of Air Quality Monitoring System (AQMS) based on a sensor platform. The purpose of the study is to power awareness, warning indication, and minimal data storage capability. Materials and methods: AQMS is developed by embedded design methodology. Th...
Ausführliche Beschreibung
Autor*in: |
Koel Datta Purkayastha [verfasserIn] Chayan Nath [verfasserIn] Sambhu Nath Pradhan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
Air pollution; Sensor; Wireless network; Low power; Data encoding |
---|
Übergeordnetes Werk: |
In: Journal of Air Pollution and Health - Tehran University of Medical Sciences, 2019, 8(2023), 1 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2023 ; number:1 |
Links: |
---|
DOI / URN: |
10.18502/japh.v8i1.12028 |
---|
Katalog-ID: |
DOAJ089472381 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ089472381 | ||
003 | DE-627 | ||
005 | 20230505013828.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230505s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.18502/japh.v8i1.12028 |2 doi | |
035 | |a (DE-627)DOAJ089472381 | ||
035 | |a (DE-599)DOAJ5bbe1b3e05b040a2aa1a26e3fe7383e1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TD1-1066 | |
100 | 0 | |a Koel Datta Purkayastha |e verfasserin |4 aut | |
245 | 1 | 0 | |a Power aware air quality sensing system with efficient data storage capability |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Introduction: This paper presents a portable device of Air Quality Monitoring System (AQMS) based on a sensor platform. The purpose of the study is to power awareness, warning indication, and minimal data storage capability. Materials and methods: AQMS is developed by embedded design methodology. The software part is based on the C programming language. AQMS device is made up of “transmitter” and “receiver” sections through the Zigbee wireless network. The objective is to collect concentrations of CO, NO2, CO2, humidity, and temperature to check air pollution for health awareness. A power-saving strategy is adopted in the "transmitter" of AQMS through a Demultiplexer circuit. To minimize the space complexity of storage and availability of long-term data, data encoding techniques are implemented. Results: By implementing switching activity on the sensors in AQMS, the active mode of sensing operations are controlled and a power saving of 18.41% is achieved. Extending the duration of transmission operation increases data storage in the “receiver” unit. Hence, two encoding techniques are developed where real-time data are encoded in binary form: 2-bit encoding and 3-bit encoding. According to the results, 2-bit encoding saves 50% of storage space and 3-bit encoding saves 25%, compared to not utilizing any encoding strategy, sacrificing data accuracy by less than 5%. Conclusion: AQMS design is created with the implementations of low power consumption and low storage. Additionally, an alarming condition is set in AQMS for indicating the level of pollutants in the air to determine the risk level of exposure which is dangerous for human health. | ||
650 | 4 | |a Air pollution; Sensor; Wireless network; Low power; Data encoding | |
653 | 0 | |a Environmental technology. Sanitary engineering | |
700 | 0 | |a Chayan Nath |e verfasserin |4 aut | |
700 | 0 | |a Sambhu Nath Pradhan |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal of Air Pollution and Health |d Tehran University of Medical Sciences, 2019 |g 8(2023), 1 |w (DE-627)1666857629 |x 24763071 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2023 |g number:1 |
856 | 4 | 0 | |u https://doi.org/10.18502/japh.v8i1.12028 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/5bbe1b3e05b040a2aa1a26e3fe7383e1 |z kostenfrei |
856 | 4 | 0 | |u https://japh.tums.ac.ir/index.php/japh/article/view/401 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2476-3071 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2023 |e 1 |
author_variant |
k d p kdp c n cn s n p snp |
---|---|
matchkey_str |
article:24763071:2023----::oeaaeiqaiyesnssewtefceta |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TD |
publishDate |
2023 |
allfields |
10.18502/japh.v8i1.12028 doi (DE-627)DOAJ089472381 (DE-599)DOAJ5bbe1b3e05b040a2aa1a26e3fe7383e1 DE-627 ger DE-627 rakwb eng TD1-1066 Koel Datta Purkayastha verfasserin aut Power aware air quality sensing system with efficient data storage capability 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Introduction: This paper presents a portable device of Air Quality Monitoring System (AQMS) based on a sensor platform. The purpose of the study is to power awareness, warning indication, and minimal data storage capability. Materials and methods: AQMS is developed by embedded design methodology. The software part is based on the C programming language. AQMS device is made up of “transmitter” and “receiver” sections through the Zigbee wireless network. The objective is to collect concentrations of CO, NO2, CO2, humidity, and temperature to check air pollution for health awareness. A power-saving strategy is adopted in the "transmitter" of AQMS through a Demultiplexer circuit. To minimize the space complexity of storage and availability of long-term data, data encoding techniques are implemented. Results: By implementing switching activity on the sensors in AQMS, the active mode of sensing operations are controlled and a power saving of 18.41% is achieved. Extending the duration of transmission operation increases data storage in the “receiver” unit. Hence, two encoding techniques are developed where real-time data are encoded in binary form: 2-bit encoding and 3-bit encoding. According to the results, 2-bit encoding saves 50% of storage space and 3-bit encoding saves 25%, compared to not utilizing any encoding strategy, sacrificing data accuracy by less than 5%. Conclusion: AQMS design is created with the implementations of low power consumption and low storage. Additionally, an alarming condition is set in AQMS for indicating the level of pollutants in the air to determine the risk level of exposure which is dangerous for human health. Air pollution; Sensor; Wireless network; Low power; Data encoding Environmental technology. Sanitary engineering Chayan Nath verfasserin aut Sambhu Nath Pradhan verfasserin aut In Journal of Air Pollution and Health Tehran University of Medical Sciences, 2019 8(2023), 1 (DE-627)1666857629 24763071 nnns volume:8 year:2023 number:1 https://doi.org/10.18502/japh.v8i1.12028 kostenfrei https://doaj.org/article/5bbe1b3e05b040a2aa1a26e3fe7383e1 kostenfrei https://japh.tums.ac.ir/index.php/japh/article/view/401 kostenfrei https://doaj.org/toc/2476-3071 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 8 2023 1 |
spelling |
10.18502/japh.v8i1.12028 doi (DE-627)DOAJ089472381 (DE-599)DOAJ5bbe1b3e05b040a2aa1a26e3fe7383e1 DE-627 ger DE-627 rakwb eng TD1-1066 Koel Datta Purkayastha verfasserin aut Power aware air quality sensing system with efficient data storage capability 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Introduction: This paper presents a portable device of Air Quality Monitoring System (AQMS) based on a sensor platform. The purpose of the study is to power awareness, warning indication, and minimal data storage capability. Materials and methods: AQMS is developed by embedded design methodology. The software part is based on the C programming language. AQMS device is made up of “transmitter” and “receiver” sections through the Zigbee wireless network. The objective is to collect concentrations of CO, NO2, CO2, humidity, and temperature to check air pollution for health awareness. A power-saving strategy is adopted in the "transmitter" of AQMS through a Demultiplexer circuit. To minimize the space complexity of storage and availability of long-term data, data encoding techniques are implemented. Results: By implementing switching activity on the sensors in AQMS, the active mode of sensing operations are controlled and a power saving of 18.41% is achieved. Extending the duration of transmission operation increases data storage in the “receiver” unit. Hence, two encoding techniques are developed where real-time data are encoded in binary form: 2-bit encoding and 3-bit encoding. According to the results, 2-bit encoding saves 50% of storage space and 3-bit encoding saves 25%, compared to not utilizing any encoding strategy, sacrificing data accuracy by less than 5%. Conclusion: AQMS design is created with the implementations of low power consumption and low storage. Additionally, an alarming condition is set in AQMS for indicating the level of pollutants in the air to determine the risk level of exposure which is dangerous for human health. Air pollution; Sensor; Wireless network; Low power; Data encoding Environmental technology. Sanitary engineering Chayan Nath verfasserin aut Sambhu Nath Pradhan verfasserin aut In Journal of Air Pollution and Health Tehran University of Medical Sciences, 2019 8(2023), 1 (DE-627)1666857629 24763071 nnns volume:8 year:2023 number:1 https://doi.org/10.18502/japh.v8i1.12028 kostenfrei https://doaj.org/article/5bbe1b3e05b040a2aa1a26e3fe7383e1 kostenfrei https://japh.tums.ac.ir/index.php/japh/article/view/401 kostenfrei https://doaj.org/toc/2476-3071 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 8 2023 1 |
allfields_unstemmed |
10.18502/japh.v8i1.12028 doi (DE-627)DOAJ089472381 (DE-599)DOAJ5bbe1b3e05b040a2aa1a26e3fe7383e1 DE-627 ger DE-627 rakwb eng TD1-1066 Koel Datta Purkayastha verfasserin aut Power aware air quality sensing system with efficient data storage capability 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Introduction: This paper presents a portable device of Air Quality Monitoring System (AQMS) based on a sensor platform. The purpose of the study is to power awareness, warning indication, and minimal data storage capability. Materials and methods: AQMS is developed by embedded design methodology. The software part is based on the C programming language. AQMS device is made up of “transmitter” and “receiver” sections through the Zigbee wireless network. The objective is to collect concentrations of CO, NO2, CO2, humidity, and temperature to check air pollution for health awareness. A power-saving strategy is adopted in the "transmitter" of AQMS through a Demultiplexer circuit. To minimize the space complexity of storage and availability of long-term data, data encoding techniques are implemented. Results: By implementing switching activity on the sensors in AQMS, the active mode of sensing operations are controlled and a power saving of 18.41% is achieved. Extending the duration of transmission operation increases data storage in the “receiver” unit. Hence, two encoding techniques are developed where real-time data are encoded in binary form: 2-bit encoding and 3-bit encoding. According to the results, 2-bit encoding saves 50% of storage space and 3-bit encoding saves 25%, compared to not utilizing any encoding strategy, sacrificing data accuracy by less than 5%. Conclusion: AQMS design is created with the implementations of low power consumption and low storage. Additionally, an alarming condition is set in AQMS for indicating the level of pollutants in the air to determine the risk level of exposure which is dangerous for human health. Air pollution; Sensor; Wireless network; Low power; Data encoding Environmental technology. Sanitary engineering Chayan Nath verfasserin aut Sambhu Nath Pradhan verfasserin aut In Journal of Air Pollution and Health Tehran University of Medical Sciences, 2019 8(2023), 1 (DE-627)1666857629 24763071 nnns volume:8 year:2023 number:1 https://doi.org/10.18502/japh.v8i1.12028 kostenfrei https://doaj.org/article/5bbe1b3e05b040a2aa1a26e3fe7383e1 kostenfrei https://japh.tums.ac.ir/index.php/japh/article/view/401 kostenfrei https://doaj.org/toc/2476-3071 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 8 2023 1 |
allfieldsGer |
10.18502/japh.v8i1.12028 doi (DE-627)DOAJ089472381 (DE-599)DOAJ5bbe1b3e05b040a2aa1a26e3fe7383e1 DE-627 ger DE-627 rakwb eng TD1-1066 Koel Datta Purkayastha verfasserin aut Power aware air quality sensing system with efficient data storage capability 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Introduction: This paper presents a portable device of Air Quality Monitoring System (AQMS) based on a sensor platform. The purpose of the study is to power awareness, warning indication, and minimal data storage capability. Materials and methods: AQMS is developed by embedded design methodology. The software part is based on the C programming language. AQMS device is made up of “transmitter” and “receiver” sections through the Zigbee wireless network. The objective is to collect concentrations of CO, NO2, CO2, humidity, and temperature to check air pollution for health awareness. A power-saving strategy is adopted in the "transmitter" of AQMS through a Demultiplexer circuit. To minimize the space complexity of storage and availability of long-term data, data encoding techniques are implemented. Results: By implementing switching activity on the sensors in AQMS, the active mode of sensing operations are controlled and a power saving of 18.41% is achieved. Extending the duration of transmission operation increases data storage in the “receiver” unit. Hence, two encoding techniques are developed where real-time data are encoded in binary form: 2-bit encoding and 3-bit encoding. According to the results, 2-bit encoding saves 50% of storage space and 3-bit encoding saves 25%, compared to not utilizing any encoding strategy, sacrificing data accuracy by less than 5%. Conclusion: AQMS design is created with the implementations of low power consumption and low storage. Additionally, an alarming condition is set in AQMS for indicating the level of pollutants in the air to determine the risk level of exposure which is dangerous for human health. Air pollution; Sensor; Wireless network; Low power; Data encoding Environmental technology. Sanitary engineering Chayan Nath verfasserin aut Sambhu Nath Pradhan verfasserin aut In Journal of Air Pollution and Health Tehran University of Medical Sciences, 2019 8(2023), 1 (DE-627)1666857629 24763071 nnns volume:8 year:2023 number:1 https://doi.org/10.18502/japh.v8i1.12028 kostenfrei https://doaj.org/article/5bbe1b3e05b040a2aa1a26e3fe7383e1 kostenfrei https://japh.tums.ac.ir/index.php/japh/article/view/401 kostenfrei https://doaj.org/toc/2476-3071 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 8 2023 1 |
allfieldsSound |
10.18502/japh.v8i1.12028 doi (DE-627)DOAJ089472381 (DE-599)DOAJ5bbe1b3e05b040a2aa1a26e3fe7383e1 DE-627 ger DE-627 rakwb eng TD1-1066 Koel Datta Purkayastha verfasserin aut Power aware air quality sensing system with efficient data storage capability 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Introduction: This paper presents a portable device of Air Quality Monitoring System (AQMS) based on a sensor platform. The purpose of the study is to power awareness, warning indication, and minimal data storage capability. Materials and methods: AQMS is developed by embedded design methodology. The software part is based on the C programming language. AQMS device is made up of “transmitter” and “receiver” sections through the Zigbee wireless network. The objective is to collect concentrations of CO, NO2, CO2, humidity, and temperature to check air pollution for health awareness. A power-saving strategy is adopted in the "transmitter" of AQMS through a Demultiplexer circuit. To minimize the space complexity of storage and availability of long-term data, data encoding techniques are implemented. Results: By implementing switching activity on the sensors in AQMS, the active mode of sensing operations are controlled and a power saving of 18.41% is achieved. Extending the duration of transmission operation increases data storage in the “receiver” unit. Hence, two encoding techniques are developed where real-time data are encoded in binary form: 2-bit encoding and 3-bit encoding. According to the results, 2-bit encoding saves 50% of storage space and 3-bit encoding saves 25%, compared to not utilizing any encoding strategy, sacrificing data accuracy by less than 5%. Conclusion: AQMS design is created with the implementations of low power consumption and low storage. Additionally, an alarming condition is set in AQMS for indicating the level of pollutants in the air to determine the risk level of exposure which is dangerous for human health. Air pollution; Sensor; Wireless network; Low power; Data encoding Environmental technology. Sanitary engineering Chayan Nath verfasserin aut Sambhu Nath Pradhan verfasserin aut In Journal of Air Pollution and Health Tehran University of Medical Sciences, 2019 8(2023), 1 (DE-627)1666857629 24763071 nnns volume:8 year:2023 number:1 https://doi.org/10.18502/japh.v8i1.12028 kostenfrei https://doaj.org/article/5bbe1b3e05b040a2aa1a26e3fe7383e1 kostenfrei https://japh.tums.ac.ir/index.php/japh/article/view/401 kostenfrei https://doaj.org/toc/2476-3071 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 8 2023 1 |
language |
English |
source |
In Journal of Air Pollution and Health 8(2023), 1 volume:8 year:2023 number:1 |
sourceStr |
In Journal of Air Pollution and Health 8(2023), 1 volume:8 year:2023 number:1 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Air pollution; Sensor; Wireless network; Low power; Data encoding Environmental technology. Sanitary engineering |
isfreeaccess_bool |
true |
container_title |
Journal of Air Pollution and Health |
authorswithroles_txt_mv |
Koel Datta Purkayastha @@aut@@ Chayan Nath @@aut@@ Sambhu Nath Pradhan @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
1666857629 |
id |
DOAJ089472381 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ089472381</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505013828.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.18502/japh.v8i1.12028</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ089472381</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5bbe1b3e05b040a2aa1a26e3fe7383e1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD1-1066</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Koel Datta Purkayastha</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Power aware air quality sensing system with efficient data storage capability</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Introduction: This paper presents a portable device of Air Quality Monitoring System (AQMS) based on a sensor platform. The purpose of the study is to power awareness, warning indication, and minimal data storage capability. Materials and methods: AQMS is developed by embedded design methodology. The software part is based on the C programming language. AQMS device is made up of “transmitter” and “receiver” sections through the Zigbee wireless network. The objective is to collect concentrations of CO, NO2, CO2, humidity, and temperature to check air pollution for health awareness. A power-saving strategy is adopted in the "transmitter" of AQMS through a Demultiplexer circuit. To minimize the space complexity of storage and availability of long-term data, data encoding techniques are implemented. Results: By implementing switching activity on the sensors in AQMS, the active mode of sensing operations are controlled and a power saving of 18.41% is achieved. Extending the duration of transmission operation increases data storage in the “receiver” unit. Hence, two encoding techniques are developed where real-time data are encoded in binary form: 2-bit encoding and 3-bit encoding. According to the results, 2-bit encoding saves 50% of storage space and 3-bit encoding saves 25%, compared to not utilizing any encoding strategy, sacrificing data accuracy by less than 5%. Conclusion: AQMS design is created with the implementations of low power consumption and low storage. Additionally, an alarming condition is set in AQMS for indicating the level of pollutants in the air to determine the risk level of exposure which is dangerous for human health.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Air pollution; Sensor; Wireless network; Low power; Data encoding</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental technology. Sanitary engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chayan Nath</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sambhu Nath Pradhan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Air Pollution and Health</subfield><subfield code="d">Tehran University of Medical Sciences, 2019</subfield><subfield code="g">8(2023), 1</subfield><subfield code="w">(DE-627)1666857629</subfield><subfield code="x">24763071</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.18502/japh.v8i1.12028</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5bbe1b3e05b040a2aa1a26e3fe7383e1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://japh.tums.ac.ir/index.php/japh/article/view/401</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2476-3071</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Koel Datta Purkayastha |
spellingShingle |
Koel Datta Purkayastha misc TD1-1066 misc Air pollution; Sensor; Wireless network; Low power; Data encoding misc Environmental technology. Sanitary engineering Power aware air quality sensing system with efficient data storage capability |
authorStr |
Koel Datta Purkayastha |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1666857629 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TD1-1066 |
illustrated |
Not Illustrated |
issn |
24763071 |
topic_title |
TD1-1066 Power aware air quality sensing system with efficient data storage capability Air pollution; Sensor; Wireless network; Low power; Data encoding |
topic |
misc TD1-1066 misc Air pollution; Sensor; Wireless network; Low power; Data encoding misc Environmental technology. Sanitary engineering |
topic_unstemmed |
misc TD1-1066 misc Air pollution; Sensor; Wireless network; Low power; Data encoding misc Environmental technology. Sanitary engineering |
topic_browse |
misc TD1-1066 misc Air pollution; Sensor; Wireless network; Low power; Data encoding misc Environmental technology. Sanitary engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Air Pollution and Health |
hierarchy_parent_id |
1666857629 |
hierarchy_top_title |
Journal of Air Pollution and Health |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1666857629 |
title |
Power aware air quality sensing system with efficient data storage capability |
ctrlnum |
(DE-627)DOAJ089472381 (DE-599)DOAJ5bbe1b3e05b040a2aa1a26e3fe7383e1 |
title_full |
Power aware air quality sensing system with efficient data storage capability |
author_sort |
Koel Datta Purkayastha |
journal |
Journal of Air Pollution and Health |
journalStr |
Journal of Air Pollution and Health |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Koel Datta Purkayastha Chayan Nath Sambhu Nath Pradhan |
container_volume |
8 |
class |
TD1-1066 |
format_se |
Elektronische Aufsätze |
author-letter |
Koel Datta Purkayastha |
doi_str_mv |
10.18502/japh.v8i1.12028 |
author2-role |
verfasserin |
title_sort |
power aware air quality sensing system with efficient data storage capability |
callnumber |
TD1-1066 |
title_auth |
Power aware air quality sensing system with efficient data storage capability |
abstract |
Introduction: This paper presents a portable device of Air Quality Monitoring System (AQMS) based on a sensor platform. The purpose of the study is to power awareness, warning indication, and minimal data storage capability. Materials and methods: AQMS is developed by embedded design methodology. The software part is based on the C programming language. AQMS device is made up of “transmitter” and “receiver” sections through the Zigbee wireless network. The objective is to collect concentrations of CO, NO2, CO2, humidity, and temperature to check air pollution for health awareness. A power-saving strategy is adopted in the "transmitter" of AQMS through a Demultiplexer circuit. To minimize the space complexity of storage and availability of long-term data, data encoding techniques are implemented. Results: By implementing switching activity on the sensors in AQMS, the active mode of sensing operations are controlled and a power saving of 18.41% is achieved. Extending the duration of transmission operation increases data storage in the “receiver” unit. Hence, two encoding techniques are developed where real-time data are encoded in binary form: 2-bit encoding and 3-bit encoding. According to the results, 2-bit encoding saves 50% of storage space and 3-bit encoding saves 25%, compared to not utilizing any encoding strategy, sacrificing data accuracy by less than 5%. Conclusion: AQMS design is created with the implementations of low power consumption and low storage. Additionally, an alarming condition is set in AQMS for indicating the level of pollutants in the air to determine the risk level of exposure which is dangerous for human health. |
abstractGer |
Introduction: This paper presents a portable device of Air Quality Monitoring System (AQMS) based on a sensor platform. The purpose of the study is to power awareness, warning indication, and minimal data storage capability. Materials and methods: AQMS is developed by embedded design methodology. The software part is based on the C programming language. AQMS device is made up of “transmitter” and “receiver” sections through the Zigbee wireless network. The objective is to collect concentrations of CO, NO2, CO2, humidity, and temperature to check air pollution for health awareness. A power-saving strategy is adopted in the "transmitter" of AQMS through a Demultiplexer circuit. To minimize the space complexity of storage and availability of long-term data, data encoding techniques are implemented. Results: By implementing switching activity on the sensors in AQMS, the active mode of sensing operations are controlled and a power saving of 18.41% is achieved. Extending the duration of transmission operation increases data storage in the “receiver” unit. Hence, two encoding techniques are developed where real-time data are encoded in binary form: 2-bit encoding and 3-bit encoding. According to the results, 2-bit encoding saves 50% of storage space and 3-bit encoding saves 25%, compared to not utilizing any encoding strategy, sacrificing data accuracy by less than 5%. Conclusion: AQMS design is created with the implementations of low power consumption and low storage. Additionally, an alarming condition is set in AQMS for indicating the level of pollutants in the air to determine the risk level of exposure which is dangerous for human health. |
abstract_unstemmed |
Introduction: This paper presents a portable device of Air Quality Monitoring System (AQMS) based on a sensor platform. The purpose of the study is to power awareness, warning indication, and minimal data storage capability. Materials and methods: AQMS is developed by embedded design methodology. The software part is based on the C programming language. AQMS device is made up of “transmitter” and “receiver” sections through the Zigbee wireless network. The objective is to collect concentrations of CO, NO2, CO2, humidity, and temperature to check air pollution for health awareness. A power-saving strategy is adopted in the "transmitter" of AQMS through a Demultiplexer circuit. To minimize the space complexity of storage and availability of long-term data, data encoding techniques are implemented. Results: By implementing switching activity on the sensors in AQMS, the active mode of sensing operations are controlled and a power saving of 18.41% is achieved. Extending the duration of transmission operation increases data storage in the “receiver” unit. Hence, two encoding techniques are developed where real-time data are encoded in binary form: 2-bit encoding and 3-bit encoding. According to the results, 2-bit encoding saves 50% of storage space and 3-bit encoding saves 25%, compared to not utilizing any encoding strategy, sacrificing data accuracy by less than 5%. Conclusion: AQMS design is created with the implementations of low power consumption and low storage. Additionally, an alarming condition is set in AQMS for indicating the level of pollutants in the air to determine the risk level of exposure which is dangerous for human health. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Power aware air quality sensing system with efficient data storage capability |
url |
https://doi.org/10.18502/japh.v8i1.12028 https://doaj.org/article/5bbe1b3e05b040a2aa1a26e3fe7383e1 https://japh.tums.ac.ir/index.php/japh/article/view/401 https://doaj.org/toc/2476-3071 |
remote_bool |
true |
author2 |
Chayan Nath Sambhu Nath Pradhan |
author2Str |
Chayan Nath Sambhu Nath Pradhan |
ppnlink |
1666857629 |
callnumber-subject |
TD - Environmental Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.18502/japh.v8i1.12028 |
callnumber-a |
TD1-1066 |
up_date |
2024-07-03T23:14:36.014Z |
_version_ |
1803601550785904640 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ089472381</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505013828.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.18502/japh.v8i1.12028</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ089472381</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5bbe1b3e05b040a2aa1a26e3fe7383e1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD1-1066</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Koel Datta Purkayastha</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Power aware air quality sensing system with efficient data storage capability</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Introduction: This paper presents a portable device of Air Quality Monitoring System (AQMS) based on a sensor platform. The purpose of the study is to power awareness, warning indication, and minimal data storage capability. Materials and methods: AQMS is developed by embedded design methodology. The software part is based on the C programming language. AQMS device is made up of “transmitter” and “receiver” sections through the Zigbee wireless network. The objective is to collect concentrations of CO, NO2, CO2, humidity, and temperature to check air pollution for health awareness. A power-saving strategy is adopted in the "transmitter" of AQMS through a Demultiplexer circuit. To minimize the space complexity of storage and availability of long-term data, data encoding techniques are implemented. Results: By implementing switching activity on the sensors in AQMS, the active mode of sensing operations are controlled and a power saving of 18.41% is achieved. Extending the duration of transmission operation increases data storage in the “receiver” unit. Hence, two encoding techniques are developed where real-time data are encoded in binary form: 2-bit encoding and 3-bit encoding. According to the results, 2-bit encoding saves 50% of storage space and 3-bit encoding saves 25%, compared to not utilizing any encoding strategy, sacrificing data accuracy by less than 5%. Conclusion: AQMS design is created with the implementations of low power consumption and low storage. Additionally, an alarming condition is set in AQMS for indicating the level of pollutants in the air to determine the risk level of exposure which is dangerous for human health.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Air pollution; Sensor; Wireless network; Low power; Data encoding</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental technology. Sanitary engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chayan Nath</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sambhu Nath Pradhan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Air Pollution and Health</subfield><subfield code="d">Tehran University of Medical Sciences, 2019</subfield><subfield code="g">8(2023), 1</subfield><subfield code="w">(DE-627)1666857629</subfield><subfield code="x">24763071</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.18502/japh.v8i1.12028</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5bbe1b3e05b040a2aa1a26e3fe7383e1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://japh.tums.ac.ir/index.php/japh/article/view/401</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2476-3071</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield></datafield></record></collection>
|
score |
7.3985195 |