Parametric calibration of Hargreaves–Samani (HS) reference evapotranspiration equation with different coefficient combinations under the humid environment
Evapotranspiration (ET) is a major hydrological component in irrigation system design, irrigation scheduling, and hydrologic and drainage design. Estimating crop ET requires accurate reference evapotranspiration (ET0) measurement. In this work, numerous modified Hargreaves models for ET0 were tested...
Ausführliche Beschreibung
Autor*in: |
Pankaj Kumar Pandey [verfasserIn] Vanita Pandey [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: HydroResearch - KeAi Communications Co., Ltd., 2020, 6(2023), Seite 147-155 |
---|---|
Übergeordnetes Werk: |
volume:6 ; year:2023 ; pages:147-155 |
Links: |
---|
DOI / URN: |
10.1016/j.hydres.2023.04.003 |
---|
Katalog-ID: |
DOAJ089592875 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ089592875 | ||
003 | DE-627 | ||
005 | 20230505015655.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230505s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.hydres.2023.04.003 |2 doi | |
035 | |a (DE-627)DOAJ089592875 | ||
035 | |a (DE-599)DOAJe66918e8e546461db2d0b5e02eac03aa | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TD201-500 | |
100 | 0 | |a Pankaj Kumar Pandey |e verfasserin |4 aut | |
245 | 1 | 0 | |a Parametric calibration of Hargreaves–Samani (HS) reference evapotranspiration equation with different coefficient combinations under the humid environment |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Evapotranspiration (ET) is a major hydrological component in irrigation system design, irrigation scheduling, and hydrologic and drainage design. Estimating crop ET requires accurate reference evapotranspiration (ET0) measurement. In this work, numerous modified Hargreaves models for ET0 were tested and calibrated against the standard FAO-56 Penman-Monteith eq. (F-56 PM) for further improvement in performance in the humid subtropical environment of Imphal West District, Manipur.The Martinez-Cob and Tejero-Juste (2004) equation resulted in best region-wide ET0 values of 3.536 mm d−1, mean absolute error (MAE) = 0.367 mm d−1, standard error of estimate (SEE) = 0.348 mm d−1, correlation coefficient (r) = 0.855, coefficient of determination (R2) =0.731, and index of agreement (d) = 0.891. Trajkovic (2007) equation has the second-best ET0 values of 3.383, MAE = 0.413 mm d−1, SEE = 0.3.77 mm d−1, r = 0.827, R2 = 0.685, and d = 0.852. The third-best equation, Ravazzani et al. (2012), with average ET0 values of 4.015 mm d−1, MAE = 0.506 mm d−1, SEE = 0.395 mm d−1, r = 0.855, R2 = 0.731, and d = 0.79.The observed wind speed data were sorted into five groups based on the average wind speed in different months in the region (1 m/s,2.5 m/s, 3.5 m/s, 4.5 m/s, and 5.5 m/s), and the estimated evapotranspiration was used to calibrate 14 selected combinations of the Hargreaves models. The calibration process significantly improved the performance of the different identified Hargreaves models.The analysis indicated that the improvement in estimation decreases with increasing wind speed. The revised coefficient predicted evapotranspiration is closer to F-56PM, with MAE (mm d−1) ranging from 0.125 at 1 m/s to 0.248 at 4.5 m/s and SEE(mm d−1) from 0.16 at 1 m/s to 0.245 at 5.5 m/s, as compared to the original Hargreaves equation, whose MAE is 0.543, and SEE is 0.400.More research must be conducted to extend the applicability of this equation to other regions of the State. | ||
650 | 4 | |a Hargreaves-Samani equation | |
650 | 4 | |a Parametric calibration | |
650 | 4 | |a Wind coefficient. SSE | |
650 | 4 | |a MAE | |
653 | 0 | |a Water supply for domestic and industrial purposes | |
700 | 0 | |a Vanita Pandey |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t HydroResearch |d KeAi Communications Co., Ltd., 2020 |g 6(2023), Seite 147-155 |w (DE-627)1667350617 |w (DE-600)2974850-1 |x 25897578 |7 nnns |
773 | 1 | 8 | |g volume:6 |g year:2023 |g pages:147-155 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.hydres.2023.04.003 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/e66918e8e546461db2d0b5e02eac03aa |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S2589757823000161 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2589-7578 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 6 |j 2023 |h 147-155 |
author_variant |
p k p pkp v p vp |
---|---|
matchkey_str |
article:25897578:2023----::aaercairtoohrraesmnhrfrnevptasiainqainihifrncefceto |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TD |
publishDate |
2023 |
allfields |
10.1016/j.hydres.2023.04.003 doi (DE-627)DOAJ089592875 (DE-599)DOAJe66918e8e546461db2d0b5e02eac03aa DE-627 ger DE-627 rakwb eng TD201-500 Pankaj Kumar Pandey verfasserin aut Parametric calibration of Hargreaves–Samani (HS) reference evapotranspiration equation with different coefficient combinations under the humid environment 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Evapotranspiration (ET) is a major hydrological component in irrigation system design, irrigation scheduling, and hydrologic and drainage design. Estimating crop ET requires accurate reference evapotranspiration (ET0) measurement. In this work, numerous modified Hargreaves models for ET0 were tested and calibrated against the standard FAO-56 Penman-Monteith eq. (F-56 PM) for further improvement in performance in the humid subtropical environment of Imphal West District, Manipur.The Martinez-Cob and Tejero-Juste (2004) equation resulted in best region-wide ET0 values of 3.536 mm d−1, mean absolute error (MAE) = 0.367 mm d−1, standard error of estimate (SEE) = 0.348 mm d−1, correlation coefficient (r) = 0.855, coefficient of determination (R2) =0.731, and index of agreement (d) = 0.891. Trajkovic (2007) equation has the second-best ET0 values of 3.383, MAE = 0.413 mm d−1, SEE = 0.3.77 mm d−1, r = 0.827, R2 = 0.685, and d = 0.852. The third-best equation, Ravazzani et al. (2012), with average ET0 values of 4.015 mm d−1, MAE = 0.506 mm d−1, SEE = 0.395 mm d−1, r = 0.855, R2 = 0.731, and d = 0.79.The observed wind speed data were sorted into five groups based on the average wind speed in different months in the region (1 m/s,2.5 m/s, 3.5 m/s, 4.5 m/s, and 5.5 m/s), and the estimated evapotranspiration was used to calibrate 14 selected combinations of the Hargreaves models. The calibration process significantly improved the performance of the different identified Hargreaves models.The analysis indicated that the improvement in estimation decreases with increasing wind speed. The revised coefficient predicted evapotranspiration is closer to F-56PM, with MAE (mm d−1) ranging from 0.125 at 1 m/s to 0.248 at 4.5 m/s and SEE(mm d−1) from 0.16 at 1 m/s to 0.245 at 5.5 m/s, as compared to the original Hargreaves equation, whose MAE is 0.543, and SEE is 0.400.More research must be conducted to extend the applicability of this equation to other regions of the State. Hargreaves-Samani equation Parametric calibration Wind coefficient. SSE MAE Water supply for domestic and industrial purposes Vanita Pandey verfasserin aut In HydroResearch KeAi Communications Co., Ltd., 2020 6(2023), Seite 147-155 (DE-627)1667350617 (DE-600)2974850-1 25897578 nnns volume:6 year:2023 pages:147-155 https://doi.org/10.1016/j.hydres.2023.04.003 kostenfrei https://doaj.org/article/e66918e8e546461db2d0b5e02eac03aa kostenfrei http://www.sciencedirect.com/science/article/pii/S2589757823000161 kostenfrei https://doaj.org/toc/2589-7578 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2023 147-155 |
spelling |
10.1016/j.hydres.2023.04.003 doi (DE-627)DOAJ089592875 (DE-599)DOAJe66918e8e546461db2d0b5e02eac03aa DE-627 ger DE-627 rakwb eng TD201-500 Pankaj Kumar Pandey verfasserin aut Parametric calibration of Hargreaves–Samani (HS) reference evapotranspiration equation with different coefficient combinations under the humid environment 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Evapotranspiration (ET) is a major hydrological component in irrigation system design, irrigation scheduling, and hydrologic and drainage design. Estimating crop ET requires accurate reference evapotranspiration (ET0) measurement. In this work, numerous modified Hargreaves models for ET0 were tested and calibrated against the standard FAO-56 Penman-Monteith eq. (F-56 PM) for further improvement in performance in the humid subtropical environment of Imphal West District, Manipur.The Martinez-Cob and Tejero-Juste (2004) equation resulted in best region-wide ET0 values of 3.536 mm d−1, mean absolute error (MAE) = 0.367 mm d−1, standard error of estimate (SEE) = 0.348 mm d−1, correlation coefficient (r) = 0.855, coefficient of determination (R2) =0.731, and index of agreement (d) = 0.891. Trajkovic (2007) equation has the second-best ET0 values of 3.383, MAE = 0.413 mm d−1, SEE = 0.3.77 mm d−1, r = 0.827, R2 = 0.685, and d = 0.852. The third-best equation, Ravazzani et al. (2012), with average ET0 values of 4.015 mm d−1, MAE = 0.506 mm d−1, SEE = 0.395 mm d−1, r = 0.855, R2 = 0.731, and d = 0.79.The observed wind speed data were sorted into five groups based on the average wind speed in different months in the region (1 m/s,2.5 m/s, 3.5 m/s, 4.5 m/s, and 5.5 m/s), and the estimated evapotranspiration was used to calibrate 14 selected combinations of the Hargreaves models. The calibration process significantly improved the performance of the different identified Hargreaves models.The analysis indicated that the improvement in estimation decreases with increasing wind speed. The revised coefficient predicted evapotranspiration is closer to F-56PM, with MAE (mm d−1) ranging from 0.125 at 1 m/s to 0.248 at 4.5 m/s and SEE(mm d−1) from 0.16 at 1 m/s to 0.245 at 5.5 m/s, as compared to the original Hargreaves equation, whose MAE is 0.543, and SEE is 0.400.More research must be conducted to extend the applicability of this equation to other regions of the State. Hargreaves-Samani equation Parametric calibration Wind coefficient. SSE MAE Water supply for domestic and industrial purposes Vanita Pandey verfasserin aut In HydroResearch KeAi Communications Co., Ltd., 2020 6(2023), Seite 147-155 (DE-627)1667350617 (DE-600)2974850-1 25897578 nnns volume:6 year:2023 pages:147-155 https://doi.org/10.1016/j.hydres.2023.04.003 kostenfrei https://doaj.org/article/e66918e8e546461db2d0b5e02eac03aa kostenfrei http://www.sciencedirect.com/science/article/pii/S2589757823000161 kostenfrei https://doaj.org/toc/2589-7578 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2023 147-155 |
allfields_unstemmed |
10.1016/j.hydres.2023.04.003 doi (DE-627)DOAJ089592875 (DE-599)DOAJe66918e8e546461db2d0b5e02eac03aa DE-627 ger DE-627 rakwb eng TD201-500 Pankaj Kumar Pandey verfasserin aut Parametric calibration of Hargreaves–Samani (HS) reference evapotranspiration equation with different coefficient combinations under the humid environment 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Evapotranspiration (ET) is a major hydrological component in irrigation system design, irrigation scheduling, and hydrologic and drainage design. Estimating crop ET requires accurate reference evapotranspiration (ET0) measurement. In this work, numerous modified Hargreaves models for ET0 were tested and calibrated against the standard FAO-56 Penman-Monteith eq. (F-56 PM) for further improvement in performance in the humid subtropical environment of Imphal West District, Manipur.The Martinez-Cob and Tejero-Juste (2004) equation resulted in best region-wide ET0 values of 3.536 mm d−1, mean absolute error (MAE) = 0.367 mm d−1, standard error of estimate (SEE) = 0.348 mm d−1, correlation coefficient (r) = 0.855, coefficient of determination (R2) =0.731, and index of agreement (d) = 0.891. Trajkovic (2007) equation has the second-best ET0 values of 3.383, MAE = 0.413 mm d−1, SEE = 0.3.77 mm d−1, r = 0.827, R2 = 0.685, and d = 0.852. The third-best equation, Ravazzani et al. (2012), with average ET0 values of 4.015 mm d−1, MAE = 0.506 mm d−1, SEE = 0.395 mm d−1, r = 0.855, R2 = 0.731, and d = 0.79.The observed wind speed data were sorted into five groups based on the average wind speed in different months in the region (1 m/s,2.5 m/s, 3.5 m/s, 4.5 m/s, and 5.5 m/s), and the estimated evapotranspiration was used to calibrate 14 selected combinations of the Hargreaves models. The calibration process significantly improved the performance of the different identified Hargreaves models.The analysis indicated that the improvement in estimation decreases with increasing wind speed. The revised coefficient predicted evapotranspiration is closer to F-56PM, with MAE (mm d−1) ranging from 0.125 at 1 m/s to 0.248 at 4.5 m/s and SEE(mm d−1) from 0.16 at 1 m/s to 0.245 at 5.5 m/s, as compared to the original Hargreaves equation, whose MAE is 0.543, and SEE is 0.400.More research must be conducted to extend the applicability of this equation to other regions of the State. Hargreaves-Samani equation Parametric calibration Wind coefficient. SSE MAE Water supply for domestic and industrial purposes Vanita Pandey verfasserin aut In HydroResearch KeAi Communications Co., Ltd., 2020 6(2023), Seite 147-155 (DE-627)1667350617 (DE-600)2974850-1 25897578 nnns volume:6 year:2023 pages:147-155 https://doi.org/10.1016/j.hydres.2023.04.003 kostenfrei https://doaj.org/article/e66918e8e546461db2d0b5e02eac03aa kostenfrei http://www.sciencedirect.com/science/article/pii/S2589757823000161 kostenfrei https://doaj.org/toc/2589-7578 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2023 147-155 |
allfieldsGer |
10.1016/j.hydres.2023.04.003 doi (DE-627)DOAJ089592875 (DE-599)DOAJe66918e8e546461db2d0b5e02eac03aa DE-627 ger DE-627 rakwb eng TD201-500 Pankaj Kumar Pandey verfasserin aut Parametric calibration of Hargreaves–Samani (HS) reference evapotranspiration equation with different coefficient combinations under the humid environment 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Evapotranspiration (ET) is a major hydrological component in irrigation system design, irrigation scheduling, and hydrologic and drainage design. Estimating crop ET requires accurate reference evapotranspiration (ET0) measurement. In this work, numerous modified Hargreaves models for ET0 were tested and calibrated against the standard FAO-56 Penman-Monteith eq. (F-56 PM) for further improvement in performance in the humid subtropical environment of Imphal West District, Manipur.The Martinez-Cob and Tejero-Juste (2004) equation resulted in best region-wide ET0 values of 3.536 mm d−1, mean absolute error (MAE) = 0.367 mm d−1, standard error of estimate (SEE) = 0.348 mm d−1, correlation coefficient (r) = 0.855, coefficient of determination (R2) =0.731, and index of agreement (d) = 0.891. Trajkovic (2007) equation has the second-best ET0 values of 3.383, MAE = 0.413 mm d−1, SEE = 0.3.77 mm d−1, r = 0.827, R2 = 0.685, and d = 0.852. The third-best equation, Ravazzani et al. (2012), with average ET0 values of 4.015 mm d−1, MAE = 0.506 mm d−1, SEE = 0.395 mm d−1, r = 0.855, R2 = 0.731, and d = 0.79.The observed wind speed data were sorted into five groups based on the average wind speed in different months in the region (1 m/s,2.5 m/s, 3.5 m/s, 4.5 m/s, and 5.5 m/s), and the estimated evapotranspiration was used to calibrate 14 selected combinations of the Hargreaves models. The calibration process significantly improved the performance of the different identified Hargreaves models.The analysis indicated that the improvement in estimation decreases with increasing wind speed. The revised coefficient predicted evapotranspiration is closer to F-56PM, with MAE (mm d−1) ranging from 0.125 at 1 m/s to 0.248 at 4.5 m/s and SEE(mm d−1) from 0.16 at 1 m/s to 0.245 at 5.5 m/s, as compared to the original Hargreaves equation, whose MAE is 0.543, and SEE is 0.400.More research must be conducted to extend the applicability of this equation to other regions of the State. Hargreaves-Samani equation Parametric calibration Wind coefficient. SSE MAE Water supply for domestic and industrial purposes Vanita Pandey verfasserin aut In HydroResearch KeAi Communications Co., Ltd., 2020 6(2023), Seite 147-155 (DE-627)1667350617 (DE-600)2974850-1 25897578 nnns volume:6 year:2023 pages:147-155 https://doi.org/10.1016/j.hydres.2023.04.003 kostenfrei https://doaj.org/article/e66918e8e546461db2d0b5e02eac03aa kostenfrei http://www.sciencedirect.com/science/article/pii/S2589757823000161 kostenfrei https://doaj.org/toc/2589-7578 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2023 147-155 |
allfieldsSound |
10.1016/j.hydres.2023.04.003 doi (DE-627)DOAJ089592875 (DE-599)DOAJe66918e8e546461db2d0b5e02eac03aa DE-627 ger DE-627 rakwb eng TD201-500 Pankaj Kumar Pandey verfasserin aut Parametric calibration of Hargreaves–Samani (HS) reference evapotranspiration equation with different coefficient combinations under the humid environment 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Evapotranspiration (ET) is a major hydrological component in irrigation system design, irrigation scheduling, and hydrologic and drainage design. Estimating crop ET requires accurate reference evapotranspiration (ET0) measurement. In this work, numerous modified Hargreaves models for ET0 were tested and calibrated against the standard FAO-56 Penman-Monteith eq. (F-56 PM) for further improvement in performance in the humid subtropical environment of Imphal West District, Manipur.The Martinez-Cob and Tejero-Juste (2004) equation resulted in best region-wide ET0 values of 3.536 mm d−1, mean absolute error (MAE) = 0.367 mm d−1, standard error of estimate (SEE) = 0.348 mm d−1, correlation coefficient (r) = 0.855, coefficient of determination (R2) =0.731, and index of agreement (d) = 0.891. Trajkovic (2007) equation has the second-best ET0 values of 3.383, MAE = 0.413 mm d−1, SEE = 0.3.77 mm d−1, r = 0.827, R2 = 0.685, and d = 0.852. The third-best equation, Ravazzani et al. (2012), with average ET0 values of 4.015 mm d−1, MAE = 0.506 mm d−1, SEE = 0.395 mm d−1, r = 0.855, R2 = 0.731, and d = 0.79.The observed wind speed data were sorted into five groups based on the average wind speed in different months in the region (1 m/s,2.5 m/s, 3.5 m/s, 4.5 m/s, and 5.5 m/s), and the estimated evapotranspiration was used to calibrate 14 selected combinations of the Hargreaves models. The calibration process significantly improved the performance of the different identified Hargreaves models.The analysis indicated that the improvement in estimation decreases with increasing wind speed. The revised coefficient predicted evapotranspiration is closer to F-56PM, with MAE (mm d−1) ranging from 0.125 at 1 m/s to 0.248 at 4.5 m/s and SEE(mm d−1) from 0.16 at 1 m/s to 0.245 at 5.5 m/s, as compared to the original Hargreaves equation, whose MAE is 0.543, and SEE is 0.400.More research must be conducted to extend the applicability of this equation to other regions of the State. Hargreaves-Samani equation Parametric calibration Wind coefficient. SSE MAE Water supply for domestic and industrial purposes Vanita Pandey verfasserin aut In HydroResearch KeAi Communications Co., Ltd., 2020 6(2023), Seite 147-155 (DE-627)1667350617 (DE-600)2974850-1 25897578 nnns volume:6 year:2023 pages:147-155 https://doi.org/10.1016/j.hydres.2023.04.003 kostenfrei https://doaj.org/article/e66918e8e546461db2d0b5e02eac03aa kostenfrei http://www.sciencedirect.com/science/article/pii/S2589757823000161 kostenfrei https://doaj.org/toc/2589-7578 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2023 147-155 |
language |
English |
source |
In HydroResearch 6(2023), Seite 147-155 volume:6 year:2023 pages:147-155 |
sourceStr |
In HydroResearch 6(2023), Seite 147-155 volume:6 year:2023 pages:147-155 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Hargreaves-Samani equation Parametric calibration Wind coefficient. SSE MAE Water supply for domestic and industrial purposes |
isfreeaccess_bool |
true |
container_title |
HydroResearch |
authorswithroles_txt_mv |
Pankaj Kumar Pandey @@aut@@ Vanita Pandey @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
1667350617 |
id |
DOAJ089592875 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ089592875</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505015655.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.hydres.2023.04.003</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ089592875</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe66918e8e546461db2d0b5e02eac03aa</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD201-500</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Pankaj Kumar Pandey</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Parametric calibration of Hargreaves–Samani (HS) reference evapotranspiration equation with different coefficient combinations under the humid environment</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Evapotranspiration (ET) is a major hydrological component in irrigation system design, irrigation scheduling, and hydrologic and drainage design. Estimating crop ET requires accurate reference evapotranspiration (ET0) measurement. In this work, numerous modified Hargreaves models for ET0 were tested and calibrated against the standard FAO-56 Penman-Monteith eq. (F-56 PM) for further improvement in performance in the humid subtropical environment of Imphal West District, Manipur.The Martinez-Cob and Tejero-Juste (2004) equation resulted in best region-wide ET0 values of 3.536 mm d−1, mean absolute error (MAE) = 0.367 mm d−1, standard error of estimate (SEE) = 0.348 mm d−1, correlation coefficient (r) = 0.855, coefficient of determination (R2) =0.731, and index of agreement (d) = 0.891. Trajkovic (2007) equation has the second-best ET0 values of 3.383, MAE = 0.413 mm d−1, SEE = 0.3.77 mm d−1, r = 0.827, R2 = 0.685, and d = 0.852. The third-best equation, Ravazzani et al. (2012), with average ET0 values of 4.015 mm d−1, MAE = 0.506 mm d−1, SEE = 0.395 mm d−1, r = 0.855, R2 = 0.731, and d = 0.79.The observed wind speed data were sorted into five groups based on the average wind speed in different months in the region (1 m/s,2.5 m/s, 3.5 m/s, 4.5 m/s, and 5.5 m/s), and the estimated evapotranspiration was used to calibrate 14 selected combinations of the Hargreaves models. The calibration process significantly improved the performance of the different identified Hargreaves models.The analysis indicated that the improvement in estimation decreases with increasing wind speed. The revised coefficient predicted evapotranspiration is closer to F-56PM, with MAE (mm d−1) ranging from 0.125 at 1 m/s to 0.248 at 4.5 m/s and SEE(mm d−1) from 0.16 at 1 m/s to 0.245 at 5.5 m/s, as compared to the original Hargreaves equation, whose MAE is 0.543, and SEE is 0.400.More research must be conducted to extend the applicability of this equation to other regions of the State.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hargreaves-Samani equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parametric calibration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wind coefficient. SSE</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MAE</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Water supply for domestic and industrial purposes</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vanita Pandey</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">HydroResearch</subfield><subfield code="d">KeAi Communications Co., Ltd., 2020</subfield><subfield code="g">6(2023), Seite 147-155</subfield><subfield code="w">(DE-627)1667350617</subfield><subfield code="w">(DE-600)2974850-1</subfield><subfield code="x">25897578</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2023</subfield><subfield code="g">pages:147-155</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.hydres.2023.04.003</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e66918e8e546461db2d0b5e02eac03aa</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2589757823000161</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2589-7578</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2023</subfield><subfield code="h">147-155</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Pankaj Kumar Pandey |
spellingShingle |
Pankaj Kumar Pandey misc TD201-500 misc Hargreaves-Samani equation misc Parametric calibration misc Wind coefficient. SSE misc MAE misc Water supply for domestic and industrial purposes Parametric calibration of Hargreaves–Samani (HS) reference evapotranspiration equation with different coefficient combinations under the humid environment |
authorStr |
Pankaj Kumar Pandey |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1667350617 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TD201-500 |
illustrated |
Not Illustrated |
issn |
25897578 |
topic_title |
TD201-500 Parametric calibration of Hargreaves–Samani (HS) reference evapotranspiration equation with different coefficient combinations under the humid environment Hargreaves-Samani equation Parametric calibration Wind coefficient. SSE MAE |
topic |
misc TD201-500 misc Hargreaves-Samani equation misc Parametric calibration misc Wind coefficient. SSE misc MAE misc Water supply for domestic and industrial purposes |
topic_unstemmed |
misc TD201-500 misc Hargreaves-Samani equation misc Parametric calibration misc Wind coefficient. SSE misc MAE misc Water supply for domestic and industrial purposes |
topic_browse |
misc TD201-500 misc Hargreaves-Samani equation misc Parametric calibration misc Wind coefficient. SSE misc MAE misc Water supply for domestic and industrial purposes |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
HydroResearch |
hierarchy_parent_id |
1667350617 |
hierarchy_top_title |
HydroResearch |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1667350617 (DE-600)2974850-1 |
title |
Parametric calibration of Hargreaves–Samani (HS) reference evapotranspiration equation with different coefficient combinations under the humid environment |
ctrlnum |
(DE-627)DOAJ089592875 (DE-599)DOAJe66918e8e546461db2d0b5e02eac03aa |
title_full |
Parametric calibration of Hargreaves–Samani (HS) reference evapotranspiration equation with different coefficient combinations under the humid environment |
author_sort |
Pankaj Kumar Pandey |
journal |
HydroResearch |
journalStr |
HydroResearch |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
147 |
author_browse |
Pankaj Kumar Pandey Vanita Pandey |
container_volume |
6 |
class |
TD201-500 |
format_se |
Elektronische Aufsätze |
author-letter |
Pankaj Kumar Pandey |
doi_str_mv |
10.1016/j.hydres.2023.04.003 |
author2-role |
verfasserin |
title_sort |
parametric calibration of hargreaves–samani (hs) reference evapotranspiration equation with different coefficient combinations under the humid environment |
callnumber |
TD201-500 |
title_auth |
Parametric calibration of Hargreaves–Samani (HS) reference evapotranspiration equation with different coefficient combinations under the humid environment |
abstract |
Evapotranspiration (ET) is a major hydrological component in irrigation system design, irrigation scheduling, and hydrologic and drainage design. Estimating crop ET requires accurate reference evapotranspiration (ET0) measurement. In this work, numerous modified Hargreaves models for ET0 were tested and calibrated against the standard FAO-56 Penman-Monteith eq. (F-56 PM) for further improvement in performance in the humid subtropical environment of Imphal West District, Manipur.The Martinez-Cob and Tejero-Juste (2004) equation resulted in best region-wide ET0 values of 3.536 mm d−1, mean absolute error (MAE) = 0.367 mm d−1, standard error of estimate (SEE) = 0.348 mm d−1, correlation coefficient (r) = 0.855, coefficient of determination (R2) =0.731, and index of agreement (d) = 0.891. Trajkovic (2007) equation has the second-best ET0 values of 3.383, MAE = 0.413 mm d−1, SEE = 0.3.77 mm d−1, r = 0.827, R2 = 0.685, and d = 0.852. The third-best equation, Ravazzani et al. (2012), with average ET0 values of 4.015 mm d−1, MAE = 0.506 mm d−1, SEE = 0.395 mm d−1, r = 0.855, R2 = 0.731, and d = 0.79.The observed wind speed data were sorted into five groups based on the average wind speed in different months in the region (1 m/s,2.5 m/s, 3.5 m/s, 4.5 m/s, and 5.5 m/s), and the estimated evapotranspiration was used to calibrate 14 selected combinations of the Hargreaves models. The calibration process significantly improved the performance of the different identified Hargreaves models.The analysis indicated that the improvement in estimation decreases with increasing wind speed. The revised coefficient predicted evapotranspiration is closer to F-56PM, with MAE (mm d−1) ranging from 0.125 at 1 m/s to 0.248 at 4.5 m/s and SEE(mm d−1) from 0.16 at 1 m/s to 0.245 at 5.5 m/s, as compared to the original Hargreaves equation, whose MAE is 0.543, and SEE is 0.400.More research must be conducted to extend the applicability of this equation to other regions of the State. |
abstractGer |
Evapotranspiration (ET) is a major hydrological component in irrigation system design, irrigation scheduling, and hydrologic and drainage design. Estimating crop ET requires accurate reference evapotranspiration (ET0) measurement. In this work, numerous modified Hargreaves models for ET0 were tested and calibrated against the standard FAO-56 Penman-Monteith eq. (F-56 PM) for further improvement in performance in the humid subtropical environment of Imphal West District, Manipur.The Martinez-Cob and Tejero-Juste (2004) equation resulted in best region-wide ET0 values of 3.536 mm d−1, mean absolute error (MAE) = 0.367 mm d−1, standard error of estimate (SEE) = 0.348 mm d−1, correlation coefficient (r) = 0.855, coefficient of determination (R2) =0.731, and index of agreement (d) = 0.891. Trajkovic (2007) equation has the second-best ET0 values of 3.383, MAE = 0.413 mm d−1, SEE = 0.3.77 mm d−1, r = 0.827, R2 = 0.685, and d = 0.852. The third-best equation, Ravazzani et al. (2012), with average ET0 values of 4.015 mm d−1, MAE = 0.506 mm d−1, SEE = 0.395 mm d−1, r = 0.855, R2 = 0.731, and d = 0.79.The observed wind speed data were sorted into five groups based on the average wind speed in different months in the region (1 m/s,2.5 m/s, 3.5 m/s, 4.5 m/s, and 5.5 m/s), and the estimated evapotranspiration was used to calibrate 14 selected combinations of the Hargreaves models. The calibration process significantly improved the performance of the different identified Hargreaves models.The analysis indicated that the improvement in estimation decreases with increasing wind speed. The revised coefficient predicted evapotranspiration is closer to F-56PM, with MAE (mm d−1) ranging from 0.125 at 1 m/s to 0.248 at 4.5 m/s and SEE(mm d−1) from 0.16 at 1 m/s to 0.245 at 5.5 m/s, as compared to the original Hargreaves equation, whose MAE is 0.543, and SEE is 0.400.More research must be conducted to extend the applicability of this equation to other regions of the State. |
abstract_unstemmed |
Evapotranspiration (ET) is a major hydrological component in irrigation system design, irrigation scheduling, and hydrologic and drainage design. Estimating crop ET requires accurate reference evapotranspiration (ET0) measurement. In this work, numerous modified Hargreaves models for ET0 were tested and calibrated against the standard FAO-56 Penman-Monteith eq. (F-56 PM) for further improvement in performance in the humid subtropical environment of Imphal West District, Manipur.The Martinez-Cob and Tejero-Juste (2004) equation resulted in best region-wide ET0 values of 3.536 mm d−1, mean absolute error (MAE) = 0.367 mm d−1, standard error of estimate (SEE) = 0.348 mm d−1, correlation coefficient (r) = 0.855, coefficient of determination (R2) =0.731, and index of agreement (d) = 0.891. Trajkovic (2007) equation has the second-best ET0 values of 3.383, MAE = 0.413 mm d−1, SEE = 0.3.77 mm d−1, r = 0.827, R2 = 0.685, and d = 0.852. The third-best equation, Ravazzani et al. (2012), with average ET0 values of 4.015 mm d−1, MAE = 0.506 mm d−1, SEE = 0.395 mm d−1, r = 0.855, R2 = 0.731, and d = 0.79.The observed wind speed data were sorted into five groups based on the average wind speed in different months in the region (1 m/s,2.5 m/s, 3.5 m/s, 4.5 m/s, and 5.5 m/s), and the estimated evapotranspiration was used to calibrate 14 selected combinations of the Hargreaves models. The calibration process significantly improved the performance of the different identified Hargreaves models.The analysis indicated that the improvement in estimation decreases with increasing wind speed. The revised coefficient predicted evapotranspiration is closer to F-56PM, with MAE (mm d−1) ranging from 0.125 at 1 m/s to 0.248 at 4.5 m/s and SEE(mm d−1) from 0.16 at 1 m/s to 0.245 at 5.5 m/s, as compared to the original Hargreaves equation, whose MAE is 0.543, and SEE is 0.400.More research must be conducted to extend the applicability of this equation to other regions of the State. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Parametric calibration of Hargreaves–Samani (HS) reference evapotranspiration equation with different coefficient combinations under the humid environment |
url |
https://doi.org/10.1016/j.hydres.2023.04.003 https://doaj.org/article/e66918e8e546461db2d0b5e02eac03aa http://www.sciencedirect.com/science/article/pii/S2589757823000161 https://doaj.org/toc/2589-7578 |
remote_bool |
true |
author2 |
Vanita Pandey |
author2Str |
Vanita Pandey |
ppnlink |
1667350617 |
callnumber-subject |
TD - Environmental Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.hydres.2023.04.003 |
callnumber-a |
TD201-500 |
up_date |
2024-07-03T23:49:54.934Z |
_version_ |
1803603772637708288 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ089592875</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505015655.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.hydres.2023.04.003</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ089592875</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe66918e8e546461db2d0b5e02eac03aa</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD201-500</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Pankaj Kumar Pandey</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Parametric calibration of Hargreaves–Samani (HS) reference evapotranspiration equation with different coefficient combinations under the humid environment</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Evapotranspiration (ET) is a major hydrological component in irrigation system design, irrigation scheduling, and hydrologic and drainage design. Estimating crop ET requires accurate reference evapotranspiration (ET0) measurement. In this work, numerous modified Hargreaves models for ET0 were tested and calibrated against the standard FAO-56 Penman-Monteith eq. (F-56 PM) for further improvement in performance in the humid subtropical environment of Imphal West District, Manipur.The Martinez-Cob and Tejero-Juste (2004) equation resulted in best region-wide ET0 values of 3.536 mm d−1, mean absolute error (MAE) = 0.367 mm d−1, standard error of estimate (SEE) = 0.348 mm d−1, correlation coefficient (r) = 0.855, coefficient of determination (R2) =0.731, and index of agreement (d) = 0.891. Trajkovic (2007) equation has the second-best ET0 values of 3.383, MAE = 0.413 mm d−1, SEE = 0.3.77 mm d−1, r = 0.827, R2 = 0.685, and d = 0.852. The third-best equation, Ravazzani et al. (2012), with average ET0 values of 4.015 mm d−1, MAE = 0.506 mm d−1, SEE = 0.395 mm d−1, r = 0.855, R2 = 0.731, and d = 0.79.The observed wind speed data were sorted into five groups based on the average wind speed in different months in the region (1 m/s,2.5 m/s, 3.5 m/s, 4.5 m/s, and 5.5 m/s), and the estimated evapotranspiration was used to calibrate 14 selected combinations of the Hargreaves models. The calibration process significantly improved the performance of the different identified Hargreaves models.The analysis indicated that the improvement in estimation decreases with increasing wind speed. The revised coefficient predicted evapotranspiration is closer to F-56PM, with MAE (mm d−1) ranging from 0.125 at 1 m/s to 0.248 at 4.5 m/s and SEE(mm d−1) from 0.16 at 1 m/s to 0.245 at 5.5 m/s, as compared to the original Hargreaves equation, whose MAE is 0.543, and SEE is 0.400.More research must be conducted to extend the applicability of this equation to other regions of the State.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hargreaves-Samani equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parametric calibration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wind coefficient. SSE</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MAE</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Water supply for domestic and industrial purposes</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vanita Pandey</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">HydroResearch</subfield><subfield code="d">KeAi Communications Co., Ltd., 2020</subfield><subfield code="g">6(2023), Seite 147-155</subfield><subfield code="w">(DE-627)1667350617</subfield><subfield code="w">(DE-600)2974850-1</subfield><subfield code="x">25897578</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2023</subfield><subfield code="g">pages:147-155</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.hydres.2023.04.003</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e66918e8e546461db2d0b5e02eac03aa</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2589757823000161</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2589-7578</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2023</subfield><subfield code="h">147-155</subfield></datafield></record></collection>
|
score |
7.400985 |