Root Distribution of Tomato Cultivated in Greenhouse under Different Ventilation and Water Conditions
Mastering root distribution is essential for optimizing the root zone environment and for improving water use efficiency, especially for crops cultivated in greenhouses. Here, we set up two irrigation amount levels based on measurements of the cumulative 20 cm pan evaporation (<i<E<sub<p...
Ausführliche Beschreibung
Autor*in: |
Jiankun Ge [verfasserIn] Huanhuan Liu [verfasserIn] Xuewen Gong [verfasserIn] Zihui Yu [verfasserIn] Lusheng Li [verfasserIn] Yanbin Li [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Plants - MDPI AG, 2013, 12(2023), 8, p 1625 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2023 ; number:8, p 1625 |
Links: |
---|
DOI / URN: |
10.3390/plants12081625 |
---|
Katalog-ID: |
DOAJ089787773 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ089787773 | ||
003 | DE-627 | ||
005 | 20240413040443.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230505s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/plants12081625 |2 doi | |
035 | |a (DE-627)DOAJ089787773 | ||
035 | |a (DE-599)DOAJ5c33a893fb9f4558af09977500ae1f38 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QK1-989 | |
100 | 0 | |a Jiankun Ge |e verfasserin |4 aut | |
245 | 1 | 0 | |a Root Distribution of Tomato Cultivated in Greenhouse under Different Ventilation and Water Conditions |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Mastering root distribution is essential for optimizing the root zone environment and for improving water use efficiency, especially for crops cultivated in greenhouses. Here, we set up two irrigation amount levels based on measurements of the cumulative 20 cm pan evaporation (<i<E<sub<p</sub<</i<) (i.e., <i<K</i<<sub<0.9</sub<: 0.9 <i<E<sub<p</sub<</i<; <i<K</i<<sub<0.5</sub<: 0.5 <i<E<sub<p</sub<</i<), and three ventilation modes through opening the greenhouse vents at different locations (<i<T<sub<R</sub<</i<: open the roof vents only; <i<T<sub<RS</sub<</i<: open both the roof and south vents; <i<T<sub<S</sub<</i<: open the south vents only) to reveal the effects of the ventilation mode and irrigation amount on the root distribution of greenhouse tomato. Six treatments were designed in blocks with the ventilation mode as the main treatment and the irrigation amount as the vice treatment. On this basis, the normalized root length density (NRLD) model of six treatments was developed by considering air environment, soil water and temperature conditions, root length density (RLD) and yield. The results showed that air speed of the <i<T<sub<RS</sub<</i< was significantly higher than <i<T<sub<R</sub<</i< and <i<T<sub<S</sub<</i< (<i<p</i< < 0.01), and the air temperature and relative humidity under different ventilation showed the rule: T<i<<sub<R</sub<</i< < <i<T<sub<S</sub<</i< < <i<T<sub<RS</sub<</i<. There was a significant third-order polynomial function relationship between NRLD and soil depth, and the coefficient of the cubic term (<i<R</i<<sub<0</sub<) had a bivariate quadratic polynomial function relationship with irrigation amount and air speed (determination coefficient, <i<R</i<<sup<2</sup< = 0.86). Root mean square errors of the simulated and measured value of NRLD under <i<T<sub<R</sub<</i<, <i<T<sub<RS</sub<</i< and <i<T<sub<S</sub<</i< were 0.20, 0.23 and 0.27 in 2020, and 0.31, 0.23 and 0.28 in 2021, respectively, normalized root mean squared errors were 15%, 17%, 20% in 2020, and 23%, 18% and 21% in 2021. The RLD distribution ratio from the ground surface to a one-quarter relative root depth was 74.1%, and 88.0% from the surface to a one-half relative root depth. The results of the yield showed that a better combination of ventilation and irrigation was recommended as <i<T<sub<RS</sub<</i< combined with <i<K</i<<sub<0.9</sub<. | ||
650 | 4 | |a greenhouse tomato | |
650 | 4 | |a irrigation | |
650 | 4 | |a NRLD distribution model | |
650 | 4 | |a yield | |
650 | 4 | |a ventilation | |
653 | 0 | |a Botany | |
700 | 0 | |a Huanhuan Liu |e verfasserin |4 aut | |
700 | 0 | |a Xuewen Gong |e verfasserin |4 aut | |
700 | 0 | |a Zihui Yu |e verfasserin |4 aut | |
700 | 0 | |a Lusheng Li |e verfasserin |4 aut | |
700 | 0 | |a Yanbin Li |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Plants |d MDPI AG, 2013 |g 12(2023), 8, p 1625 |w (DE-627)737288345 |w (DE-600)2704341-1 |x 22237747 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2023 |g number:8, p 1625 |
856 | 4 | 0 | |u https://doi.org/10.3390/plants12081625 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/5c33a893fb9f4558af09977500ae1f38 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2223-7747/12/8/1625 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2223-7747 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2023 |e 8, p 1625 |
author_variant |
j g jg h l hl x g xg z y zy l l ll y l yl |
---|---|
matchkey_str |
article:22237747:2023----::otitiuinfoaoutvtdnrehuenedfeetetl |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QK |
publishDate |
2023 |
allfields |
10.3390/plants12081625 doi (DE-627)DOAJ089787773 (DE-599)DOAJ5c33a893fb9f4558af09977500ae1f38 DE-627 ger DE-627 rakwb eng QK1-989 Jiankun Ge verfasserin aut Root Distribution of Tomato Cultivated in Greenhouse under Different Ventilation and Water Conditions 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Mastering root distribution is essential for optimizing the root zone environment and for improving water use efficiency, especially for crops cultivated in greenhouses. Here, we set up two irrigation amount levels based on measurements of the cumulative 20 cm pan evaporation (<i<E<sub<p</sub<</i<) (i.e., <i<K</i<<sub<0.9</sub<: 0.9 <i<E<sub<p</sub<</i<; <i<K</i<<sub<0.5</sub<: 0.5 <i<E<sub<p</sub<</i<), and three ventilation modes through opening the greenhouse vents at different locations (<i<T<sub<R</sub<</i<: open the roof vents only; <i<T<sub<RS</sub<</i<: open both the roof and south vents; <i<T<sub<S</sub<</i<: open the south vents only) to reveal the effects of the ventilation mode and irrigation amount on the root distribution of greenhouse tomato. Six treatments were designed in blocks with the ventilation mode as the main treatment and the irrigation amount as the vice treatment. On this basis, the normalized root length density (NRLD) model of six treatments was developed by considering air environment, soil water and temperature conditions, root length density (RLD) and yield. The results showed that air speed of the <i<T<sub<RS</sub<</i< was significantly higher than <i<T<sub<R</sub<</i< and <i<T<sub<S</sub<</i< (<i<p</i< < 0.01), and the air temperature and relative humidity under different ventilation showed the rule: T<i<<sub<R</sub<</i< < <i<T<sub<S</sub<</i< < <i<T<sub<RS</sub<</i<. There was a significant third-order polynomial function relationship between NRLD and soil depth, and the coefficient of the cubic term (<i<R</i<<sub<0</sub<) had a bivariate quadratic polynomial function relationship with irrigation amount and air speed (determination coefficient, <i<R</i<<sup<2</sup< = 0.86). Root mean square errors of the simulated and measured value of NRLD under <i<T<sub<R</sub<</i<, <i<T<sub<RS</sub<</i< and <i<T<sub<S</sub<</i< were 0.20, 0.23 and 0.27 in 2020, and 0.31, 0.23 and 0.28 in 2021, respectively, normalized root mean squared errors were 15%, 17%, 20% in 2020, and 23%, 18% and 21% in 2021. The RLD distribution ratio from the ground surface to a one-quarter relative root depth was 74.1%, and 88.0% from the surface to a one-half relative root depth. The results of the yield showed that a better combination of ventilation and irrigation was recommended as <i<T<sub<RS</sub<</i< combined with <i<K</i<<sub<0.9</sub<. greenhouse tomato irrigation NRLD distribution model yield ventilation Botany Huanhuan Liu verfasserin aut Xuewen Gong verfasserin aut Zihui Yu verfasserin aut Lusheng Li verfasserin aut Yanbin Li verfasserin aut In Plants MDPI AG, 2013 12(2023), 8, p 1625 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:12 year:2023 number:8, p 1625 https://doi.org/10.3390/plants12081625 kostenfrei https://doaj.org/article/5c33a893fb9f4558af09977500ae1f38 kostenfrei https://www.mdpi.com/2223-7747/12/8/1625 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 8, p 1625 |
spelling |
10.3390/plants12081625 doi (DE-627)DOAJ089787773 (DE-599)DOAJ5c33a893fb9f4558af09977500ae1f38 DE-627 ger DE-627 rakwb eng QK1-989 Jiankun Ge verfasserin aut Root Distribution of Tomato Cultivated in Greenhouse under Different Ventilation and Water Conditions 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Mastering root distribution is essential for optimizing the root zone environment and for improving water use efficiency, especially for crops cultivated in greenhouses. Here, we set up two irrigation amount levels based on measurements of the cumulative 20 cm pan evaporation (<i<E<sub<p</sub<</i<) (i.e., <i<K</i<<sub<0.9</sub<: 0.9 <i<E<sub<p</sub<</i<; <i<K</i<<sub<0.5</sub<: 0.5 <i<E<sub<p</sub<</i<), and three ventilation modes through opening the greenhouse vents at different locations (<i<T<sub<R</sub<</i<: open the roof vents only; <i<T<sub<RS</sub<</i<: open both the roof and south vents; <i<T<sub<S</sub<</i<: open the south vents only) to reveal the effects of the ventilation mode and irrigation amount on the root distribution of greenhouse tomato. Six treatments were designed in blocks with the ventilation mode as the main treatment and the irrigation amount as the vice treatment. On this basis, the normalized root length density (NRLD) model of six treatments was developed by considering air environment, soil water and temperature conditions, root length density (RLD) and yield. The results showed that air speed of the <i<T<sub<RS</sub<</i< was significantly higher than <i<T<sub<R</sub<</i< and <i<T<sub<S</sub<</i< (<i<p</i< < 0.01), and the air temperature and relative humidity under different ventilation showed the rule: T<i<<sub<R</sub<</i< < <i<T<sub<S</sub<</i< < <i<T<sub<RS</sub<</i<. There was a significant third-order polynomial function relationship between NRLD and soil depth, and the coefficient of the cubic term (<i<R</i<<sub<0</sub<) had a bivariate quadratic polynomial function relationship with irrigation amount and air speed (determination coefficient, <i<R</i<<sup<2</sup< = 0.86). Root mean square errors of the simulated and measured value of NRLD under <i<T<sub<R</sub<</i<, <i<T<sub<RS</sub<</i< and <i<T<sub<S</sub<</i< were 0.20, 0.23 and 0.27 in 2020, and 0.31, 0.23 and 0.28 in 2021, respectively, normalized root mean squared errors were 15%, 17%, 20% in 2020, and 23%, 18% and 21% in 2021. The RLD distribution ratio from the ground surface to a one-quarter relative root depth was 74.1%, and 88.0% from the surface to a one-half relative root depth. The results of the yield showed that a better combination of ventilation and irrigation was recommended as <i<T<sub<RS</sub<</i< combined with <i<K</i<<sub<0.9</sub<. greenhouse tomato irrigation NRLD distribution model yield ventilation Botany Huanhuan Liu verfasserin aut Xuewen Gong verfasserin aut Zihui Yu verfasserin aut Lusheng Li verfasserin aut Yanbin Li verfasserin aut In Plants MDPI AG, 2013 12(2023), 8, p 1625 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:12 year:2023 number:8, p 1625 https://doi.org/10.3390/plants12081625 kostenfrei https://doaj.org/article/5c33a893fb9f4558af09977500ae1f38 kostenfrei https://www.mdpi.com/2223-7747/12/8/1625 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 8, p 1625 |
allfields_unstemmed |
10.3390/plants12081625 doi (DE-627)DOAJ089787773 (DE-599)DOAJ5c33a893fb9f4558af09977500ae1f38 DE-627 ger DE-627 rakwb eng QK1-989 Jiankun Ge verfasserin aut Root Distribution of Tomato Cultivated in Greenhouse under Different Ventilation and Water Conditions 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Mastering root distribution is essential for optimizing the root zone environment and for improving water use efficiency, especially for crops cultivated in greenhouses. Here, we set up two irrigation amount levels based on measurements of the cumulative 20 cm pan evaporation (<i<E<sub<p</sub<</i<) (i.e., <i<K</i<<sub<0.9</sub<: 0.9 <i<E<sub<p</sub<</i<; <i<K</i<<sub<0.5</sub<: 0.5 <i<E<sub<p</sub<</i<), and three ventilation modes through opening the greenhouse vents at different locations (<i<T<sub<R</sub<</i<: open the roof vents only; <i<T<sub<RS</sub<</i<: open both the roof and south vents; <i<T<sub<S</sub<</i<: open the south vents only) to reveal the effects of the ventilation mode and irrigation amount on the root distribution of greenhouse tomato. Six treatments were designed in blocks with the ventilation mode as the main treatment and the irrigation amount as the vice treatment. On this basis, the normalized root length density (NRLD) model of six treatments was developed by considering air environment, soil water and temperature conditions, root length density (RLD) and yield. The results showed that air speed of the <i<T<sub<RS</sub<</i< was significantly higher than <i<T<sub<R</sub<</i< and <i<T<sub<S</sub<</i< (<i<p</i< < 0.01), and the air temperature and relative humidity under different ventilation showed the rule: T<i<<sub<R</sub<</i< < <i<T<sub<S</sub<</i< < <i<T<sub<RS</sub<</i<. There was a significant third-order polynomial function relationship between NRLD and soil depth, and the coefficient of the cubic term (<i<R</i<<sub<0</sub<) had a bivariate quadratic polynomial function relationship with irrigation amount and air speed (determination coefficient, <i<R</i<<sup<2</sup< = 0.86). Root mean square errors of the simulated and measured value of NRLD under <i<T<sub<R</sub<</i<, <i<T<sub<RS</sub<</i< and <i<T<sub<S</sub<</i< were 0.20, 0.23 and 0.27 in 2020, and 0.31, 0.23 and 0.28 in 2021, respectively, normalized root mean squared errors were 15%, 17%, 20% in 2020, and 23%, 18% and 21% in 2021. The RLD distribution ratio from the ground surface to a one-quarter relative root depth was 74.1%, and 88.0% from the surface to a one-half relative root depth. The results of the yield showed that a better combination of ventilation and irrigation was recommended as <i<T<sub<RS</sub<</i< combined with <i<K</i<<sub<0.9</sub<. greenhouse tomato irrigation NRLD distribution model yield ventilation Botany Huanhuan Liu verfasserin aut Xuewen Gong verfasserin aut Zihui Yu verfasserin aut Lusheng Li verfasserin aut Yanbin Li verfasserin aut In Plants MDPI AG, 2013 12(2023), 8, p 1625 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:12 year:2023 number:8, p 1625 https://doi.org/10.3390/plants12081625 kostenfrei https://doaj.org/article/5c33a893fb9f4558af09977500ae1f38 kostenfrei https://www.mdpi.com/2223-7747/12/8/1625 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 8, p 1625 |
allfieldsGer |
10.3390/plants12081625 doi (DE-627)DOAJ089787773 (DE-599)DOAJ5c33a893fb9f4558af09977500ae1f38 DE-627 ger DE-627 rakwb eng QK1-989 Jiankun Ge verfasserin aut Root Distribution of Tomato Cultivated in Greenhouse under Different Ventilation and Water Conditions 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Mastering root distribution is essential for optimizing the root zone environment and for improving water use efficiency, especially for crops cultivated in greenhouses. Here, we set up two irrigation amount levels based on measurements of the cumulative 20 cm pan evaporation (<i<E<sub<p</sub<</i<) (i.e., <i<K</i<<sub<0.9</sub<: 0.9 <i<E<sub<p</sub<</i<; <i<K</i<<sub<0.5</sub<: 0.5 <i<E<sub<p</sub<</i<), and three ventilation modes through opening the greenhouse vents at different locations (<i<T<sub<R</sub<</i<: open the roof vents only; <i<T<sub<RS</sub<</i<: open both the roof and south vents; <i<T<sub<S</sub<</i<: open the south vents only) to reveal the effects of the ventilation mode and irrigation amount on the root distribution of greenhouse tomato. Six treatments were designed in blocks with the ventilation mode as the main treatment and the irrigation amount as the vice treatment. On this basis, the normalized root length density (NRLD) model of six treatments was developed by considering air environment, soil water and temperature conditions, root length density (RLD) and yield. The results showed that air speed of the <i<T<sub<RS</sub<</i< was significantly higher than <i<T<sub<R</sub<</i< and <i<T<sub<S</sub<</i< (<i<p</i< < 0.01), and the air temperature and relative humidity under different ventilation showed the rule: T<i<<sub<R</sub<</i< < <i<T<sub<S</sub<</i< < <i<T<sub<RS</sub<</i<. There was a significant third-order polynomial function relationship between NRLD and soil depth, and the coefficient of the cubic term (<i<R</i<<sub<0</sub<) had a bivariate quadratic polynomial function relationship with irrigation amount and air speed (determination coefficient, <i<R</i<<sup<2</sup< = 0.86). Root mean square errors of the simulated and measured value of NRLD under <i<T<sub<R</sub<</i<, <i<T<sub<RS</sub<</i< and <i<T<sub<S</sub<</i< were 0.20, 0.23 and 0.27 in 2020, and 0.31, 0.23 and 0.28 in 2021, respectively, normalized root mean squared errors were 15%, 17%, 20% in 2020, and 23%, 18% and 21% in 2021. The RLD distribution ratio from the ground surface to a one-quarter relative root depth was 74.1%, and 88.0% from the surface to a one-half relative root depth. The results of the yield showed that a better combination of ventilation and irrigation was recommended as <i<T<sub<RS</sub<</i< combined with <i<K</i<<sub<0.9</sub<. greenhouse tomato irrigation NRLD distribution model yield ventilation Botany Huanhuan Liu verfasserin aut Xuewen Gong verfasserin aut Zihui Yu verfasserin aut Lusheng Li verfasserin aut Yanbin Li verfasserin aut In Plants MDPI AG, 2013 12(2023), 8, p 1625 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:12 year:2023 number:8, p 1625 https://doi.org/10.3390/plants12081625 kostenfrei https://doaj.org/article/5c33a893fb9f4558af09977500ae1f38 kostenfrei https://www.mdpi.com/2223-7747/12/8/1625 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 8, p 1625 |
allfieldsSound |
10.3390/plants12081625 doi (DE-627)DOAJ089787773 (DE-599)DOAJ5c33a893fb9f4558af09977500ae1f38 DE-627 ger DE-627 rakwb eng QK1-989 Jiankun Ge verfasserin aut Root Distribution of Tomato Cultivated in Greenhouse under Different Ventilation and Water Conditions 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Mastering root distribution is essential for optimizing the root zone environment and for improving water use efficiency, especially for crops cultivated in greenhouses. Here, we set up two irrigation amount levels based on measurements of the cumulative 20 cm pan evaporation (<i<E<sub<p</sub<</i<) (i.e., <i<K</i<<sub<0.9</sub<: 0.9 <i<E<sub<p</sub<</i<; <i<K</i<<sub<0.5</sub<: 0.5 <i<E<sub<p</sub<</i<), and three ventilation modes through opening the greenhouse vents at different locations (<i<T<sub<R</sub<</i<: open the roof vents only; <i<T<sub<RS</sub<</i<: open both the roof and south vents; <i<T<sub<S</sub<</i<: open the south vents only) to reveal the effects of the ventilation mode and irrigation amount on the root distribution of greenhouse tomato. Six treatments were designed in blocks with the ventilation mode as the main treatment and the irrigation amount as the vice treatment. On this basis, the normalized root length density (NRLD) model of six treatments was developed by considering air environment, soil water and temperature conditions, root length density (RLD) and yield. The results showed that air speed of the <i<T<sub<RS</sub<</i< was significantly higher than <i<T<sub<R</sub<</i< and <i<T<sub<S</sub<</i< (<i<p</i< < 0.01), and the air temperature and relative humidity under different ventilation showed the rule: T<i<<sub<R</sub<</i< < <i<T<sub<S</sub<</i< < <i<T<sub<RS</sub<</i<. There was a significant third-order polynomial function relationship between NRLD and soil depth, and the coefficient of the cubic term (<i<R</i<<sub<0</sub<) had a bivariate quadratic polynomial function relationship with irrigation amount and air speed (determination coefficient, <i<R</i<<sup<2</sup< = 0.86). Root mean square errors of the simulated and measured value of NRLD under <i<T<sub<R</sub<</i<, <i<T<sub<RS</sub<</i< and <i<T<sub<S</sub<</i< were 0.20, 0.23 and 0.27 in 2020, and 0.31, 0.23 and 0.28 in 2021, respectively, normalized root mean squared errors were 15%, 17%, 20% in 2020, and 23%, 18% and 21% in 2021. The RLD distribution ratio from the ground surface to a one-quarter relative root depth was 74.1%, and 88.0% from the surface to a one-half relative root depth. The results of the yield showed that a better combination of ventilation and irrigation was recommended as <i<T<sub<RS</sub<</i< combined with <i<K</i<<sub<0.9</sub<. greenhouse tomato irrigation NRLD distribution model yield ventilation Botany Huanhuan Liu verfasserin aut Xuewen Gong verfasserin aut Zihui Yu verfasserin aut Lusheng Li verfasserin aut Yanbin Li verfasserin aut In Plants MDPI AG, 2013 12(2023), 8, p 1625 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:12 year:2023 number:8, p 1625 https://doi.org/10.3390/plants12081625 kostenfrei https://doaj.org/article/5c33a893fb9f4558af09977500ae1f38 kostenfrei https://www.mdpi.com/2223-7747/12/8/1625 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 8, p 1625 |
language |
English |
source |
In Plants 12(2023), 8, p 1625 volume:12 year:2023 number:8, p 1625 |
sourceStr |
In Plants 12(2023), 8, p 1625 volume:12 year:2023 number:8, p 1625 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
greenhouse tomato irrigation NRLD distribution model yield ventilation Botany |
isfreeaccess_bool |
true |
container_title |
Plants |
authorswithroles_txt_mv |
Jiankun Ge @@aut@@ Huanhuan Liu @@aut@@ Xuewen Gong @@aut@@ Zihui Yu @@aut@@ Lusheng Li @@aut@@ Yanbin Li @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
737288345 |
id |
DOAJ089787773 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ089787773</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413040443.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/plants12081625</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ089787773</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5c33a893fb9f4558af09977500ae1f38</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QK1-989</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jiankun Ge</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Root Distribution of Tomato Cultivated in Greenhouse under Different Ventilation and Water Conditions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Mastering root distribution is essential for optimizing the root zone environment and for improving water use efficiency, especially for crops cultivated in greenhouses. Here, we set up two irrigation amount levels based on measurements of the cumulative 20 cm pan evaporation (<i<E<sub<p</sub<</i<) (i.e., <i<K</i<<sub<0.9</sub<: 0.9 <i<E<sub<p</sub<</i<; <i<K</i<<sub<0.5</sub<: 0.5 <i<E<sub<p</sub<</i<), and three ventilation modes through opening the greenhouse vents at different locations (<i<T<sub<R</sub<</i<: open the roof vents only; <i<T<sub<RS</sub<</i<: open both the roof and south vents; <i<T<sub<S</sub<</i<: open the south vents only) to reveal the effects of the ventilation mode and irrigation amount on the root distribution of greenhouse tomato. Six treatments were designed in blocks with the ventilation mode as the main treatment and the irrigation amount as the vice treatment. On this basis, the normalized root length density (NRLD) model of six treatments was developed by considering air environment, soil water and temperature conditions, root length density (RLD) and yield. The results showed that air speed of the <i<T<sub<RS</sub<</i< was significantly higher than <i<T<sub<R</sub<</i< and <i<T<sub<S</sub<</i< (<i<p</i< < 0.01), and the air temperature and relative humidity under different ventilation showed the rule: T<i<<sub<R</sub<</i< < <i<T<sub<S</sub<</i< < <i<T<sub<RS</sub<</i<. There was a significant third-order polynomial function relationship between NRLD and soil depth, and the coefficient of the cubic term (<i<R</i<<sub<0</sub<) had a bivariate quadratic polynomial function relationship with irrigation amount and air speed (determination coefficient, <i<R</i<<sup<2</sup< = 0.86). Root mean square errors of the simulated and measured value of NRLD under <i<T<sub<R</sub<</i<, <i<T<sub<RS</sub<</i< and <i<T<sub<S</sub<</i< were 0.20, 0.23 and 0.27 in 2020, and 0.31, 0.23 and 0.28 in 2021, respectively, normalized root mean squared errors were 15%, 17%, 20% in 2020, and 23%, 18% and 21% in 2021. The RLD distribution ratio from the ground surface to a one-quarter relative root depth was 74.1%, and 88.0% from the surface to a one-half relative root depth. The results of the yield showed that a better combination of ventilation and irrigation was recommended as <i<T<sub<RS</sub<</i< combined with <i<K</i<<sub<0.9</sub<.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">greenhouse tomato</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">irrigation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NRLD distribution model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">yield</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ventilation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Botany</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huanhuan Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xuewen Gong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zihui Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lusheng Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yanbin Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Plants</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">12(2023), 8, p 1625</subfield><subfield code="w">(DE-627)737288345</subfield><subfield code="w">(DE-600)2704341-1</subfield><subfield code="x">22237747</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:8, p 1625</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/plants12081625</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5c33a893fb9f4558af09977500ae1f38</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2223-7747/12/8/1625</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2223-7747</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2023</subfield><subfield code="e">8, p 1625</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Jiankun Ge |
spellingShingle |
Jiankun Ge misc QK1-989 misc greenhouse tomato misc irrigation misc NRLD distribution model misc yield misc ventilation misc Botany Root Distribution of Tomato Cultivated in Greenhouse under Different Ventilation and Water Conditions |
authorStr |
Jiankun Ge |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737288345 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QK1-989 |
illustrated |
Not Illustrated |
issn |
22237747 |
topic_title |
QK1-989 Root Distribution of Tomato Cultivated in Greenhouse under Different Ventilation and Water Conditions greenhouse tomato irrigation NRLD distribution model yield ventilation |
topic |
misc QK1-989 misc greenhouse tomato misc irrigation misc NRLD distribution model misc yield misc ventilation misc Botany |
topic_unstemmed |
misc QK1-989 misc greenhouse tomato misc irrigation misc NRLD distribution model misc yield misc ventilation misc Botany |
topic_browse |
misc QK1-989 misc greenhouse tomato misc irrigation misc NRLD distribution model misc yield misc ventilation misc Botany |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Plants |
hierarchy_parent_id |
737288345 |
hierarchy_top_title |
Plants |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737288345 (DE-600)2704341-1 |
title |
Root Distribution of Tomato Cultivated in Greenhouse under Different Ventilation and Water Conditions |
ctrlnum |
(DE-627)DOAJ089787773 (DE-599)DOAJ5c33a893fb9f4558af09977500ae1f38 |
title_full |
Root Distribution of Tomato Cultivated in Greenhouse under Different Ventilation and Water Conditions |
author_sort |
Jiankun Ge |
journal |
Plants |
journalStr |
Plants |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Jiankun Ge Huanhuan Liu Xuewen Gong Zihui Yu Lusheng Li Yanbin Li |
container_volume |
12 |
class |
QK1-989 |
format_se |
Elektronische Aufsätze |
author-letter |
Jiankun Ge |
doi_str_mv |
10.3390/plants12081625 |
author2-role |
verfasserin |
title_sort |
root distribution of tomato cultivated in greenhouse under different ventilation and water conditions |
callnumber |
QK1-989 |
title_auth |
Root Distribution of Tomato Cultivated in Greenhouse under Different Ventilation and Water Conditions |
abstract |
Mastering root distribution is essential for optimizing the root zone environment and for improving water use efficiency, especially for crops cultivated in greenhouses. Here, we set up two irrigation amount levels based on measurements of the cumulative 20 cm pan evaporation (<i<E<sub<p</sub<</i<) (i.e., <i<K</i<<sub<0.9</sub<: 0.9 <i<E<sub<p</sub<</i<; <i<K</i<<sub<0.5</sub<: 0.5 <i<E<sub<p</sub<</i<), and three ventilation modes through opening the greenhouse vents at different locations (<i<T<sub<R</sub<</i<: open the roof vents only; <i<T<sub<RS</sub<</i<: open both the roof and south vents; <i<T<sub<S</sub<</i<: open the south vents only) to reveal the effects of the ventilation mode and irrigation amount on the root distribution of greenhouse tomato. Six treatments were designed in blocks with the ventilation mode as the main treatment and the irrigation amount as the vice treatment. On this basis, the normalized root length density (NRLD) model of six treatments was developed by considering air environment, soil water and temperature conditions, root length density (RLD) and yield. The results showed that air speed of the <i<T<sub<RS</sub<</i< was significantly higher than <i<T<sub<R</sub<</i< and <i<T<sub<S</sub<</i< (<i<p</i< < 0.01), and the air temperature and relative humidity under different ventilation showed the rule: T<i<<sub<R</sub<</i< < <i<T<sub<S</sub<</i< < <i<T<sub<RS</sub<</i<. There was a significant third-order polynomial function relationship between NRLD and soil depth, and the coefficient of the cubic term (<i<R</i<<sub<0</sub<) had a bivariate quadratic polynomial function relationship with irrigation amount and air speed (determination coefficient, <i<R</i<<sup<2</sup< = 0.86). Root mean square errors of the simulated and measured value of NRLD under <i<T<sub<R</sub<</i<, <i<T<sub<RS</sub<</i< and <i<T<sub<S</sub<</i< were 0.20, 0.23 and 0.27 in 2020, and 0.31, 0.23 and 0.28 in 2021, respectively, normalized root mean squared errors were 15%, 17%, 20% in 2020, and 23%, 18% and 21% in 2021. The RLD distribution ratio from the ground surface to a one-quarter relative root depth was 74.1%, and 88.0% from the surface to a one-half relative root depth. The results of the yield showed that a better combination of ventilation and irrigation was recommended as <i<T<sub<RS</sub<</i< combined with <i<K</i<<sub<0.9</sub<. |
abstractGer |
Mastering root distribution is essential for optimizing the root zone environment and for improving water use efficiency, especially for crops cultivated in greenhouses. Here, we set up two irrigation amount levels based on measurements of the cumulative 20 cm pan evaporation (<i<E<sub<p</sub<</i<) (i.e., <i<K</i<<sub<0.9</sub<: 0.9 <i<E<sub<p</sub<</i<; <i<K</i<<sub<0.5</sub<: 0.5 <i<E<sub<p</sub<</i<), and three ventilation modes through opening the greenhouse vents at different locations (<i<T<sub<R</sub<</i<: open the roof vents only; <i<T<sub<RS</sub<</i<: open both the roof and south vents; <i<T<sub<S</sub<</i<: open the south vents only) to reveal the effects of the ventilation mode and irrigation amount on the root distribution of greenhouse tomato. Six treatments were designed in blocks with the ventilation mode as the main treatment and the irrigation amount as the vice treatment. On this basis, the normalized root length density (NRLD) model of six treatments was developed by considering air environment, soil water and temperature conditions, root length density (RLD) and yield. The results showed that air speed of the <i<T<sub<RS</sub<</i< was significantly higher than <i<T<sub<R</sub<</i< and <i<T<sub<S</sub<</i< (<i<p</i< < 0.01), and the air temperature and relative humidity under different ventilation showed the rule: T<i<<sub<R</sub<</i< < <i<T<sub<S</sub<</i< < <i<T<sub<RS</sub<</i<. There was a significant third-order polynomial function relationship between NRLD and soil depth, and the coefficient of the cubic term (<i<R</i<<sub<0</sub<) had a bivariate quadratic polynomial function relationship with irrigation amount and air speed (determination coefficient, <i<R</i<<sup<2</sup< = 0.86). Root mean square errors of the simulated and measured value of NRLD under <i<T<sub<R</sub<</i<, <i<T<sub<RS</sub<</i< and <i<T<sub<S</sub<</i< were 0.20, 0.23 and 0.27 in 2020, and 0.31, 0.23 and 0.28 in 2021, respectively, normalized root mean squared errors were 15%, 17%, 20% in 2020, and 23%, 18% and 21% in 2021. The RLD distribution ratio from the ground surface to a one-quarter relative root depth was 74.1%, and 88.0% from the surface to a one-half relative root depth. The results of the yield showed that a better combination of ventilation and irrigation was recommended as <i<T<sub<RS</sub<</i< combined with <i<K</i<<sub<0.9</sub<. |
abstract_unstemmed |
Mastering root distribution is essential for optimizing the root zone environment and for improving water use efficiency, especially for crops cultivated in greenhouses. Here, we set up two irrigation amount levels based on measurements of the cumulative 20 cm pan evaporation (<i<E<sub<p</sub<</i<) (i.e., <i<K</i<<sub<0.9</sub<: 0.9 <i<E<sub<p</sub<</i<; <i<K</i<<sub<0.5</sub<: 0.5 <i<E<sub<p</sub<</i<), and three ventilation modes through opening the greenhouse vents at different locations (<i<T<sub<R</sub<</i<: open the roof vents only; <i<T<sub<RS</sub<</i<: open both the roof and south vents; <i<T<sub<S</sub<</i<: open the south vents only) to reveal the effects of the ventilation mode and irrigation amount on the root distribution of greenhouse tomato. Six treatments were designed in blocks with the ventilation mode as the main treatment and the irrigation amount as the vice treatment. On this basis, the normalized root length density (NRLD) model of six treatments was developed by considering air environment, soil water and temperature conditions, root length density (RLD) and yield. The results showed that air speed of the <i<T<sub<RS</sub<</i< was significantly higher than <i<T<sub<R</sub<</i< and <i<T<sub<S</sub<</i< (<i<p</i< < 0.01), and the air temperature and relative humidity under different ventilation showed the rule: T<i<<sub<R</sub<</i< < <i<T<sub<S</sub<</i< < <i<T<sub<RS</sub<</i<. There was a significant third-order polynomial function relationship between NRLD and soil depth, and the coefficient of the cubic term (<i<R</i<<sub<0</sub<) had a bivariate quadratic polynomial function relationship with irrigation amount and air speed (determination coefficient, <i<R</i<<sup<2</sup< = 0.86). Root mean square errors of the simulated and measured value of NRLD under <i<T<sub<R</sub<</i<, <i<T<sub<RS</sub<</i< and <i<T<sub<S</sub<</i< were 0.20, 0.23 and 0.27 in 2020, and 0.31, 0.23 and 0.28 in 2021, respectively, normalized root mean squared errors were 15%, 17%, 20% in 2020, and 23%, 18% and 21% in 2021. The RLD distribution ratio from the ground surface to a one-quarter relative root depth was 74.1%, and 88.0% from the surface to a one-half relative root depth. The results of the yield showed that a better combination of ventilation and irrigation was recommended as <i<T<sub<RS</sub<</i< combined with <i<K</i<<sub<0.9</sub<. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
8, p 1625 |
title_short |
Root Distribution of Tomato Cultivated in Greenhouse under Different Ventilation and Water Conditions |
url |
https://doi.org/10.3390/plants12081625 https://doaj.org/article/5c33a893fb9f4558af09977500ae1f38 https://www.mdpi.com/2223-7747/12/8/1625 https://doaj.org/toc/2223-7747 |
remote_bool |
true |
author2 |
Huanhuan Liu Xuewen Gong Zihui Yu Lusheng Li Yanbin Li |
author2Str |
Huanhuan Liu Xuewen Gong Zihui Yu Lusheng Li Yanbin Li |
ppnlink |
737288345 |
callnumber-subject |
QK - Botany |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/plants12081625 |
callnumber-a |
QK1-989 |
up_date |
2024-07-04T00:39:10.575Z |
_version_ |
1803606871848779776 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ089787773</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413040443.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/plants12081625</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ089787773</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5c33a893fb9f4558af09977500ae1f38</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QK1-989</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jiankun Ge</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Root Distribution of Tomato Cultivated in Greenhouse under Different Ventilation and Water Conditions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Mastering root distribution is essential for optimizing the root zone environment and for improving water use efficiency, especially for crops cultivated in greenhouses. Here, we set up two irrigation amount levels based on measurements of the cumulative 20 cm pan evaporation (<i<E<sub<p</sub<</i<) (i.e., <i<K</i<<sub<0.9</sub<: 0.9 <i<E<sub<p</sub<</i<; <i<K</i<<sub<0.5</sub<: 0.5 <i<E<sub<p</sub<</i<), and three ventilation modes through opening the greenhouse vents at different locations (<i<T<sub<R</sub<</i<: open the roof vents only; <i<T<sub<RS</sub<</i<: open both the roof and south vents; <i<T<sub<S</sub<</i<: open the south vents only) to reveal the effects of the ventilation mode and irrigation amount on the root distribution of greenhouse tomato. Six treatments were designed in blocks with the ventilation mode as the main treatment and the irrigation amount as the vice treatment. On this basis, the normalized root length density (NRLD) model of six treatments was developed by considering air environment, soil water and temperature conditions, root length density (RLD) and yield. The results showed that air speed of the <i<T<sub<RS</sub<</i< was significantly higher than <i<T<sub<R</sub<</i< and <i<T<sub<S</sub<</i< (<i<p</i< < 0.01), and the air temperature and relative humidity under different ventilation showed the rule: T<i<<sub<R</sub<</i< < <i<T<sub<S</sub<</i< < <i<T<sub<RS</sub<</i<. There was a significant third-order polynomial function relationship between NRLD and soil depth, and the coefficient of the cubic term (<i<R</i<<sub<0</sub<) had a bivariate quadratic polynomial function relationship with irrigation amount and air speed (determination coefficient, <i<R</i<<sup<2</sup< = 0.86). Root mean square errors of the simulated and measured value of NRLD under <i<T<sub<R</sub<</i<, <i<T<sub<RS</sub<</i< and <i<T<sub<S</sub<</i< were 0.20, 0.23 and 0.27 in 2020, and 0.31, 0.23 and 0.28 in 2021, respectively, normalized root mean squared errors were 15%, 17%, 20% in 2020, and 23%, 18% and 21% in 2021. The RLD distribution ratio from the ground surface to a one-quarter relative root depth was 74.1%, and 88.0% from the surface to a one-half relative root depth. The results of the yield showed that a better combination of ventilation and irrigation was recommended as <i<T<sub<RS</sub<</i< combined with <i<K</i<<sub<0.9</sub<.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">greenhouse tomato</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">irrigation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NRLD distribution model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">yield</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ventilation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Botany</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huanhuan Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xuewen Gong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zihui Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lusheng Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yanbin Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Plants</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">12(2023), 8, p 1625</subfield><subfield code="w">(DE-627)737288345</subfield><subfield code="w">(DE-600)2704341-1</subfield><subfield code="x">22237747</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:8, p 1625</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/plants12081625</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5c33a893fb9f4558af09977500ae1f38</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2223-7747/12/8/1625</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2223-7747</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2023</subfield><subfield code="e">8, p 1625</subfield></datafield></record></collection>
|
score |
7.400817 |