The combination of supervised and unsupervised learning based risk stratification and phenotyping in pulmonary arterial hypertension—a long-term retrospective multicenter trial
Abstract Background Accurate risk stratification in pulmonary arterial hypertension (PAH), a devastating cardiopulmonary disease, is essential to guide successful therapy. Machine learning may improve risk management and harness clinical variability in PAH. Methods We conducted a long-term retrospec...
Ausführliche Beschreibung
Autor*in: |
Thomas Sonnweber [verfasserIn] Piotr Tymoszuk [verfasserIn] Regina Steringer-Mascherbauer [verfasserIn] Elisabeth Sigmund [verfasserIn] Stephanie Porod-Schneiderbauer [verfasserIn] Lisa Kohlbacher [verfasserIn] Igor Theurl [verfasserIn] Irene Lang [verfasserIn] Günter Weiss [verfasserIn] Judith Löffler-Ragg [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: BMC Pulmonary Medicine - BMC, 2003, 23(2023), 1, Seite 12 |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:2023 ; number:1 ; pages:12 |
Links: |
---|
DOI / URN: |
10.1186/s12890-023-02427-2 |
---|
Katalog-ID: |
DOAJ089690249 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ089690249 | ||
003 | DE-627 | ||
005 | 20230505021042.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230505s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12890-023-02427-2 |2 doi | |
035 | |a (DE-627)DOAJ089690249 | ||
035 | |a (DE-599)DOAJ1595d4134c9b42869adc63fa0917e02b | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a RC705-779 | |
100 | 0 | |a Thomas Sonnweber |e verfasserin |4 aut | |
245 | 1 | 4 | |a The combination of supervised and unsupervised learning based risk stratification and phenotyping in pulmonary arterial hypertension—a long-term retrospective multicenter trial |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Background Accurate risk stratification in pulmonary arterial hypertension (PAH), a devastating cardiopulmonary disease, is essential to guide successful therapy. Machine learning may improve risk management and harness clinical variability in PAH. Methods We conducted a long-term retrospective observational study (median follow-up: 67 months) including 183 PAH patients from three Austrian PAH expert centers. Clinical, cardiopulmonary function, laboratory, imaging, and hemodynamic parameters were assessed. Cox proportional hazard Elastic Net and partitioning around medoid clustering were applied to establish a multi-parameter PAH mortality risk signature and investigate PAH phenotypes. Results Seven parameters identified by Elastic Net modeling, namely age, six-minute walking distance, red blood cell distribution width, cardiac index, pulmonary vascular resistance, N-terminal pro-brain natriuretic peptide and right atrial area, constituted a highly predictive mortality risk signature (training cohort: concordance index = 0.82 [95%CI: 0.75 – 0.89], test cohort: 0.77 [0.66 – 0.88]). The Elastic Net signature demonstrated superior prognostic accuracy as compared with five established risk scores. The signature factors defined two clusters of PAH patients with distinct risk profiles. The high-risk/poor prognosis cluster was characterized by advanced age at diagnosis, poor cardiac output, increased red cell distribution width, higher pulmonary vascular resistance, and a poor six-minute walking test performance. Conclusion Supervised and unsupervised learning algorithms such as Elastic Net regression and medoid clustering are powerful tools for automated mortality risk prediction and clinical phenotyping in PAH. | ||
650 | 4 | |a Pulmonary arterial hypertension | |
650 | 4 | |a Risk assessment | |
650 | 4 | |a Biomarkers | |
650 | 4 | |a Mortality | |
650 | 4 | |a Right-heart failure | |
650 | 4 | |a Atypical pulmonary arterial hypertension | |
653 | 0 | |a Diseases of the respiratory system | |
700 | 0 | |a Piotr Tymoszuk |e verfasserin |4 aut | |
700 | 0 | |a Regina Steringer-Mascherbauer |e verfasserin |4 aut | |
700 | 0 | |a Elisabeth Sigmund |e verfasserin |4 aut | |
700 | 0 | |a Stephanie Porod-Schneiderbauer |e verfasserin |4 aut | |
700 | 0 | |a Lisa Kohlbacher |e verfasserin |4 aut | |
700 | 0 | |a Igor Theurl |e verfasserin |4 aut | |
700 | 0 | |a Irene Lang |e verfasserin |4 aut | |
700 | 0 | |a Günter Weiss |e verfasserin |4 aut | |
700 | 0 | |a Judith Löffler-Ragg |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t BMC Pulmonary Medicine |d BMC, 2003 |g 23(2023), 1, Seite 12 |w (DE-627)335489125 |w (DE-600)2059871-3 |x 14712466 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2023 |g number:1 |g pages:12 |
856 | 4 | 0 | |u https://doi.org/10.1186/s12890-023-02427-2 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/1595d4134c9b42869adc63fa0917e02b |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1186/s12890-023-02427-2 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1471-2466 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 23 |j 2023 |e 1 |h 12 |
author_variant |
t s ts p t pt r s m rsm e s es s p s sps l k lk i t it i l il g w gw j l r jlr |
---|---|
matchkey_str |
article:14712466:2023----::hcmiainfuevsdnusprielannbsdiktaiiainnpeoyignumnratrahpres |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
RC |
publishDate |
2023 |
allfields |
10.1186/s12890-023-02427-2 doi (DE-627)DOAJ089690249 (DE-599)DOAJ1595d4134c9b42869adc63fa0917e02b DE-627 ger DE-627 rakwb eng RC705-779 Thomas Sonnweber verfasserin aut The combination of supervised and unsupervised learning based risk stratification and phenotyping in pulmonary arterial hypertension—a long-term retrospective multicenter trial 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Accurate risk stratification in pulmonary arterial hypertension (PAH), a devastating cardiopulmonary disease, is essential to guide successful therapy. Machine learning may improve risk management and harness clinical variability in PAH. Methods We conducted a long-term retrospective observational study (median follow-up: 67 months) including 183 PAH patients from three Austrian PAH expert centers. Clinical, cardiopulmonary function, laboratory, imaging, and hemodynamic parameters were assessed. Cox proportional hazard Elastic Net and partitioning around medoid clustering were applied to establish a multi-parameter PAH mortality risk signature and investigate PAH phenotypes. Results Seven parameters identified by Elastic Net modeling, namely age, six-minute walking distance, red blood cell distribution width, cardiac index, pulmonary vascular resistance, N-terminal pro-brain natriuretic peptide and right atrial area, constituted a highly predictive mortality risk signature (training cohort: concordance index = 0.82 [95%CI: 0.75 – 0.89], test cohort: 0.77 [0.66 – 0.88]). The Elastic Net signature demonstrated superior prognostic accuracy as compared with five established risk scores. The signature factors defined two clusters of PAH patients with distinct risk profiles. The high-risk/poor prognosis cluster was characterized by advanced age at diagnosis, poor cardiac output, increased red cell distribution width, higher pulmonary vascular resistance, and a poor six-minute walking test performance. Conclusion Supervised and unsupervised learning algorithms such as Elastic Net regression and medoid clustering are powerful tools for automated mortality risk prediction and clinical phenotyping in PAH. Pulmonary arterial hypertension Risk assessment Biomarkers Mortality Right-heart failure Atypical pulmonary arterial hypertension Diseases of the respiratory system Piotr Tymoszuk verfasserin aut Regina Steringer-Mascherbauer verfasserin aut Elisabeth Sigmund verfasserin aut Stephanie Porod-Schneiderbauer verfasserin aut Lisa Kohlbacher verfasserin aut Igor Theurl verfasserin aut Irene Lang verfasserin aut Günter Weiss verfasserin aut Judith Löffler-Ragg verfasserin aut In BMC Pulmonary Medicine BMC, 2003 23(2023), 1, Seite 12 (DE-627)335489125 (DE-600)2059871-3 14712466 nnns volume:23 year:2023 number:1 pages:12 https://doi.org/10.1186/s12890-023-02427-2 kostenfrei https://doaj.org/article/1595d4134c9b42869adc63fa0917e02b kostenfrei https://doi.org/10.1186/s12890-023-02427-2 kostenfrei https://doaj.org/toc/1471-2466 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 1 12 |
spelling |
10.1186/s12890-023-02427-2 doi (DE-627)DOAJ089690249 (DE-599)DOAJ1595d4134c9b42869adc63fa0917e02b DE-627 ger DE-627 rakwb eng RC705-779 Thomas Sonnweber verfasserin aut The combination of supervised and unsupervised learning based risk stratification and phenotyping in pulmonary arterial hypertension—a long-term retrospective multicenter trial 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Accurate risk stratification in pulmonary arterial hypertension (PAH), a devastating cardiopulmonary disease, is essential to guide successful therapy. Machine learning may improve risk management and harness clinical variability in PAH. Methods We conducted a long-term retrospective observational study (median follow-up: 67 months) including 183 PAH patients from three Austrian PAH expert centers. Clinical, cardiopulmonary function, laboratory, imaging, and hemodynamic parameters were assessed. Cox proportional hazard Elastic Net and partitioning around medoid clustering were applied to establish a multi-parameter PAH mortality risk signature and investigate PAH phenotypes. Results Seven parameters identified by Elastic Net modeling, namely age, six-minute walking distance, red blood cell distribution width, cardiac index, pulmonary vascular resistance, N-terminal pro-brain natriuretic peptide and right atrial area, constituted a highly predictive mortality risk signature (training cohort: concordance index = 0.82 [95%CI: 0.75 – 0.89], test cohort: 0.77 [0.66 – 0.88]). The Elastic Net signature demonstrated superior prognostic accuracy as compared with five established risk scores. The signature factors defined two clusters of PAH patients with distinct risk profiles. The high-risk/poor prognosis cluster was characterized by advanced age at diagnosis, poor cardiac output, increased red cell distribution width, higher pulmonary vascular resistance, and a poor six-minute walking test performance. Conclusion Supervised and unsupervised learning algorithms such as Elastic Net regression and medoid clustering are powerful tools for automated mortality risk prediction and clinical phenotyping in PAH. Pulmonary arterial hypertension Risk assessment Biomarkers Mortality Right-heart failure Atypical pulmonary arterial hypertension Diseases of the respiratory system Piotr Tymoszuk verfasserin aut Regina Steringer-Mascherbauer verfasserin aut Elisabeth Sigmund verfasserin aut Stephanie Porod-Schneiderbauer verfasserin aut Lisa Kohlbacher verfasserin aut Igor Theurl verfasserin aut Irene Lang verfasserin aut Günter Weiss verfasserin aut Judith Löffler-Ragg verfasserin aut In BMC Pulmonary Medicine BMC, 2003 23(2023), 1, Seite 12 (DE-627)335489125 (DE-600)2059871-3 14712466 nnns volume:23 year:2023 number:1 pages:12 https://doi.org/10.1186/s12890-023-02427-2 kostenfrei https://doaj.org/article/1595d4134c9b42869adc63fa0917e02b kostenfrei https://doi.org/10.1186/s12890-023-02427-2 kostenfrei https://doaj.org/toc/1471-2466 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 1 12 |
allfields_unstemmed |
10.1186/s12890-023-02427-2 doi (DE-627)DOAJ089690249 (DE-599)DOAJ1595d4134c9b42869adc63fa0917e02b DE-627 ger DE-627 rakwb eng RC705-779 Thomas Sonnweber verfasserin aut The combination of supervised and unsupervised learning based risk stratification and phenotyping in pulmonary arterial hypertension—a long-term retrospective multicenter trial 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Accurate risk stratification in pulmonary arterial hypertension (PAH), a devastating cardiopulmonary disease, is essential to guide successful therapy. Machine learning may improve risk management and harness clinical variability in PAH. Methods We conducted a long-term retrospective observational study (median follow-up: 67 months) including 183 PAH patients from three Austrian PAH expert centers. Clinical, cardiopulmonary function, laboratory, imaging, and hemodynamic parameters were assessed. Cox proportional hazard Elastic Net and partitioning around medoid clustering were applied to establish a multi-parameter PAH mortality risk signature and investigate PAH phenotypes. Results Seven parameters identified by Elastic Net modeling, namely age, six-minute walking distance, red blood cell distribution width, cardiac index, pulmonary vascular resistance, N-terminal pro-brain natriuretic peptide and right atrial area, constituted a highly predictive mortality risk signature (training cohort: concordance index = 0.82 [95%CI: 0.75 – 0.89], test cohort: 0.77 [0.66 – 0.88]). The Elastic Net signature demonstrated superior prognostic accuracy as compared with five established risk scores. The signature factors defined two clusters of PAH patients with distinct risk profiles. The high-risk/poor prognosis cluster was characterized by advanced age at diagnosis, poor cardiac output, increased red cell distribution width, higher pulmonary vascular resistance, and a poor six-minute walking test performance. Conclusion Supervised and unsupervised learning algorithms such as Elastic Net regression and medoid clustering are powerful tools for automated mortality risk prediction and clinical phenotyping in PAH. Pulmonary arterial hypertension Risk assessment Biomarkers Mortality Right-heart failure Atypical pulmonary arterial hypertension Diseases of the respiratory system Piotr Tymoszuk verfasserin aut Regina Steringer-Mascherbauer verfasserin aut Elisabeth Sigmund verfasserin aut Stephanie Porod-Schneiderbauer verfasserin aut Lisa Kohlbacher verfasserin aut Igor Theurl verfasserin aut Irene Lang verfasserin aut Günter Weiss verfasserin aut Judith Löffler-Ragg verfasserin aut In BMC Pulmonary Medicine BMC, 2003 23(2023), 1, Seite 12 (DE-627)335489125 (DE-600)2059871-3 14712466 nnns volume:23 year:2023 number:1 pages:12 https://doi.org/10.1186/s12890-023-02427-2 kostenfrei https://doaj.org/article/1595d4134c9b42869adc63fa0917e02b kostenfrei https://doi.org/10.1186/s12890-023-02427-2 kostenfrei https://doaj.org/toc/1471-2466 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 1 12 |
allfieldsGer |
10.1186/s12890-023-02427-2 doi (DE-627)DOAJ089690249 (DE-599)DOAJ1595d4134c9b42869adc63fa0917e02b DE-627 ger DE-627 rakwb eng RC705-779 Thomas Sonnweber verfasserin aut The combination of supervised and unsupervised learning based risk stratification and phenotyping in pulmonary arterial hypertension—a long-term retrospective multicenter trial 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Accurate risk stratification in pulmonary arterial hypertension (PAH), a devastating cardiopulmonary disease, is essential to guide successful therapy. Machine learning may improve risk management and harness clinical variability in PAH. Methods We conducted a long-term retrospective observational study (median follow-up: 67 months) including 183 PAH patients from three Austrian PAH expert centers. Clinical, cardiopulmonary function, laboratory, imaging, and hemodynamic parameters were assessed. Cox proportional hazard Elastic Net and partitioning around medoid clustering were applied to establish a multi-parameter PAH mortality risk signature and investigate PAH phenotypes. Results Seven parameters identified by Elastic Net modeling, namely age, six-minute walking distance, red blood cell distribution width, cardiac index, pulmonary vascular resistance, N-terminal pro-brain natriuretic peptide and right atrial area, constituted a highly predictive mortality risk signature (training cohort: concordance index = 0.82 [95%CI: 0.75 – 0.89], test cohort: 0.77 [0.66 – 0.88]). The Elastic Net signature demonstrated superior prognostic accuracy as compared with five established risk scores. The signature factors defined two clusters of PAH patients with distinct risk profiles. The high-risk/poor prognosis cluster was characterized by advanced age at diagnosis, poor cardiac output, increased red cell distribution width, higher pulmonary vascular resistance, and a poor six-minute walking test performance. Conclusion Supervised and unsupervised learning algorithms such as Elastic Net regression and medoid clustering are powerful tools for automated mortality risk prediction and clinical phenotyping in PAH. Pulmonary arterial hypertension Risk assessment Biomarkers Mortality Right-heart failure Atypical pulmonary arterial hypertension Diseases of the respiratory system Piotr Tymoszuk verfasserin aut Regina Steringer-Mascherbauer verfasserin aut Elisabeth Sigmund verfasserin aut Stephanie Porod-Schneiderbauer verfasserin aut Lisa Kohlbacher verfasserin aut Igor Theurl verfasserin aut Irene Lang verfasserin aut Günter Weiss verfasserin aut Judith Löffler-Ragg verfasserin aut In BMC Pulmonary Medicine BMC, 2003 23(2023), 1, Seite 12 (DE-627)335489125 (DE-600)2059871-3 14712466 nnns volume:23 year:2023 number:1 pages:12 https://doi.org/10.1186/s12890-023-02427-2 kostenfrei https://doaj.org/article/1595d4134c9b42869adc63fa0917e02b kostenfrei https://doi.org/10.1186/s12890-023-02427-2 kostenfrei https://doaj.org/toc/1471-2466 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 1 12 |
allfieldsSound |
10.1186/s12890-023-02427-2 doi (DE-627)DOAJ089690249 (DE-599)DOAJ1595d4134c9b42869adc63fa0917e02b DE-627 ger DE-627 rakwb eng RC705-779 Thomas Sonnweber verfasserin aut The combination of supervised and unsupervised learning based risk stratification and phenotyping in pulmonary arterial hypertension—a long-term retrospective multicenter trial 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Accurate risk stratification in pulmonary arterial hypertension (PAH), a devastating cardiopulmonary disease, is essential to guide successful therapy. Machine learning may improve risk management and harness clinical variability in PAH. Methods We conducted a long-term retrospective observational study (median follow-up: 67 months) including 183 PAH patients from three Austrian PAH expert centers. Clinical, cardiopulmonary function, laboratory, imaging, and hemodynamic parameters were assessed. Cox proportional hazard Elastic Net and partitioning around medoid clustering were applied to establish a multi-parameter PAH mortality risk signature and investigate PAH phenotypes. Results Seven parameters identified by Elastic Net modeling, namely age, six-minute walking distance, red blood cell distribution width, cardiac index, pulmonary vascular resistance, N-terminal pro-brain natriuretic peptide and right atrial area, constituted a highly predictive mortality risk signature (training cohort: concordance index = 0.82 [95%CI: 0.75 – 0.89], test cohort: 0.77 [0.66 – 0.88]). The Elastic Net signature demonstrated superior prognostic accuracy as compared with five established risk scores. The signature factors defined two clusters of PAH patients with distinct risk profiles. The high-risk/poor prognosis cluster was characterized by advanced age at diagnosis, poor cardiac output, increased red cell distribution width, higher pulmonary vascular resistance, and a poor six-minute walking test performance. Conclusion Supervised and unsupervised learning algorithms such as Elastic Net regression and medoid clustering are powerful tools for automated mortality risk prediction and clinical phenotyping in PAH. Pulmonary arterial hypertension Risk assessment Biomarkers Mortality Right-heart failure Atypical pulmonary arterial hypertension Diseases of the respiratory system Piotr Tymoszuk verfasserin aut Regina Steringer-Mascherbauer verfasserin aut Elisabeth Sigmund verfasserin aut Stephanie Porod-Schneiderbauer verfasserin aut Lisa Kohlbacher verfasserin aut Igor Theurl verfasserin aut Irene Lang verfasserin aut Günter Weiss verfasserin aut Judith Löffler-Ragg verfasserin aut In BMC Pulmonary Medicine BMC, 2003 23(2023), 1, Seite 12 (DE-627)335489125 (DE-600)2059871-3 14712466 nnns volume:23 year:2023 number:1 pages:12 https://doi.org/10.1186/s12890-023-02427-2 kostenfrei https://doaj.org/article/1595d4134c9b42869adc63fa0917e02b kostenfrei https://doi.org/10.1186/s12890-023-02427-2 kostenfrei https://doaj.org/toc/1471-2466 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 1 12 |
language |
English |
source |
In BMC Pulmonary Medicine 23(2023), 1, Seite 12 volume:23 year:2023 number:1 pages:12 |
sourceStr |
In BMC Pulmonary Medicine 23(2023), 1, Seite 12 volume:23 year:2023 number:1 pages:12 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Pulmonary arterial hypertension Risk assessment Biomarkers Mortality Right-heart failure Atypical pulmonary arterial hypertension Diseases of the respiratory system |
isfreeaccess_bool |
true |
container_title |
BMC Pulmonary Medicine |
authorswithroles_txt_mv |
Thomas Sonnweber @@aut@@ Piotr Tymoszuk @@aut@@ Regina Steringer-Mascherbauer @@aut@@ Elisabeth Sigmund @@aut@@ Stephanie Porod-Schneiderbauer @@aut@@ Lisa Kohlbacher @@aut@@ Igor Theurl @@aut@@ Irene Lang @@aut@@ Günter Weiss @@aut@@ Judith Löffler-Ragg @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
335489125 |
id |
DOAJ089690249 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ089690249</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505021042.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12890-023-02427-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ089690249</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ1595d4134c9b42869adc63fa0917e02b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC705-779</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Thomas Sonnweber</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The combination of supervised and unsupervised learning based risk stratification and phenotyping in pulmonary arterial hypertension—a long-term retrospective multicenter trial</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Background Accurate risk stratification in pulmonary arterial hypertension (PAH), a devastating cardiopulmonary disease, is essential to guide successful therapy. Machine learning may improve risk management and harness clinical variability in PAH. Methods We conducted a long-term retrospective observational study (median follow-up: 67 months) including 183 PAH patients from three Austrian PAH expert centers. Clinical, cardiopulmonary function, laboratory, imaging, and hemodynamic parameters were assessed. Cox proportional hazard Elastic Net and partitioning around medoid clustering were applied to establish a multi-parameter PAH mortality risk signature and investigate PAH phenotypes. Results Seven parameters identified by Elastic Net modeling, namely age, six-minute walking distance, red blood cell distribution width, cardiac index, pulmonary vascular resistance, N-terminal pro-brain natriuretic peptide and right atrial area, constituted a highly predictive mortality risk signature (training cohort: concordance index = 0.82 [95%CI: 0.75 – 0.89], test cohort: 0.77 [0.66 – 0.88]). The Elastic Net signature demonstrated superior prognostic accuracy as compared with five established risk scores. The signature factors defined two clusters of PAH patients with distinct risk profiles. The high-risk/poor prognosis cluster was characterized by advanced age at diagnosis, poor cardiac output, increased red cell distribution width, higher pulmonary vascular resistance, and a poor six-minute walking test performance. Conclusion Supervised and unsupervised learning algorithms such as Elastic Net regression and medoid clustering are powerful tools for automated mortality risk prediction and clinical phenotyping in PAH.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pulmonary arterial hypertension</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Risk assessment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomarkers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mortality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Right-heart failure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Atypical pulmonary arterial hypertension</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Diseases of the respiratory system</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Piotr Tymoszuk</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Regina Steringer-Mascherbauer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Elisabeth Sigmund</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Stephanie Porod-Schneiderbauer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lisa Kohlbacher</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Igor Theurl</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Irene Lang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Günter Weiss</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Judith Löffler-Ragg</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">BMC Pulmonary Medicine</subfield><subfield code="d">BMC, 2003</subfield><subfield code="g">23(2023), 1, Seite 12</subfield><subfield code="w">(DE-627)335489125</subfield><subfield code="w">(DE-600)2059871-3</subfield><subfield code="x">14712466</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s12890-023-02427-2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/1595d4134c9b42869adc63fa0917e02b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s12890-023-02427-2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1471-2466</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="h">12</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Thomas Sonnweber |
spellingShingle |
Thomas Sonnweber misc RC705-779 misc Pulmonary arterial hypertension misc Risk assessment misc Biomarkers misc Mortality misc Right-heart failure misc Atypical pulmonary arterial hypertension misc Diseases of the respiratory system The combination of supervised and unsupervised learning based risk stratification and phenotyping in pulmonary arterial hypertension—a long-term retrospective multicenter trial |
authorStr |
Thomas Sonnweber |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)335489125 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RC705-779 |
illustrated |
Not Illustrated |
issn |
14712466 |
topic_title |
RC705-779 The combination of supervised and unsupervised learning based risk stratification and phenotyping in pulmonary arterial hypertension—a long-term retrospective multicenter trial Pulmonary arterial hypertension Risk assessment Biomarkers Mortality Right-heart failure Atypical pulmonary arterial hypertension |
topic |
misc RC705-779 misc Pulmonary arterial hypertension misc Risk assessment misc Biomarkers misc Mortality misc Right-heart failure misc Atypical pulmonary arterial hypertension misc Diseases of the respiratory system |
topic_unstemmed |
misc RC705-779 misc Pulmonary arterial hypertension misc Risk assessment misc Biomarkers misc Mortality misc Right-heart failure misc Atypical pulmonary arterial hypertension misc Diseases of the respiratory system |
topic_browse |
misc RC705-779 misc Pulmonary arterial hypertension misc Risk assessment misc Biomarkers misc Mortality misc Right-heart failure misc Atypical pulmonary arterial hypertension misc Diseases of the respiratory system |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC Pulmonary Medicine |
hierarchy_parent_id |
335489125 |
hierarchy_top_title |
BMC Pulmonary Medicine |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)335489125 (DE-600)2059871-3 |
title |
The combination of supervised and unsupervised learning based risk stratification and phenotyping in pulmonary arterial hypertension—a long-term retrospective multicenter trial |
ctrlnum |
(DE-627)DOAJ089690249 (DE-599)DOAJ1595d4134c9b42869adc63fa0917e02b |
title_full |
The combination of supervised and unsupervised learning based risk stratification and phenotyping in pulmonary arterial hypertension—a long-term retrospective multicenter trial |
author_sort |
Thomas Sonnweber |
journal |
BMC Pulmonary Medicine |
journalStr |
BMC Pulmonary Medicine |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
12 |
author_browse |
Thomas Sonnweber Piotr Tymoszuk Regina Steringer-Mascherbauer Elisabeth Sigmund Stephanie Porod-Schneiderbauer Lisa Kohlbacher Igor Theurl Irene Lang Günter Weiss Judith Löffler-Ragg |
container_volume |
23 |
class |
RC705-779 |
format_se |
Elektronische Aufsätze |
author-letter |
Thomas Sonnweber |
doi_str_mv |
10.1186/s12890-023-02427-2 |
author2-role |
verfasserin |
title_sort |
combination of supervised and unsupervised learning based risk stratification and phenotyping in pulmonary arterial hypertension—a long-term retrospective multicenter trial |
callnumber |
RC705-779 |
title_auth |
The combination of supervised and unsupervised learning based risk stratification and phenotyping in pulmonary arterial hypertension—a long-term retrospective multicenter trial |
abstract |
Abstract Background Accurate risk stratification in pulmonary arterial hypertension (PAH), a devastating cardiopulmonary disease, is essential to guide successful therapy. Machine learning may improve risk management and harness clinical variability in PAH. Methods We conducted a long-term retrospective observational study (median follow-up: 67 months) including 183 PAH patients from three Austrian PAH expert centers. Clinical, cardiopulmonary function, laboratory, imaging, and hemodynamic parameters were assessed. Cox proportional hazard Elastic Net and partitioning around medoid clustering were applied to establish a multi-parameter PAH mortality risk signature and investigate PAH phenotypes. Results Seven parameters identified by Elastic Net modeling, namely age, six-minute walking distance, red blood cell distribution width, cardiac index, pulmonary vascular resistance, N-terminal pro-brain natriuretic peptide and right atrial area, constituted a highly predictive mortality risk signature (training cohort: concordance index = 0.82 [95%CI: 0.75 – 0.89], test cohort: 0.77 [0.66 – 0.88]). The Elastic Net signature demonstrated superior prognostic accuracy as compared with five established risk scores. The signature factors defined two clusters of PAH patients with distinct risk profiles. The high-risk/poor prognosis cluster was characterized by advanced age at diagnosis, poor cardiac output, increased red cell distribution width, higher pulmonary vascular resistance, and a poor six-minute walking test performance. Conclusion Supervised and unsupervised learning algorithms such as Elastic Net regression and medoid clustering are powerful tools for automated mortality risk prediction and clinical phenotyping in PAH. |
abstractGer |
Abstract Background Accurate risk stratification in pulmonary arterial hypertension (PAH), a devastating cardiopulmonary disease, is essential to guide successful therapy. Machine learning may improve risk management and harness clinical variability in PAH. Methods We conducted a long-term retrospective observational study (median follow-up: 67 months) including 183 PAH patients from three Austrian PAH expert centers. Clinical, cardiopulmonary function, laboratory, imaging, and hemodynamic parameters were assessed. Cox proportional hazard Elastic Net and partitioning around medoid clustering were applied to establish a multi-parameter PAH mortality risk signature and investigate PAH phenotypes. Results Seven parameters identified by Elastic Net modeling, namely age, six-minute walking distance, red blood cell distribution width, cardiac index, pulmonary vascular resistance, N-terminal pro-brain natriuretic peptide and right atrial area, constituted a highly predictive mortality risk signature (training cohort: concordance index = 0.82 [95%CI: 0.75 – 0.89], test cohort: 0.77 [0.66 – 0.88]). The Elastic Net signature demonstrated superior prognostic accuracy as compared with five established risk scores. The signature factors defined two clusters of PAH patients with distinct risk profiles. The high-risk/poor prognosis cluster was characterized by advanced age at diagnosis, poor cardiac output, increased red cell distribution width, higher pulmonary vascular resistance, and a poor six-minute walking test performance. Conclusion Supervised and unsupervised learning algorithms such as Elastic Net regression and medoid clustering are powerful tools for automated mortality risk prediction and clinical phenotyping in PAH. |
abstract_unstemmed |
Abstract Background Accurate risk stratification in pulmonary arterial hypertension (PAH), a devastating cardiopulmonary disease, is essential to guide successful therapy. Machine learning may improve risk management and harness clinical variability in PAH. Methods We conducted a long-term retrospective observational study (median follow-up: 67 months) including 183 PAH patients from three Austrian PAH expert centers. Clinical, cardiopulmonary function, laboratory, imaging, and hemodynamic parameters were assessed. Cox proportional hazard Elastic Net and partitioning around medoid clustering were applied to establish a multi-parameter PAH mortality risk signature and investigate PAH phenotypes. Results Seven parameters identified by Elastic Net modeling, namely age, six-minute walking distance, red blood cell distribution width, cardiac index, pulmonary vascular resistance, N-terminal pro-brain natriuretic peptide and right atrial area, constituted a highly predictive mortality risk signature (training cohort: concordance index = 0.82 [95%CI: 0.75 – 0.89], test cohort: 0.77 [0.66 – 0.88]). The Elastic Net signature demonstrated superior prognostic accuracy as compared with five established risk scores. The signature factors defined two clusters of PAH patients with distinct risk profiles. The high-risk/poor prognosis cluster was characterized by advanced age at diagnosis, poor cardiac output, increased red cell distribution width, higher pulmonary vascular resistance, and a poor six-minute walking test performance. Conclusion Supervised and unsupervised learning algorithms such as Elastic Net regression and medoid clustering are powerful tools for automated mortality risk prediction and clinical phenotyping in PAH. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
The combination of supervised and unsupervised learning based risk stratification and phenotyping in pulmonary arterial hypertension—a long-term retrospective multicenter trial |
url |
https://doi.org/10.1186/s12890-023-02427-2 https://doaj.org/article/1595d4134c9b42869adc63fa0917e02b https://doaj.org/toc/1471-2466 |
remote_bool |
true |
author2 |
Piotr Tymoszuk Regina Steringer-Mascherbauer Elisabeth Sigmund Stephanie Porod-Schneiderbauer Lisa Kohlbacher Igor Theurl Irene Lang Günter Weiss Judith Löffler-Ragg |
author2Str |
Piotr Tymoszuk Regina Steringer-Mascherbauer Elisabeth Sigmund Stephanie Porod-Schneiderbauer Lisa Kohlbacher Igor Theurl Irene Lang Günter Weiss Judith Löffler-Ragg |
ppnlink |
335489125 |
callnumber-subject |
RC - Internal Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12890-023-02427-2 |
callnumber-a |
RC705-779 |
up_date |
2024-07-04T00:14:17.467Z |
_version_ |
1803605306210516992 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ089690249</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505021042.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12890-023-02427-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ089690249</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ1595d4134c9b42869adc63fa0917e02b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC705-779</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Thomas Sonnweber</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The combination of supervised and unsupervised learning based risk stratification and phenotyping in pulmonary arterial hypertension—a long-term retrospective multicenter trial</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Background Accurate risk stratification in pulmonary arterial hypertension (PAH), a devastating cardiopulmonary disease, is essential to guide successful therapy. Machine learning may improve risk management and harness clinical variability in PAH. Methods We conducted a long-term retrospective observational study (median follow-up: 67 months) including 183 PAH patients from three Austrian PAH expert centers. Clinical, cardiopulmonary function, laboratory, imaging, and hemodynamic parameters were assessed. Cox proportional hazard Elastic Net and partitioning around medoid clustering were applied to establish a multi-parameter PAH mortality risk signature and investigate PAH phenotypes. Results Seven parameters identified by Elastic Net modeling, namely age, six-minute walking distance, red blood cell distribution width, cardiac index, pulmonary vascular resistance, N-terminal pro-brain natriuretic peptide and right atrial area, constituted a highly predictive mortality risk signature (training cohort: concordance index = 0.82 [95%CI: 0.75 – 0.89], test cohort: 0.77 [0.66 – 0.88]). The Elastic Net signature demonstrated superior prognostic accuracy as compared with five established risk scores. The signature factors defined two clusters of PAH patients with distinct risk profiles. The high-risk/poor prognosis cluster was characterized by advanced age at diagnosis, poor cardiac output, increased red cell distribution width, higher pulmonary vascular resistance, and a poor six-minute walking test performance. Conclusion Supervised and unsupervised learning algorithms such as Elastic Net regression and medoid clustering are powerful tools for automated mortality risk prediction and clinical phenotyping in PAH.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pulmonary arterial hypertension</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Risk assessment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomarkers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mortality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Right-heart failure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Atypical pulmonary arterial hypertension</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Diseases of the respiratory system</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Piotr Tymoszuk</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Regina Steringer-Mascherbauer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Elisabeth Sigmund</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Stephanie Porod-Schneiderbauer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lisa Kohlbacher</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Igor Theurl</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Irene Lang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Günter Weiss</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Judith Löffler-Ragg</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">BMC Pulmonary Medicine</subfield><subfield code="d">BMC, 2003</subfield><subfield code="g">23(2023), 1, Seite 12</subfield><subfield code="w">(DE-627)335489125</subfield><subfield code="w">(DE-600)2059871-3</subfield><subfield code="x">14712466</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s12890-023-02427-2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/1595d4134c9b42869adc63fa0917e02b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s12890-023-02427-2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1471-2466</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="h">12</subfield></datafield></record></collection>
|
score |
7.401268 |