Development of OCMNO algorithm applied to optimize surface quality when ultra-precise machining of SKD 61 coated Ni-P materials
In this paper, a new algorithm developing to solve optimization problems with many nonlinear factors in ultra-precision machining by magnetic liquid mixture. The presented algorithm is a collective global search inspired by artificial intelligence based on the coordination of nonlinear systems occur...
Ausführliche Beschreibung
Autor*in: |
Duc Le Anh [verfasserIn] Hieu Pham Minh [verfasserIn] Minh Quang Nguyen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Manufacturing Review - EDP Sciences, 2016, 10, p 7(2023) |
---|---|
Übergeordnetes Werk: |
volume:10, p 7 ; year:2023 |
Links: |
---|
DOI / URN: |
10.1051/mfreview/2023006 |
---|
Katalog-ID: |
DOAJ089622715 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ089622715 | ||
003 | DE-627 | ||
005 | 20230526105456.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230505s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1051/mfreview/2023006 |2 doi | |
035 | |a (DE-627)DOAJ089622715 | ||
035 | |a (DE-599)DOAJbf7d34ef60b643ec8f4b53f244fe71f1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1-2040 | |
050 | 0 | |a T1-995 | |
050 | 0 | |a TS1-2301 | |
100 | 0 | |a Duc Le Anh |e verfasserin |4 aut | |
245 | 1 | 0 | |a Development of OCMNO algorithm applied to optimize surface quality when ultra-precise machining of SKD 61 coated Ni-P materials |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In this paper, a new algorithm developing to solve optimization problems with many nonlinear factors in ultra-precision machining by magnetic liquid mixture. The presented algorithm is a collective global search inspired by artificial intelligence based on the coordination of nonlinear systems occurring in machining processes. Combining multiple nonlinear systems is established to coordinate various nonlinear objects based on simple physical techniques during machining. The ultimate aim is to create a robust optimization algorithm based on the optimization collaborative of multiple nonlinear systems (OCMNO) with the same flexibility and high convergence established in optimizing surface quality and material removal rate (MRR) when polishing the SKD61-coated Ni-P material. The benchmark functions analyzing and the established optimization polishing process SKD61-coated Ni-P material to show the effectiveness of the proposed OCMNO algorithm. Polishing experiments demonstrate the optimal technological parameters based on a new algorithm and rotary magnetic polishing method to give the best-machined surface quality. From the analysis and experiment results when polishing magnetic SKD 61 coated Ni-P materials in a rotating magnetic field when using a Magnetic Compound Fluid (MCF). The technological parameters according to the OCMNO algorithm for ultra-smooth surface quality with Ra = 1.137 nm without leaving any scratches on the after-polishing surface. The study aims to provide an excellent reference value in optimizing the surface polishing of difficult-to-machine materials, such as SKD 61 coated Ni-P material, materials in the mould industry, and magnetized materials. | ||
650 | 4 | |a ocmno | |
650 | 4 | |a mcf | |
650 | 4 | |a polishing | |
650 | 4 | |a optimization | |
650 | 4 | |a nonlinear system | |
653 | 0 | |a Engineering (General). Civil engineering (General) | |
653 | 0 | |a Technology (General) | |
653 | 0 | |a Manufactures | |
700 | 0 | |a Hieu Pham Minh |e verfasserin |4 aut | |
700 | 0 | |a Minh Quang Nguyen |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Manufacturing Review |d EDP Sciences, 2016 |g 10, p 7(2023) |w (DE-627)76922508X |w (DE-600)2735249-3 |x 22654224 |7 nnns |
773 | 1 | 8 | |g volume:10, p 7 |g year:2023 |
856 | 4 | 0 | |u https://doi.org/10.1051/mfreview/2023006 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/bf7d34ef60b643ec8f4b53f244fe71f1 |z kostenfrei |
856 | 4 | 0 | |u https://mfr.edp-open.org/articles/mfreview/full_html/2023/01/mfreview220087/mfreview220087.html |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2265-4224 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10, p 7 |j 2023 |
author_variant |
d l a dla h p m hpm m q n mqn |
---|---|
matchkey_str |
article:22654224:2023----::eeomnoomoloihapidopiieufcqaiyhnlrpeieahn |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TA |
publishDate |
2023 |
allfields |
10.1051/mfreview/2023006 doi (DE-627)DOAJ089622715 (DE-599)DOAJbf7d34ef60b643ec8f4b53f244fe71f1 DE-627 ger DE-627 rakwb eng TA1-2040 T1-995 TS1-2301 Duc Le Anh verfasserin aut Development of OCMNO algorithm applied to optimize surface quality when ultra-precise machining of SKD 61 coated Ni-P materials 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, a new algorithm developing to solve optimization problems with many nonlinear factors in ultra-precision machining by magnetic liquid mixture. The presented algorithm is a collective global search inspired by artificial intelligence based on the coordination of nonlinear systems occurring in machining processes. Combining multiple nonlinear systems is established to coordinate various nonlinear objects based on simple physical techniques during machining. The ultimate aim is to create a robust optimization algorithm based on the optimization collaborative of multiple nonlinear systems (OCMNO) with the same flexibility and high convergence established in optimizing surface quality and material removal rate (MRR) when polishing the SKD61-coated Ni-P material. The benchmark functions analyzing and the established optimization polishing process SKD61-coated Ni-P material to show the effectiveness of the proposed OCMNO algorithm. Polishing experiments demonstrate the optimal technological parameters based on a new algorithm and rotary magnetic polishing method to give the best-machined surface quality. From the analysis and experiment results when polishing magnetic SKD 61 coated Ni-P materials in a rotating magnetic field when using a Magnetic Compound Fluid (MCF). The technological parameters according to the OCMNO algorithm for ultra-smooth surface quality with Ra = 1.137 nm without leaving any scratches on the after-polishing surface. The study aims to provide an excellent reference value in optimizing the surface polishing of difficult-to-machine materials, such as SKD 61 coated Ni-P material, materials in the mould industry, and magnetized materials. ocmno mcf polishing optimization nonlinear system Engineering (General). Civil engineering (General) Technology (General) Manufactures Hieu Pham Minh verfasserin aut Minh Quang Nguyen verfasserin aut In Manufacturing Review EDP Sciences, 2016 10, p 7(2023) (DE-627)76922508X (DE-600)2735249-3 22654224 nnns volume:10, p 7 year:2023 https://doi.org/10.1051/mfreview/2023006 kostenfrei https://doaj.org/article/bf7d34ef60b643ec8f4b53f244fe71f1 kostenfrei https://mfr.edp-open.org/articles/mfreview/full_html/2023/01/mfreview220087/mfreview220087.html kostenfrei https://doaj.org/toc/2265-4224 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10, p 7 2023 |
spelling |
10.1051/mfreview/2023006 doi (DE-627)DOAJ089622715 (DE-599)DOAJbf7d34ef60b643ec8f4b53f244fe71f1 DE-627 ger DE-627 rakwb eng TA1-2040 T1-995 TS1-2301 Duc Le Anh verfasserin aut Development of OCMNO algorithm applied to optimize surface quality when ultra-precise machining of SKD 61 coated Ni-P materials 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, a new algorithm developing to solve optimization problems with many nonlinear factors in ultra-precision machining by magnetic liquid mixture. The presented algorithm is a collective global search inspired by artificial intelligence based on the coordination of nonlinear systems occurring in machining processes. Combining multiple nonlinear systems is established to coordinate various nonlinear objects based on simple physical techniques during machining. The ultimate aim is to create a robust optimization algorithm based on the optimization collaborative of multiple nonlinear systems (OCMNO) with the same flexibility and high convergence established in optimizing surface quality and material removal rate (MRR) when polishing the SKD61-coated Ni-P material. The benchmark functions analyzing and the established optimization polishing process SKD61-coated Ni-P material to show the effectiveness of the proposed OCMNO algorithm. Polishing experiments demonstrate the optimal technological parameters based on a new algorithm and rotary magnetic polishing method to give the best-machined surface quality. From the analysis and experiment results when polishing magnetic SKD 61 coated Ni-P materials in a rotating magnetic field when using a Magnetic Compound Fluid (MCF). The technological parameters according to the OCMNO algorithm for ultra-smooth surface quality with Ra = 1.137 nm without leaving any scratches on the after-polishing surface. The study aims to provide an excellent reference value in optimizing the surface polishing of difficult-to-machine materials, such as SKD 61 coated Ni-P material, materials in the mould industry, and magnetized materials. ocmno mcf polishing optimization nonlinear system Engineering (General). Civil engineering (General) Technology (General) Manufactures Hieu Pham Minh verfasserin aut Minh Quang Nguyen verfasserin aut In Manufacturing Review EDP Sciences, 2016 10, p 7(2023) (DE-627)76922508X (DE-600)2735249-3 22654224 nnns volume:10, p 7 year:2023 https://doi.org/10.1051/mfreview/2023006 kostenfrei https://doaj.org/article/bf7d34ef60b643ec8f4b53f244fe71f1 kostenfrei https://mfr.edp-open.org/articles/mfreview/full_html/2023/01/mfreview220087/mfreview220087.html kostenfrei https://doaj.org/toc/2265-4224 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10, p 7 2023 |
allfields_unstemmed |
10.1051/mfreview/2023006 doi (DE-627)DOAJ089622715 (DE-599)DOAJbf7d34ef60b643ec8f4b53f244fe71f1 DE-627 ger DE-627 rakwb eng TA1-2040 T1-995 TS1-2301 Duc Le Anh verfasserin aut Development of OCMNO algorithm applied to optimize surface quality when ultra-precise machining of SKD 61 coated Ni-P materials 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, a new algorithm developing to solve optimization problems with many nonlinear factors in ultra-precision machining by magnetic liquid mixture. The presented algorithm is a collective global search inspired by artificial intelligence based on the coordination of nonlinear systems occurring in machining processes. Combining multiple nonlinear systems is established to coordinate various nonlinear objects based on simple physical techniques during machining. The ultimate aim is to create a robust optimization algorithm based on the optimization collaborative of multiple nonlinear systems (OCMNO) with the same flexibility and high convergence established in optimizing surface quality and material removal rate (MRR) when polishing the SKD61-coated Ni-P material. The benchmark functions analyzing and the established optimization polishing process SKD61-coated Ni-P material to show the effectiveness of the proposed OCMNO algorithm. Polishing experiments demonstrate the optimal technological parameters based on a new algorithm and rotary magnetic polishing method to give the best-machined surface quality. From the analysis and experiment results when polishing magnetic SKD 61 coated Ni-P materials in a rotating magnetic field when using a Magnetic Compound Fluid (MCF). The technological parameters according to the OCMNO algorithm for ultra-smooth surface quality with Ra = 1.137 nm without leaving any scratches on the after-polishing surface. The study aims to provide an excellent reference value in optimizing the surface polishing of difficult-to-machine materials, such as SKD 61 coated Ni-P material, materials in the mould industry, and magnetized materials. ocmno mcf polishing optimization nonlinear system Engineering (General). Civil engineering (General) Technology (General) Manufactures Hieu Pham Minh verfasserin aut Minh Quang Nguyen verfasserin aut In Manufacturing Review EDP Sciences, 2016 10, p 7(2023) (DE-627)76922508X (DE-600)2735249-3 22654224 nnns volume:10, p 7 year:2023 https://doi.org/10.1051/mfreview/2023006 kostenfrei https://doaj.org/article/bf7d34ef60b643ec8f4b53f244fe71f1 kostenfrei https://mfr.edp-open.org/articles/mfreview/full_html/2023/01/mfreview220087/mfreview220087.html kostenfrei https://doaj.org/toc/2265-4224 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10, p 7 2023 |
allfieldsGer |
10.1051/mfreview/2023006 doi (DE-627)DOAJ089622715 (DE-599)DOAJbf7d34ef60b643ec8f4b53f244fe71f1 DE-627 ger DE-627 rakwb eng TA1-2040 T1-995 TS1-2301 Duc Le Anh verfasserin aut Development of OCMNO algorithm applied to optimize surface quality when ultra-precise machining of SKD 61 coated Ni-P materials 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, a new algorithm developing to solve optimization problems with many nonlinear factors in ultra-precision machining by magnetic liquid mixture. The presented algorithm is a collective global search inspired by artificial intelligence based on the coordination of nonlinear systems occurring in machining processes. Combining multiple nonlinear systems is established to coordinate various nonlinear objects based on simple physical techniques during machining. The ultimate aim is to create a robust optimization algorithm based on the optimization collaborative of multiple nonlinear systems (OCMNO) with the same flexibility and high convergence established in optimizing surface quality and material removal rate (MRR) when polishing the SKD61-coated Ni-P material. The benchmark functions analyzing and the established optimization polishing process SKD61-coated Ni-P material to show the effectiveness of the proposed OCMNO algorithm. Polishing experiments demonstrate the optimal technological parameters based on a new algorithm and rotary magnetic polishing method to give the best-machined surface quality. From the analysis and experiment results when polishing magnetic SKD 61 coated Ni-P materials in a rotating magnetic field when using a Magnetic Compound Fluid (MCF). The technological parameters according to the OCMNO algorithm for ultra-smooth surface quality with Ra = 1.137 nm without leaving any scratches on the after-polishing surface. The study aims to provide an excellent reference value in optimizing the surface polishing of difficult-to-machine materials, such as SKD 61 coated Ni-P material, materials in the mould industry, and magnetized materials. ocmno mcf polishing optimization nonlinear system Engineering (General). Civil engineering (General) Technology (General) Manufactures Hieu Pham Minh verfasserin aut Minh Quang Nguyen verfasserin aut In Manufacturing Review EDP Sciences, 2016 10, p 7(2023) (DE-627)76922508X (DE-600)2735249-3 22654224 nnns volume:10, p 7 year:2023 https://doi.org/10.1051/mfreview/2023006 kostenfrei https://doaj.org/article/bf7d34ef60b643ec8f4b53f244fe71f1 kostenfrei https://mfr.edp-open.org/articles/mfreview/full_html/2023/01/mfreview220087/mfreview220087.html kostenfrei https://doaj.org/toc/2265-4224 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10, p 7 2023 |
allfieldsSound |
10.1051/mfreview/2023006 doi (DE-627)DOAJ089622715 (DE-599)DOAJbf7d34ef60b643ec8f4b53f244fe71f1 DE-627 ger DE-627 rakwb eng TA1-2040 T1-995 TS1-2301 Duc Le Anh verfasserin aut Development of OCMNO algorithm applied to optimize surface quality when ultra-precise machining of SKD 61 coated Ni-P materials 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, a new algorithm developing to solve optimization problems with many nonlinear factors in ultra-precision machining by magnetic liquid mixture. The presented algorithm is a collective global search inspired by artificial intelligence based on the coordination of nonlinear systems occurring in machining processes. Combining multiple nonlinear systems is established to coordinate various nonlinear objects based on simple physical techniques during machining. The ultimate aim is to create a robust optimization algorithm based on the optimization collaborative of multiple nonlinear systems (OCMNO) with the same flexibility and high convergence established in optimizing surface quality and material removal rate (MRR) when polishing the SKD61-coated Ni-P material. The benchmark functions analyzing and the established optimization polishing process SKD61-coated Ni-P material to show the effectiveness of the proposed OCMNO algorithm. Polishing experiments demonstrate the optimal technological parameters based on a new algorithm and rotary magnetic polishing method to give the best-machined surface quality. From the analysis and experiment results when polishing magnetic SKD 61 coated Ni-P materials in a rotating magnetic field when using a Magnetic Compound Fluid (MCF). The technological parameters according to the OCMNO algorithm for ultra-smooth surface quality with Ra = 1.137 nm without leaving any scratches on the after-polishing surface. The study aims to provide an excellent reference value in optimizing the surface polishing of difficult-to-machine materials, such as SKD 61 coated Ni-P material, materials in the mould industry, and magnetized materials. ocmno mcf polishing optimization nonlinear system Engineering (General). Civil engineering (General) Technology (General) Manufactures Hieu Pham Minh verfasserin aut Minh Quang Nguyen verfasserin aut In Manufacturing Review EDP Sciences, 2016 10, p 7(2023) (DE-627)76922508X (DE-600)2735249-3 22654224 nnns volume:10, p 7 year:2023 https://doi.org/10.1051/mfreview/2023006 kostenfrei https://doaj.org/article/bf7d34ef60b643ec8f4b53f244fe71f1 kostenfrei https://mfr.edp-open.org/articles/mfreview/full_html/2023/01/mfreview220087/mfreview220087.html kostenfrei https://doaj.org/toc/2265-4224 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10, p 7 2023 |
language |
English |
source |
In Manufacturing Review 10, p 7(2023) volume:10, p 7 year:2023 |
sourceStr |
In Manufacturing Review 10, p 7(2023) volume:10, p 7 year:2023 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
ocmno mcf polishing optimization nonlinear system Engineering (General). Civil engineering (General) Technology (General) Manufactures |
isfreeaccess_bool |
true |
container_title |
Manufacturing Review |
authorswithroles_txt_mv |
Duc Le Anh @@aut@@ Hieu Pham Minh @@aut@@ Minh Quang Nguyen @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
76922508X |
id |
DOAJ089622715 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ089622715</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230526105456.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1051/mfreview/2023006</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ089622715</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJbf7d34ef60b643ec8f4b53f244fe71f1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">T1-995</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TS1-2301</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Duc Le Anh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Development of OCMNO algorithm applied to optimize surface quality when ultra-precise machining of SKD 61 coated Ni-P materials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, a new algorithm developing to solve optimization problems with many nonlinear factors in ultra-precision machining by magnetic liquid mixture. The presented algorithm is a collective global search inspired by artificial intelligence based on the coordination of nonlinear systems occurring in machining processes. Combining multiple nonlinear systems is established to coordinate various nonlinear objects based on simple physical techniques during machining. The ultimate aim is to create a robust optimization algorithm based on the optimization collaborative of multiple nonlinear systems (OCMNO) with the same flexibility and high convergence established in optimizing surface quality and material removal rate (MRR) when polishing the SKD61-coated Ni-P material. The benchmark functions analyzing and the established optimization polishing process SKD61-coated Ni-P material to show the effectiveness of the proposed OCMNO algorithm. Polishing experiments demonstrate the optimal technological parameters based on a new algorithm and rotary magnetic polishing method to give the best-machined surface quality. From the analysis and experiment results when polishing magnetic SKD 61 coated Ni-P materials in a rotating magnetic field when using a Magnetic Compound Fluid (MCF). The technological parameters according to the OCMNO algorithm for ultra-smooth surface quality with Ra = 1.137 nm without leaving any scratches on the after-polishing surface. The study aims to provide an excellent reference value in optimizing the surface polishing of difficult-to-machine materials, such as SKD 61 coated Ni-P material, materials in the mould industry, and magnetized materials.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ocmno</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mcf</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">polishing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonlinear system</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Manufactures</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hieu Pham Minh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Minh Quang Nguyen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Manufacturing Review</subfield><subfield code="d">EDP Sciences, 2016</subfield><subfield code="g">10, p 7(2023)</subfield><subfield code="w">(DE-627)76922508X</subfield><subfield code="w">(DE-600)2735249-3</subfield><subfield code="x">22654224</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10, p 7</subfield><subfield code="g">year:2023</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1051/mfreview/2023006</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/bf7d34ef60b643ec8f4b53f244fe71f1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://mfr.edp-open.org/articles/mfreview/full_html/2023/01/mfreview220087/mfreview220087.html</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2265-4224</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10, p 7</subfield><subfield code="j">2023</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Duc Le Anh |
spellingShingle |
Duc Le Anh misc TA1-2040 misc T1-995 misc TS1-2301 misc ocmno misc mcf misc polishing misc optimization misc nonlinear system misc Engineering (General). Civil engineering (General) misc Technology (General) misc Manufactures Development of OCMNO algorithm applied to optimize surface quality when ultra-precise machining of SKD 61 coated Ni-P materials |
authorStr |
Duc Le Anh |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)76922508X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1-2040 |
illustrated |
Not Illustrated |
issn |
22654224 |
topic_title |
TA1-2040 T1-995 TS1-2301 Development of OCMNO algorithm applied to optimize surface quality when ultra-precise machining of SKD 61 coated Ni-P materials ocmno mcf polishing optimization nonlinear system |
topic |
misc TA1-2040 misc T1-995 misc TS1-2301 misc ocmno misc mcf misc polishing misc optimization misc nonlinear system misc Engineering (General). Civil engineering (General) misc Technology (General) misc Manufactures |
topic_unstemmed |
misc TA1-2040 misc T1-995 misc TS1-2301 misc ocmno misc mcf misc polishing misc optimization misc nonlinear system misc Engineering (General). Civil engineering (General) misc Technology (General) misc Manufactures |
topic_browse |
misc TA1-2040 misc T1-995 misc TS1-2301 misc ocmno misc mcf misc polishing misc optimization misc nonlinear system misc Engineering (General). Civil engineering (General) misc Technology (General) misc Manufactures |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Manufacturing Review |
hierarchy_parent_id |
76922508X |
hierarchy_top_title |
Manufacturing Review |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)76922508X (DE-600)2735249-3 |
title |
Development of OCMNO algorithm applied to optimize surface quality when ultra-precise machining of SKD 61 coated Ni-P materials |
ctrlnum |
(DE-627)DOAJ089622715 (DE-599)DOAJbf7d34ef60b643ec8f4b53f244fe71f1 |
title_full |
Development of OCMNO algorithm applied to optimize surface quality when ultra-precise machining of SKD 61 coated Ni-P materials |
author_sort |
Duc Le Anh |
journal |
Manufacturing Review |
journalStr |
Manufacturing Review |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Duc Le Anh Hieu Pham Minh Minh Quang Nguyen |
container_volume |
10, p 7 |
class |
TA1-2040 T1-995 TS1-2301 |
format_se |
Elektronische Aufsätze |
author-letter |
Duc Le Anh |
doi_str_mv |
10.1051/mfreview/2023006 |
author2-role |
verfasserin |
title_sort |
development of ocmno algorithm applied to optimize surface quality when ultra-precise machining of skd 61 coated ni-p materials |
callnumber |
TA1-2040 |
title_auth |
Development of OCMNO algorithm applied to optimize surface quality when ultra-precise machining of SKD 61 coated Ni-P materials |
abstract |
In this paper, a new algorithm developing to solve optimization problems with many nonlinear factors in ultra-precision machining by magnetic liquid mixture. The presented algorithm is a collective global search inspired by artificial intelligence based on the coordination of nonlinear systems occurring in machining processes. Combining multiple nonlinear systems is established to coordinate various nonlinear objects based on simple physical techniques during machining. The ultimate aim is to create a robust optimization algorithm based on the optimization collaborative of multiple nonlinear systems (OCMNO) with the same flexibility and high convergence established in optimizing surface quality and material removal rate (MRR) when polishing the SKD61-coated Ni-P material. The benchmark functions analyzing and the established optimization polishing process SKD61-coated Ni-P material to show the effectiveness of the proposed OCMNO algorithm. Polishing experiments demonstrate the optimal technological parameters based on a new algorithm and rotary magnetic polishing method to give the best-machined surface quality. From the analysis and experiment results when polishing magnetic SKD 61 coated Ni-P materials in a rotating magnetic field when using a Magnetic Compound Fluid (MCF). The technological parameters according to the OCMNO algorithm for ultra-smooth surface quality with Ra = 1.137 nm without leaving any scratches on the after-polishing surface. The study aims to provide an excellent reference value in optimizing the surface polishing of difficult-to-machine materials, such as SKD 61 coated Ni-P material, materials in the mould industry, and magnetized materials. |
abstractGer |
In this paper, a new algorithm developing to solve optimization problems with many nonlinear factors in ultra-precision machining by magnetic liquid mixture. The presented algorithm is a collective global search inspired by artificial intelligence based on the coordination of nonlinear systems occurring in machining processes. Combining multiple nonlinear systems is established to coordinate various nonlinear objects based on simple physical techniques during machining. The ultimate aim is to create a robust optimization algorithm based on the optimization collaborative of multiple nonlinear systems (OCMNO) with the same flexibility and high convergence established in optimizing surface quality and material removal rate (MRR) when polishing the SKD61-coated Ni-P material. The benchmark functions analyzing and the established optimization polishing process SKD61-coated Ni-P material to show the effectiveness of the proposed OCMNO algorithm. Polishing experiments demonstrate the optimal technological parameters based on a new algorithm and rotary magnetic polishing method to give the best-machined surface quality. From the analysis and experiment results when polishing magnetic SKD 61 coated Ni-P materials in a rotating magnetic field when using a Magnetic Compound Fluid (MCF). The technological parameters according to the OCMNO algorithm for ultra-smooth surface quality with Ra = 1.137 nm without leaving any scratches on the after-polishing surface. The study aims to provide an excellent reference value in optimizing the surface polishing of difficult-to-machine materials, such as SKD 61 coated Ni-P material, materials in the mould industry, and magnetized materials. |
abstract_unstemmed |
In this paper, a new algorithm developing to solve optimization problems with many nonlinear factors in ultra-precision machining by magnetic liquid mixture. The presented algorithm is a collective global search inspired by artificial intelligence based on the coordination of nonlinear systems occurring in machining processes. Combining multiple nonlinear systems is established to coordinate various nonlinear objects based on simple physical techniques during machining. The ultimate aim is to create a robust optimization algorithm based on the optimization collaborative of multiple nonlinear systems (OCMNO) with the same flexibility and high convergence established in optimizing surface quality and material removal rate (MRR) when polishing the SKD61-coated Ni-P material. The benchmark functions analyzing and the established optimization polishing process SKD61-coated Ni-P material to show the effectiveness of the proposed OCMNO algorithm. Polishing experiments demonstrate the optimal technological parameters based on a new algorithm and rotary magnetic polishing method to give the best-machined surface quality. From the analysis and experiment results when polishing magnetic SKD 61 coated Ni-P materials in a rotating magnetic field when using a Magnetic Compound Fluid (MCF). The technological parameters according to the OCMNO algorithm for ultra-smooth surface quality with Ra = 1.137 nm without leaving any scratches on the after-polishing surface. The study aims to provide an excellent reference value in optimizing the surface polishing of difficult-to-machine materials, such as SKD 61 coated Ni-P material, materials in the mould industry, and magnetized materials. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Development of OCMNO algorithm applied to optimize surface quality when ultra-precise machining of SKD 61 coated Ni-P materials |
url |
https://doi.org/10.1051/mfreview/2023006 https://doaj.org/article/bf7d34ef60b643ec8f4b53f244fe71f1 https://mfr.edp-open.org/articles/mfreview/full_html/2023/01/mfreview220087/mfreview220087.html https://doaj.org/toc/2265-4224 |
remote_bool |
true |
author2 |
Hieu Pham Minh Minh Quang Nguyen |
author2Str |
Hieu Pham Minh Minh Quang Nguyen |
ppnlink |
76922508X |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1051/mfreview/2023006 |
callnumber-a |
TA1-2040 |
up_date |
2024-07-03T23:57:02.604Z |
_version_ |
1803604221081157632 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ089622715</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230526105456.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1051/mfreview/2023006</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ089622715</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJbf7d34ef60b643ec8f4b53f244fe71f1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">T1-995</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TS1-2301</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Duc Le Anh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Development of OCMNO algorithm applied to optimize surface quality when ultra-precise machining of SKD 61 coated Ni-P materials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, a new algorithm developing to solve optimization problems with many nonlinear factors in ultra-precision machining by magnetic liquid mixture. The presented algorithm is a collective global search inspired by artificial intelligence based on the coordination of nonlinear systems occurring in machining processes. Combining multiple nonlinear systems is established to coordinate various nonlinear objects based on simple physical techniques during machining. The ultimate aim is to create a robust optimization algorithm based on the optimization collaborative of multiple nonlinear systems (OCMNO) with the same flexibility and high convergence established in optimizing surface quality and material removal rate (MRR) when polishing the SKD61-coated Ni-P material. The benchmark functions analyzing and the established optimization polishing process SKD61-coated Ni-P material to show the effectiveness of the proposed OCMNO algorithm. Polishing experiments demonstrate the optimal technological parameters based on a new algorithm and rotary magnetic polishing method to give the best-machined surface quality. From the analysis and experiment results when polishing magnetic SKD 61 coated Ni-P materials in a rotating magnetic field when using a Magnetic Compound Fluid (MCF). The technological parameters according to the OCMNO algorithm for ultra-smooth surface quality with Ra = 1.137 nm without leaving any scratches on the after-polishing surface. The study aims to provide an excellent reference value in optimizing the surface polishing of difficult-to-machine materials, such as SKD 61 coated Ni-P material, materials in the mould industry, and magnetized materials.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ocmno</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mcf</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">polishing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonlinear system</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Manufactures</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hieu Pham Minh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Minh Quang Nguyen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Manufacturing Review</subfield><subfield code="d">EDP Sciences, 2016</subfield><subfield code="g">10, p 7(2023)</subfield><subfield code="w">(DE-627)76922508X</subfield><subfield code="w">(DE-600)2735249-3</subfield><subfield code="x">22654224</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10, p 7</subfield><subfield code="g">year:2023</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1051/mfreview/2023006</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/bf7d34ef60b643ec8f4b53f244fe71f1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://mfr.edp-open.org/articles/mfreview/full_html/2023/01/mfreview220087/mfreview220087.html</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2265-4224</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10, p 7</subfield><subfield code="j">2023</subfield></datafield></record></collection>
|
score |
7.4016314 |