Bipolar picture fuzzy sets and relations with applications
The notions of both the bipolar fuzzy sets and picture fuzzy sets have been studied by many authors, the bipolar picture fuzzy set is the nice combination of these two notions. Basically, the concepts we present in our study are the direct extensions of both the bipolar fuzzy sets and picture fuzzy...
Ausführliche Beschreibung
Autor*in: |
Waheed Ahmad Khan [verfasserIn] Khurram Faiz [verfasserIn] Abdelghani Taouti [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
ring sum of bipolar picture fuzzy sets bipolar picture fuzzy equivalence relation |
---|
Übergeordnetes Werk: |
In: Songklanakarin Journal of Science and Technology (SJST) - Prince of Songkla University, 2005, 44(2022), 4, Seite 987-999 |
---|---|
Übergeordnetes Werk: |
volume:44 ; year:2022 ; number:4 ; pages:987-999 |
Links: |
---|
DOI / URN: |
10.14456/sjst-psu.2022.131 |
---|
Katalog-ID: |
DOAJ089595726 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ089595726 | ||
003 | DE-627 | ||
005 | 20230505015705.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230505s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.14456/sjst-psu.2022.131 |2 doi | |
035 | |a (DE-627)DOAJ089595726 | ||
035 | |a (DE-599)DOAJ2ba72b819258452083caec42d98e56e8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a T1-995 | |
050 | 0 | |a Q1-390 | |
100 | 0 | |a Waheed Ahmad Khan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Bipolar picture fuzzy sets and relations with applications |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The notions of both the bipolar fuzzy sets and picture fuzzy sets have been studied by many authors, the bipolar picture fuzzy set is the nice combination of these two notions. Basically, the concepts we present in our study are the direct extensions of both the bipolar fuzzy sets and picture fuzzy sets. In this study, we add few more operations and results in the theory of the bipolar picture fuzzy sets. We also initiate the notion of bipolar picture fuzzy relations along with their applications. We present numerous basic operations along with the algebraic sums, bounded sums, algebraic product, bounded difference on bipolar picture fuzzy sets. Different types of distances between two bipolar picture fuzzy sets are also addressed. We provide the application of bipolar picture fuzzy sets towards decision making theory along with its algorithm. Afterward, we introduce different types of bipolar picture fuzzy relations like bipolar picture fuzzy reflexive, symmetric and transitive relations. Subsequently, we introduce the concepts of the bipolar picture fuzzy equivalence relation and partition. We also produce numerous interesting results based on these relations. Finally, we establish the criteria for the detection of covid-19 at the base of bipolar picture fuzzy relations. | ||
650 | 4 | |a bipolar picture fuzzy sets | |
650 | 4 | |a ring sum of bipolar picture fuzzy sets | |
650 | 4 | |a bipolar picture fuzzy equivalence relation | |
650 | 4 | |a bipolar picture fuzzy partition | |
650 | 4 | |a distances between bipolar picture fuzzy sets | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
653 | 0 | |a Technology (General) | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
653 | 0 | |a Science (General) | |
700 | 0 | |a Khurram Faiz |e verfasserin |4 aut | |
700 | 0 | |a Abdelghani Taouti |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Songklanakarin Journal of Science and Technology (SJST) |d Prince of Songkla University, 2005 |g 44(2022), 4, Seite 987-999 |w (DE-627)500635552 |w (DE-600)2204982-4 |x 01253395 |7 nnns |
773 | 1 | 8 | |g volume:44 |g year:2022 |g number:4 |g pages:987-999 |
856 | 4 | 0 | |u https://doi.org/10.14456/sjst-psu.2022.131 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/2ba72b819258452083caec42d98e56e8 |z kostenfrei |
856 | 4 | 0 | |u https://sjst.psu.ac.th/journal/44-4/11.pdf |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/0125-3395 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_647 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 44 |j 2022 |e 4 |h 987-999 |
author_variant |
w a k wak k f kf a t at |
---|---|
matchkey_str |
article:01253395:2022----::ioapcueuzstadeainw |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
T |
publishDate |
2022 |
allfields |
10.14456/sjst-psu.2022.131 doi (DE-627)DOAJ089595726 (DE-599)DOAJ2ba72b819258452083caec42d98e56e8 DE-627 ger DE-627 rakwb eng T1-995 Q1-390 Waheed Ahmad Khan verfasserin aut Bipolar picture fuzzy sets and relations with applications 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The notions of both the bipolar fuzzy sets and picture fuzzy sets have been studied by many authors, the bipolar picture fuzzy set is the nice combination of these two notions. Basically, the concepts we present in our study are the direct extensions of both the bipolar fuzzy sets and picture fuzzy sets. In this study, we add few more operations and results in the theory of the bipolar picture fuzzy sets. We also initiate the notion of bipolar picture fuzzy relations along with their applications. We present numerous basic operations along with the algebraic sums, bounded sums, algebraic product, bounded difference on bipolar picture fuzzy sets. Different types of distances between two bipolar picture fuzzy sets are also addressed. We provide the application of bipolar picture fuzzy sets towards decision making theory along with its algorithm. Afterward, we introduce different types of bipolar picture fuzzy relations like bipolar picture fuzzy reflexive, symmetric and transitive relations. Subsequently, we introduce the concepts of the bipolar picture fuzzy equivalence relation and partition. We also produce numerous interesting results based on these relations. Finally, we establish the criteria for the detection of covid-19 at the base of bipolar picture fuzzy relations. bipolar picture fuzzy sets ring sum of bipolar picture fuzzy sets bipolar picture fuzzy equivalence relation bipolar picture fuzzy partition distances between bipolar picture fuzzy sets Technology T Technology (General) Science Q Science (General) Khurram Faiz verfasserin aut Abdelghani Taouti verfasserin aut In Songklanakarin Journal of Science and Technology (SJST) Prince of Songkla University, 2005 44(2022), 4, Seite 987-999 (DE-627)500635552 (DE-600)2204982-4 01253395 nnns volume:44 year:2022 number:4 pages:987-999 https://doi.org/10.14456/sjst-psu.2022.131 kostenfrei https://doaj.org/article/2ba72b819258452083caec42d98e56e8 kostenfrei https://sjst.psu.ac.th/journal/44-4/11.pdf kostenfrei https://doaj.org/toc/0125-3395 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 44 2022 4 987-999 |
spelling |
10.14456/sjst-psu.2022.131 doi (DE-627)DOAJ089595726 (DE-599)DOAJ2ba72b819258452083caec42d98e56e8 DE-627 ger DE-627 rakwb eng T1-995 Q1-390 Waheed Ahmad Khan verfasserin aut Bipolar picture fuzzy sets and relations with applications 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The notions of both the bipolar fuzzy sets and picture fuzzy sets have been studied by many authors, the bipolar picture fuzzy set is the nice combination of these two notions. Basically, the concepts we present in our study are the direct extensions of both the bipolar fuzzy sets and picture fuzzy sets. In this study, we add few more operations and results in the theory of the bipolar picture fuzzy sets. We also initiate the notion of bipolar picture fuzzy relations along with their applications. We present numerous basic operations along with the algebraic sums, bounded sums, algebraic product, bounded difference on bipolar picture fuzzy sets. Different types of distances between two bipolar picture fuzzy sets are also addressed. We provide the application of bipolar picture fuzzy sets towards decision making theory along with its algorithm. Afterward, we introduce different types of bipolar picture fuzzy relations like bipolar picture fuzzy reflexive, symmetric and transitive relations. Subsequently, we introduce the concepts of the bipolar picture fuzzy equivalence relation and partition. We also produce numerous interesting results based on these relations. Finally, we establish the criteria for the detection of covid-19 at the base of bipolar picture fuzzy relations. bipolar picture fuzzy sets ring sum of bipolar picture fuzzy sets bipolar picture fuzzy equivalence relation bipolar picture fuzzy partition distances between bipolar picture fuzzy sets Technology T Technology (General) Science Q Science (General) Khurram Faiz verfasserin aut Abdelghani Taouti verfasserin aut In Songklanakarin Journal of Science and Technology (SJST) Prince of Songkla University, 2005 44(2022), 4, Seite 987-999 (DE-627)500635552 (DE-600)2204982-4 01253395 nnns volume:44 year:2022 number:4 pages:987-999 https://doi.org/10.14456/sjst-psu.2022.131 kostenfrei https://doaj.org/article/2ba72b819258452083caec42d98e56e8 kostenfrei https://sjst.psu.ac.th/journal/44-4/11.pdf kostenfrei https://doaj.org/toc/0125-3395 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 44 2022 4 987-999 |
allfields_unstemmed |
10.14456/sjst-psu.2022.131 doi (DE-627)DOAJ089595726 (DE-599)DOAJ2ba72b819258452083caec42d98e56e8 DE-627 ger DE-627 rakwb eng T1-995 Q1-390 Waheed Ahmad Khan verfasserin aut Bipolar picture fuzzy sets and relations with applications 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The notions of both the bipolar fuzzy sets and picture fuzzy sets have been studied by many authors, the bipolar picture fuzzy set is the nice combination of these two notions. Basically, the concepts we present in our study are the direct extensions of both the bipolar fuzzy sets and picture fuzzy sets. In this study, we add few more operations and results in the theory of the bipolar picture fuzzy sets. We also initiate the notion of bipolar picture fuzzy relations along with their applications. We present numerous basic operations along with the algebraic sums, bounded sums, algebraic product, bounded difference on bipolar picture fuzzy sets. Different types of distances between two bipolar picture fuzzy sets are also addressed. We provide the application of bipolar picture fuzzy sets towards decision making theory along with its algorithm. Afterward, we introduce different types of bipolar picture fuzzy relations like bipolar picture fuzzy reflexive, symmetric and transitive relations. Subsequently, we introduce the concepts of the bipolar picture fuzzy equivalence relation and partition. We also produce numerous interesting results based on these relations. Finally, we establish the criteria for the detection of covid-19 at the base of bipolar picture fuzzy relations. bipolar picture fuzzy sets ring sum of bipolar picture fuzzy sets bipolar picture fuzzy equivalence relation bipolar picture fuzzy partition distances between bipolar picture fuzzy sets Technology T Technology (General) Science Q Science (General) Khurram Faiz verfasserin aut Abdelghani Taouti verfasserin aut In Songklanakarin Journal of Science and Technology (SJST) Prince of Songkla University, 2005 44(2022), 4, Seite 987-999 (DE-627)500635552 (DE-600)2204982-4 01253395 nnns volume:44 year:2022 number:4 pages:987-999 https://doi.org/10.14456/sjst-psu.2022.131 kostenfrei https://doaj.org/article/2ba72b819258452083caec42d98e56e8 kostenfrei https://sjst.psu.ac.th/journal/44-4/11.pdf kostenfrei https://doaj.org/toc/0125-3395 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 44 2022 4 987-999 |
allfieldsGer |
10.14456/sjst-psu.2022.131 doi (DE-627)DOAJ089595726 (DE-599)DOAJ2ba72b819258452083caec42d98e56e8 DE-627 ger DE-627 rakwb eng T1-995 Q1-390 Waheed Ahmad Khan verfasserin aut Bipolar picture fuzzy sets and relations with applications 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The notions of both the bipolar fuzzy sets and picture fuzzy sets have been studied by many authors, the bipolar picture fuzzy set is the nice combination of these two notions. Basically, the concepts we present in our study are the direct extensions of both the bipolar fuzzy sets and picture fuzzy sets. In this study, we add few more operations and results in the theory of the bipolar picture fuzzy sets. We also initiate the notion of bipolar picture fuzzy relations along with their applications. We present numerous basic operations along with the algebraic sums, bounded sums, algebraic product, bounded difference on bipolar picture fuzzy sets. Different types of distances between two bipolar picture fuzzy sets are also addressed. We provide the application of bipolar picture fuzzy sets towards decision making theory along with its algorithm. Afterward, we introduce different types of bipolar picture fuzzy relations like bipolar picture fuzzy reflexive, symmetric and transitive relations. Subsequently, we introduce the concepts of the bipolar picture fuzzy equivalence relation and partition. We also produce numerous interesting results based on these relations. Finally, we establish the criteria for the detection of covid-19 at the base of bipolar picture fuzzy relations. bipolar picture fuzzy sets ring sum of bipolar picture fuzzy sets bipolar picture fuzzy equivalence relation bipolar picture fuzzy partition distances between bipolar picture fuzzy sets Technology T Technology (General) Science Q Science (General) Khurram Faiz verfasserin aut Abdelghani Taouti verfasserin aut In Songklanakarin Journal of Science and Technology (SJST) Prince of Songkla University, 2005 44(2022), 4, Seite 987-999 (DE-627)500635552 (DE-600)2204982-4 01253395 nnns volume:44 year:2022 number:4 pages:987-999 https://doi.org/10.14456/sjst-psu.2022.131 kostenfrei https://doaj.org/article/2ba72b819258452083caec42d98e56e8 kostenfrei https://sjst.psu.ac.th/journal/44-4/11.pdf kostenfrei https://doaj.org/toc/0125-3395 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 44 2022 4 987-999 |
allfieldsSound |
10.14456/sjst-psu.2022.131 doi (DE-627)DOAJ089595726 (DE-599)DOAJ2ba72b819258452083caec42d98e56e8 DE-627 ger DE-627 rakwb eng T1-995 Q1-390 Waheed Ahmad Khan verfasserin aut Bipolar picture fuzzy sets and relations with applications 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The notions of both the bipolar fuzzy sets and picture fuzzy sets have been studied by many authors, the bipolar picture fuzzy set is the nice combination of these two notions. Basically, the concepts we present in our study are the direct extensions of both the bipolar fuzzy sets and picture fuzzy sets. In this study, we add few more operations and results in the theory of the bipolar picture fuzzy sets. We also initiate the notion of bipolar picture fuzzy relations along with their applications. We present numerous basic operations along with the algebraic sums, bounded sums, algebraic product, bounded difference on bipolar picture fuzzy sets. Different types of distances between two bipolar picture fuzzy sets are also addressed. We provide the application of bipolar picture fuzzy sets towards decision making theory along with its algorithm. Afterward, we introduce different types of bipolar picture fuzzy relations like bipolar picture fuzzy reflexive, symmetric and transitive relations. Subsequently, we introduce the concepts of the bipolar picture fuzzy equivalence relation and partition. We also produce numerous interesting results based on these relations. Finally, we establish the criteria for the detection of covid-19 at the base of bipolar picture fuzzy relations. bipolar picture fuzzy sets ring sum of bipolar picture fuzzy sets bipolar picture fuzzy equivalence relation bipolar picture fuzzy partition distances between bipolar picture fuzzy sets Technology T Technology (General) Science Q Science (General) Khurram Faiz verfasserin aut Abdelghani Taouti verfasserin aut In Songklanakarin Journal of Science and Technology (SJST) Prince of Songkla University, 2005 44(2022), 4, Seite 987-999 (DE-627)500635552 (DE-600)2204982-4 01253395 nnns volume:44 year:2022 number:4 pages:987-999 https://doi.org/10.14456/sjst-psu.2022.131 kostenfrei https://doaj.org/article/2ba72b819258452083caec42d98e56e8 kostenfrei https://sjst.psu.ac.th/journal/44-4/11.pdf kostenfrei https://doaj.org/toc/0125-3395 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 44 2022 4 987-999 |
language |
English |
source |
In Songklanakarin Journal of Science and Technology (SJST) 44(2022), 4, Seite 987-999 volume:44 year:2022 number:4 pages:987-999 |
sourceStr |
In Songklanakarin Journal of Science and Technology (SJST) 44(2022), 4, Seite 987-999 volume:44 year:2022 number:4 pages:987-999 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
bipolar picture fuzzy sets ring sum of bipolar picture fuzzy sets bipolar picture fuzzy equivalence relation bipolar picture fuzzy partition distances between bipolar picture fuzzy sets Technology T Technology (General) Science Q Science (General) |
isfreeaccess_bool |
true |
container_title |
Songklanakarin Journal of Science and Technology (SJST) |
authorswithroles_txt_mv |
Waheed Ahmad Khan @@aut@@ Khurram Faiz @@aut@@ Abdelghani Taouti @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
500635552 |
id |
DOAJ089595726 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ089595726</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505015705.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.14456/sjst-psu.2022.131</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ089595726</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ2ba72b819258452083caec42d98e56e8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">T1-995</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">Q1-390</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Waheed Ahmad Khan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bipolar picture fuzzy sets and relations with applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The notions of both the bipolar fuzzy sets and picture fuzzy sets have been studied by many authors, the bipolar picture fuzzy set is the nice combination of these two notions. Basically, the concepts we present in our study are the direct extensions of both the bipolar fuzzy sets and picture fuzzy sets. In this study, we add few more operations and results in the theory of the bipolar picture fuzzy sets. We also initiate the notion of bipolar picture fuzzy relations along with their applications. We present numerous basic operations along with the algebraic sums, bounded sums, algebraic product, bounded difference on bipolar picture fuzzy sets. Different types of distances between two bipolar picture fuzzy sets are also addressed. We provide the application of bipolar picture fuzzy sets towards decision making theory along with its algorithm. Afterward, we introduce different types of bipolar picture fuzzy relations like bipolar picture fuzzy reflexive, symmetric and transitive relations. Subsequently, we introduce the concepts of the bipolar picture fuzzy equivalence relation and partition. We also produce numerous interesting results based on these relations. Finally, we establish the criteria for the detection of covid-19 at the base of bipolar picture fuzzy relations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bipolar picture fuzzy sets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ring sum of bipolar picture fuzzy sets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bipolar picture fuzzy equivalence relation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bipolar picture fuzzy partition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">distances between bipolar picture fuzzy sets</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Khurram Faiz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Abdelghani Taouti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Songklanakarin Journal of Science and Technology (SJST)</subfield><subfield code="d">Prince of Songkla University, 2005</subfield><subfield code="g">44(2022), 4, Seite 987-999</subfield><subfield code="w">(DE-627)500635552</subfield><subfield code="w">(DE-600)2204982-4</subfield><subfield code="x">01253395</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:44</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:987-999</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.14456/sjst-psu.2022.131</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/2ba72b819258452083caec42d98e56e8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://sjst.psu.ac.th/journal/44-4/11.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0125-3395</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">44</subfield><subfield code="j">2022</subfield><subfield code="e">4</subfield><subfield code="h">987-999</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Waheed Ahmad Khan |
spellingShingle |
Waheed Ahmad Khan misc T1-995 misc Q1-390 misc bipolar picture fuzzy sets misc ring sum of bipolar picture fuzzy sets misc bipolar picture fuzzy equivalence relation misc bipolar picture fuzzy partition misc distances between bipolar picture fuzzy sets misc Technology misc T misc Technology (General) misc Science misc Q misc Science (General) Bipolar picture fuzzy sets and relations with applications |
authorStr |
Waheed Ahmad Khan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)500635552 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
T1-995 |
illustrated |
Not Illustrated |
issn |
01253395 |
topic_title |
T1-995 Q1-390 Bipolar picture fuzzy sets and relations with applications bipolar picture fuzzy sets ring sum of bipolar picture fuzzy sets bipolar picture fuzzy equivalence relation bipolar picture fuzzy partition distances between bipolar picture fuzzy sets |
topic |
misc T1-995 misc Q1-390 misc bipolar picture fuzzy sets misc ring sum of bipolar picture fuzzy sets misc bipolar picture fuzzy equivalence relation misc bipolar picture fuzzy partition misc distances between bipolar picture fuzzy sets misc Technology misc T misc Technology (General) misc Science misc Q misc Science (General) |
topic_unstemmed |
misc T1-995 misc Q1-390 misc bipolar picture fuzzy sets misc ring sum of bipolar picture fuzzy sets misc bipolar picture fuzzy equivalence relation misc bipolar picture fuzzy partition misc distances between bipolar picture fuzzy sets misc Technology misc T misc Technology (General) misc Science misc Q misc Science (General) |
topic_browse |
misc T1-995 misc Q1-390 misc bipolar picture fuzzy sets misc ring sum of bipolar picture fuzzy sets misc bipolar picture fuzzy equivalence relation misc bipolar picture fuzzy partition misc distances between bipolar picture fuzzy sets misc Technology misc T misc Technology (General) misc Science misc Q misc Science (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Songklanakarin Journal of Science and Technology (SJST) |
hierarchy_parent_id |
500635552 |
hierarchy_top_title |
Songklanakarin Journal of Science and Technology (SJST) |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)500635552 (DE-600)2204982-4 |
title |
Bipolar picture fuzzy sets and relations with applications |
ctrlnum |
(DE-627)DOAJ089595726 (DE-599)DOAJ2ba72b819258452083caec42d98e56e8 |
title_full |
Bipolar picture fuzzy sets and relations with applications |
author_sort |
Waheed Ahmad Khan |
journal |
Songklanakarin Journal of Science and Technology (SJST) |
journalStr |
Songklanakarin Journal of Science and Technology (SJST) |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
987 |
author_browse |
Waheed Ahmad Khan Khurram Faiz Abdelghani Taouti |
container_volume |
44 |
class |
T1-995 Q1-390 |
format_se |
Elektronische Aufsätze |
author-letter |
Waheed Ahmad Khan |
doi_str_mv |
10.14456/sjst-psu.2022.131 |
author2-role |
verfasserin |
title_sort |
bipolar picture fuzzy sets and relations with applications |
callnumber |
T1-995 |
title_auth |
Bipolar picture fuzzy sets and relations with applications |
abstract |
The notions of both the bipolar fuzzy sets and picture fuzzy sets have been studied by many authors, the bipolar picture fuzzy set is the nice combination of these two notions. Basically, the concepts we present in our study are the direct extensions of both the bipolar fuzzy sets and picture fuzzy sets. In this study, we add few more operations and results in the theory of the bipolar picture fuzzy sets. We also initiate the notion of bipolar picture fuzzy relations along with their applications. We present numerous basic operations along with the algebraic sums, bounded sums, algebraic product, bounded difference on bipolar picture fuzzy sets. Different types of distances between two bipolar picture fuzzy sets are also addressed. We provide the application of bipolar picture fuzzy sets towards decision making theory along with its algorithm. Afterward, we introduce different types of bipolar picture fuzzy relations like bipolar picture fuzzy reflexive, symmetric and transitive relations. Subsequently, we introduce the concepts of the bipolar picture fuzzy equivalence relation and partition. We also produce numerous interesting results based on these relations. Finally, we establish the criteria for the detection of covid-19 at the base of bipolar picture fuzzy relations. |
abstractGer |
The notions of both the bipolar fuzzy sets and picture fuzzy sets have been studied by many authors, the bipolar picture fuzzy set is the nice combination of these two notions. Basically, the concepts we present in our study are the direct extensions of both the bipolar fuzzy sets and picture fuzzy sets. In this study, we add few more operations and results in the theory of the bipolar picture fuzzy sets. We also initiate the notion of bipolar picture fuzzy relations along with their applications. We present numerous basic operations along with the algebraic sums, bounded sums, algebraic product, bounded difference on bipolar picture fuzzy sets. Different types of distances between two bipolar picture fuzzy sets are also addressed. We provide the application of bipolar picture fuzzy sets towards decision making theory along with its algorithm. Afterward, we introduce different types of bipolar picture fuzzy relations like bipolar picture fuzzy reflexive, symmetric and transitive relations. Subsequently, we introduce the concepts of the bipolar picture fuzzy equivalence relation and partition. We also produce numerous interesting results based on these relations. Finally, we establish the criteria for the detection of covid-19 at the base of bipolar picture fuzzy relations. |
abstract_unstemmed |
The notions of both the bipolar fuzzy sets and picture fuzzy sets have been studied by many authors, the bipolar picture fuzzy set is the nice combination of these two notions. Basically, the concepts we present in our study are the direct extensions of both the bipolar fuzzy sets and picture fuzzy sets. In this study, we add few more operations and results in the theory of the bipolar picture fuzzy sets. We also initiate the notion of bipolar picture fuzzy relations along with their applications. We present numerous basic operations along with the algebraic sums, bounded sums, algebraic product, bounded difference on bipolar picture fuzzy sets. Different types of distances between two bipolar picture fuzzy sets are also addressed. We provide the application of bipolar picture fuzzy sets towards decision making theory along with its algorithm. Afterward, we introduce different types of bipolar picture fuzzy relations like bipolar picture fuzzy reflexive, symmetric and transitive relations. Subsequently, we introduce the concepts of the bipolar picture fuzzy equivalence relation and partition. We also produce numerous interesting results based on these relations. Finally, we establish the criteria for the detection of covid-19 at the base of bipolar picture fuzzy relations. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
4 |
title_short |
Bipolar picture fuzzy sets and relations with applications |
url |
https://doi.org/10.14456/sjst-psu.2022.131 https://doaj.org/article/2ba72b819258452083caec42d98e56e8 https://sjst.psu.ac.th/journal/44-4/11.pdf https://doaj.org/toc/0125-3395 |
remote_bool |
true |
author2 |
Khurram Faiz Abdelghani Taouti |
author2Str |
Khurram Faiz Abdelghani Taouti |
ppnlink |
500635552 |
callnumber-subject |
T - General Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.14456/sjst-psu.2022.131 |
callnumber-a |
T1-995 |
up_date |
2024-07-03T23:50:47.666Z |
_version_ |
1803603827928072192 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ089595726</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505015705.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.14456/sjst-psu.2022.131</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ089595726</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ2ba72b819258452083caec42d98e56e8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">T1-995</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">Q1-390</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Waheed Ahmad Khan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bipolar picture fuzzy sets and relations with applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The notions of both the bipolar fuzzy sets and picture fuzzy sets have been studied by many authors, the bipolar picture fuzzy set is the nice combination of these two notions. Basically, the concepts we present in our study are the direct extensions of both the bipolar fuzzy sets and picture fuzzy sets. In this study, we add few more operations and results in the theory of the bipolar picture fuzzy sets. We also initiate the notion of bipolar picture fuzzy relations along with their applications. We present numerous basic operations along with the algebraic sums, bounded sums, algebraic product, bounded difference on bipolar picture fuzzy sets. Different types of distances between two bipolar picture fuzzy sets are also addressed. We provide the application of bipolar picture fuzzy sets towards decision making theory along with its algorithm. Afterward, we introduce different types of bipolar picture fuzzy relations like bipolar picture fuzzy reflexive, symmetric and transitive relations. Subsequently, we introduce the concepts of the bipolar picture fuzzy equivalence relation and partition. We also produce numerous interesting results based on these relations. Finally, we establish the criteria for the detection of covid-19 at the base of bipolar picture fuzzy relations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bipolar picture fuzzy sets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ring sum of bipolar picture fuzzy sets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bipolar picture fuzzy equivalence relation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bipolar picture fuzzy partition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">distances between bipolar picture fuzzy sets</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Khurram Faiz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Abdelghani Taouti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Songklanakarin Journal of Science and Technology (SJST)</subfield><subfield code="d">Prince of Songkla University, 2005</subfield><subfield code="g">44(2022), 4, Seite 987-999</subfield><subfield code="w">(DE-627)500635552</subfield><subfield code="w">(DE-600)2204982-4</subfield><subfield code="x">01253395</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:44</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:987-999</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.14456/sjst-psu.2022.131</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/2ba72b819258452083caec42d98e56e8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://sjst.psu.ac.th/journal/44-4/11.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0125-3395</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">44</subfield><subfield code="j">2022</subfield><subfield code="e">4</subfield><subfield code="h">987-999</subfield></datafield></record></collection>
|
score |
7.401311 |