Lattice Boltzmann Numerical Study on Mesoscopic Seepage Characteristics of Soil–Rock Mixture Considering Size Effect
One of the hot topics in the study of rock and soil hydraulics is the size effect of a soil–rock mixture’s (SRM) seepage characteristics. The seepage process of the SRM was simulated from the pore scale through the lattice Boltzmann method (LBM) in this paper to explore the internal influence mechan...
Ausführliche Beschreibung
Autor*in: |
Peichen Cai [verfasserIn] Xuesong Mao [verfasserIn] Ke Lou [verfasserIn] Zhihui Yun [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Mathematics - MDPI AG, 2013, 11(2023), 8, p 1968 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2023 ; number:8, p 1968 |
Links: |
---|
DOI / URN: |
10.3390/math11081968 |
---|
Katalog-ID: |
DOAJ089815823 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ089815823 | ||
003 | DE-627 | ||
005 | 20240413040855.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230505s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/math11081968 |2 doi | |
035 | |a (DE-627)DOAJ089815823 | ||
035 | |a (DE-599)DOAJf39023bdeed44d6987792dc6ae8f8d1b | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA1-939 | |
100 | 0 | |a Peichen Cai |e verfasserin |4 aut | |
245 | 1 | 0 | |a Lattice Boltzmann Numerical Study on Mesoscopic Seepage Characteristics of Soil–Rock Mixture Considering Size Effect |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a One of the hot topics in the study of rock and soil hydraulics is the size effect of a soil–rock mixture’s (SRM) seepage characteristics. The seepage process of the SRM was simulated from the pore scale through the lattice Boltzmann method (LBM) in this paper to explore the internal influence mechanism of sample size effect on the SRM seepage characteristics. SRM samples were generated using the improved Monte Carlo method (IMCM), and through 342 simulation test conditions the influence of size feature parameters such as resolution (<i<R</i<), segmentation type, model feature size (<i<S</i<), feature length ratio (<i<F</i<), and soil/rock particle size feature ratio (<i<P</i<) was examined. The study demonstrated that as <i<R</i< increases, the permeability of the SRM gradually rises and tends to stabilize when <i<R</i< reaches 60 ppi. At the same <i<S</i<, the dispersion degree of model permeability obtained by the four segmentation types is in the order of center < random < equal < top. With an increase in <i<S</i<, the permeability (<i<k</i<) of the SRM gradually decreases, conforming to the dimensionless mathematical model, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<k</mi<<mo<=</mo<<msub<<mrow<<mi<a</mi<</mrow<<mrow<<mn<0</mn<</mrow<</msub<<mo<·</mo<<msup<<mrow<<mi<S</mi<</mrow<<mrow<<mo<−</mo<<msub<<mrow<<mi<b</mi<</mrow<<mrow<<mn<0</mn<</mrow<</msub<</mrow<</msup<</mrow<</semantics<</math<</inline-formula<, and tends to stabilize at <i<S</i< = 80 mm. With an increase in <i<F</i< and an increase in <i<S</i<, the permeability of the SRM exhibits a linear “zonal” distribution that declines in order. When <i<F</i< is greater than 12, the dispersion of the permeability value distribution is especially small. With an increase in <i<P</i<, the permeability of the SRM decreases gradually before rising abruptly. <i<P</i< is crucial for the grading and structural makeup of the SRM. Overall, this paper concludes that the conditions of <i<R</i< = 60 ppi, center segmentation type, <i<S</i< = 80 mm, <i<F</i< ≥ 12, and <i<P</i< set by demand can be used to select and generate the size of the SRM optimal representative elementary volume (REV) numerical calculation model. The SRM can serve as a general reference for test and engineering construction as a common geotechnical engineering material. | ||
650 | 4 | |a soil–rock mixture | |
650 | 4 | |a lattice Boltzmann method | |
650 | 4 | |a size effect | |
650 | 4 | |a permeability | |
653 | 0 | |a Mathematics | |
700 | 0 | |a Xuesong Mao |e verfasserin |4 aut | |
700 | 0 | |a Ke Lou |e verfasserin |4 aut | |
700 | 0 | |a Zhihui Yun |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Mathematics |d MDPI AG, 2013 |g 11(2023), 8, p 1968 |w (DE-627)737287764 |w (DE-600)2704244-3 |x 22277390 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2023 |g number:8, p 1968 |
856 | 4 | 0 | |u https://doi.org/10.3390/math11081968 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/f39023bdeed44d6987792dc6ae8f8d1b |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2227-7390/11/8/1968 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2227-7390 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2023 |e 8, p 1968 |
author_variant |
p c pc x m xm k l kl z y zy |
---|---|
matchkey_str |
article:22277390:2023----::atcblzanueiasuyneocpcepgcaatrsisfolok |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QA |
publishDate |
2023 |
allfields |
10.3390/math11081968 doi (DE-627)DOAJ089815823 (DE-599)DOAJf39023bdeed44d6987792dc6ae8f8d1b DE-627 ger DE-627 rakwb eng QA1-939 Peichen Cai verfasserin aut Lattice Boltzmann Numerical Study on Mesoscopic Seepage Characteristics of Soil–Rock Mixture Considering Size Effect 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier One of the hot topics in the study of rock and soil hydraulics is the size effect of a soil–rock mixture’s (SRM) seepage characteristics. The seepage process of the SRM was simulated from the pore scale through the lattice Boltzmann method (LBM) in this paper to explore the internal influence mechanism of sample size effect on the SRM seepage characteristics. SRM samples were generated using the improved Monte Carlo method (IMCM), and through 342 simulation test conditions the influence of size feature parameters such as resolution (<i<R</i<), segmentation type, model feature size (<i<S</i<), feature length ratio (<i<F</i<), and soil/rock particle size feature ratio (<i<P</i<) was examined. The study demonstrated that as <i<R</i< increases, the permeability of the SRM gradually rises and tends to stabilize when <i<R</i< reaches 60 ppi. At the same <i<S</i<, the dispersion degree of model permeability obtained by the four segmentation types is in the order of center < random < equal < top. With an increase in <i<S</i<, the permeability (<i<k</i<) of the SRM gradually decreases, conforming to the dimensionless mathematical model, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<k</mi<<mo<=</mo<<msub<<mrow<<mi<a</mi<</mrow<<mrow<<mn<0</mn<</mrow<</msub<<mo<·</mo<<msup<<mrow<<mi<S</mi<</mrow<<mrow<<mo<−</mo<<msub<<mrow<<mi<b</mi<</mrow<<mrow<<mn<0</mn<</mrow<</msub<</mrow<</msup<</mrow<</semantics<</math<</inline-formula<, and tends to stabilize at <i<S</i< = 80 mm. With an increase in <i<F</i< and an increase in <i<S</i<, the permeability of the SRM exhibits a linear “zonal” distribution that declines in order. When <i<F</i< is greater than 12, the dispersion of the permeability value distribution is especially small. With an increase in <i<P</i<, the permeability of the SRM decreases gradually before rising abruptly. <i<P</i< is crucial for the grading and structural makeup of the SRM. Overall, this paper concludes that the conditions of <i<R</i< = 60 ppi, center segmentation type, <i<S</i< = 80 mm, <i<F</i< ≥ 12, and <i<P</i< set by demand can be used to select and generate the size of the SRM optimal representative elementary volume (REV) numerical calculation model. The SRM can serve as a general reference for test and engineering construction as a common geotechnical engineering material. soil–rock mixture lattice Boltzmann method size effect permeability Mathematics Xuesong Mao verfasserin aut Ke Lou verfasserin aut Zhihui Yun verfasserin aut In Mathematics MDPI AG, 2013 11(2023), 8, p 1968 (DE-627)737287764 (DE-600)2704244-3 22277390 nnns volume:11 year:2023 number:8, p 1968 https://doi.org/10.3390/math11081968 kostenfrei https://doaj.org/article/f39023bdeed44d6987792dc6ae8f8d1b kostenfrei https://www.mdpi.com/2227-7390/11/8/1968 kostenfrei https://doaj.org/toc/2227-7390 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 8, p 1968 |
spelling |
10.3390/math11081968 doi (DE-627)DOAJ089815823 (DE-599)DOAJf39023bdeed44d6987792dc6ae8f8d1b DE-627 ger DE-627 rakwb eng QA1-939 Peichen Cai verfasserin aut Lattice Boltzmann Numerical Study on Mesoscopic Seepage Characteristics of Soil–Rock Mixture Considering Size Effect 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier One of the hot topics in the study of rock and soil hydraulics is the size effect of a soil–rock mixture’s (SRM) seepage characteristics. The seepage process of the SRM was simulated from the pore scale through the lattice Boltzmann method (LBM) in this paper to explore the internal influence mechanism of sample size effect on the SRM seepage characteristics. SRM samples were generated using the improved Monte Carlo method (IMCM), and through 342 simulation test conditions the influence of size feature parameters such as resolution (<i<R</i<), segmentation type, model feature size (<i<S</i<), feature length ratio (<i<F</i<), and soil/rock particle size feature ratio (<i<P</i<) was examined. The study demonstrated that as <i<R</i< increases, the permeability of the SRM gradually rises and tends to stabilize when <i<R</i< reaches 60 ppi. At the same <i<S</i<, the dispersion degree of model permeability obtained by the four segmentation types is in the order of center < random < equal < top. With an increase in <i<S</i<, the permeability (<i<k</i<) of the SRM gradually decreases, conforming to the dimensionless mathematical model, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<k</mi<<mo<=</mo<<msub<<mrow<<mi<a</mi<</mrow<<mrow<<mn<0</mn<</mrow<</msub<<mo<·</mo<<msup<<mrow<<mi<S</mi<</mrow<<mrow<<mo<−</mo<<msub<<mrow<<mi<b</mi<</mrow<<mrow<<mn<0</mn<</mrow<</msub<</mrow<</msup<</mrow<</semantics<</math<</inline-formula<, and tends to stabilize at <i<S</i< = 80 mm. With an increase in <i<F</i< and an increase in <i<S</i<, the permeability of the SRM exhibits a linear “zonal” distribution that declines in order. When <i<F</i< is greater than 12, the dispersion of the permeability value distribution is especially small. With an increase in <i<P</i<, the permeability of the SRM decreases gradually before rising abruptly. <i<P</i< is crucial for the grading and structural makeup of the SRM. Overall, this paper concludes that the conditions of <i<R</i< = 60 ppi, center segmentation type, <i<S</i< = 80 mm, <i<F</i< ≥ 12, and <i<P</i< set by demand can be used to select and generate the size of the SRM optimal representative elementary volume (REV) numerical calculation model. The SRM can serve as a general reference for test and engineering construction as a common geotechnical engineering material. soil–rock mixture lattice Boltzmann method size effect permeability Mathematics Xuesong Mao verfasserin aut Ke Lou verfasserin aut Zhihui Yun verfasserin aut In Mathematics MDPI AG, 2013 11(2023), 8, p 1968 (DE-627)737287764 (DE-600)2704244-3 22277390 nnns volume:11 year:2023 number:8, p 1968 https://doi.org/10.3390/math11081968 kostenfrei https://doaj.org/article/f39023bdeed44d6987792dc6ae8f8d1b kostenfrei https://www.mdpi.com/2227-7390/11/8/1968 kostenfrei https://doaj.org/toc/2227-7390 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 8, p 1968 |
allfields_unstemmed |
10.3390/math11081968 doi (DE-627)DOAJ089815823 (DE-599)DOAJf39023bdeed44d6987792dc6ae8f8d1b DE-627 ger DE-627 rakwb eng QA1-939 Peichen Cai verfasserin aut Lattice Boltzmann Numerical Study on Mesoscopic Seepage Characteristics of Soil–Rock Mixture Considering Size Effect 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier One of the hot topics in the study of rock and soil hydraulics is the size effect of a soil–rock mixture’s (SRM) seepage characteristics. The seepage process of the SRM was simulated from the pore scale through the lattice Boltzmann method (LBM) in this paper to explore the internal influence mechanism of sample size effect on the SRM seepage characteristics. SRM samples were generated using the improved Monte Carlo method (IMCM), and through 342 simulation test conditions the influence of size feature parameters such as resolution (<i<R</i<), segmentation type, model feature size (<i<S</i<), feature length ratio (<i<F</i<), and soil/rock particle size feature ratio (<i<P</i<) was examined. The study demonstrated that as <i<R</i< increases, the permeability of the SRM gradually rises and tends to stabilize when <i<R</i< reaches 60 ppi. At the same <i<S</i<, the dispersion degree of model permeability obtained by the four segmentation types is in the order of center < random < equal < top. With an increase in <i<S</i<, the permeability (<i<k</i<) of the SRM gradually decreases, conforming to the dimensionless mathematical model, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<k</mi<<mo<=</mo<<msub<<mrow<<mi<a</mi<</mrow<<mrow<<mn<0</mn<</mrow<</msub<<mo<·</mo<<msup<<mrow<<mi<S</mi<</mrow<<mrow<<mo<−</mo<<msub<<mrow<<mi<b</mi<</mrow<<mrow<<mn<0</mn<</mrow<</msub<</mrow<</msup<</mrow<</semantics<</math<</inline-formula<, and tends to stabilize at <i<S</i< = 80 mm. With an increase in <i<F</i< and an increase in <i<S</i<, the permeability of the SRM exhibits a linear “zonal” distribution that declines in order. When <i<F</i< is greater than 12, the dispersion of the permeability value distribution is especially small. With an increase in <i<P</i<, the permeability of the SRM decreases gradually before rising abruptly. <i<P</i< is crucial for the grading and structural makeup of the SRM. Overall, this paper concludes that the conditions of <i<R</i< = 60 ppi, center segmentation type, <i<S</i< = 80 mm, <i<F</i< ≥ 12, and <i<P</i< set by demand can be used to select and generate the size of the SRM optimal representative elementary volume (REV) numerical calculation model. The SRM can serve as a general reference for test and engineering construction as a common geotechnical engineering material. soil–rock mixture lattice Boltzmann method size effect permeability Mathematics Xuesong Mao verfasserin aut Ke Lou verfasserin aut Zhihui Yun verfasserin aut In Mathematics MDPI AG, 2013 11(2023), 8, p 1968 (DE-627)737287764 (DE-600)2704244-3 22277390 nnns volume:11 year:2023 number:8, p 1968 https://doi.org/10.3390/math11081968 kostenfrei https://doaj.org/article/f39023bdeed44d6987792dc6ae8f8d1b kostenfrei https://www.mdpi.com/2227-7390/11/8/1968 kostenfrei https://doaj.org/toc/2227-7390 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 8, p 1968 |
allfieldsGer |
10.3390/math11081968 doi (DE-627)DOAJ089815823 (DE-599)DOAJf39023bdeed44d6987792dc6ae8f8d1b DE-627 ger DE-627 rakwb eng QA1-939 Peichen Cai verfasserin aut Lattice Boltzmann Numerical Study on Mesoscopic Seepage Characteristics of Soil–Rock Mixture Considering Size Effect 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier One of the hot topics in the study of rock and soil hydraulics is the size effect of a soil–rock mixture’s (SRM) seepage characteristics. The seepage process of the SRM was simulated from the pore scale through the lattice Boltzmann method (LBM) in this paper to explore the internal influence mechanism of sample size effect on the SRM seepage characteristics. SRM samples were generated using the improved Monte Carlo method (IMCM), and through 342 simulation test conditions the influence of size feature parameters such as resolution (<i<R</i<), segmentation type, model feature size (<i<S</i<), feature length ratio (<i<F</i<), and soil/rock particle size feature ratio (<i<P</i<) was examined. The study demonstrated that as <i<R</i< increases, the permeability of the SRM gradually rises and tends to stabilize when <i<R</i< reaches 60 ppi. At the same <i<S</i<, the dispersion degree of model permeability obtained by the four segmentation types is in the order of center < random < equal < top. With an increase in <i<S</i<, the permeability (<i<k</i<) of the SRM gradually decreases, conforming to the dimensionless mathematical model, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<k</mi<<mo<=</mo<<msub<<mrow<<mi<a</mi<</mrow<<mrow<<mn<0</mn<</mrow<</msub<<mo<·</mo<<msup<<mrow<<mi<S</mi<</mrow<<mrow<<mo<−</mo<<msub<<mrow<<mi<b</mi<</mrow<<mrow<<mn<0</mn<</mrow<</msub<</mrow<</msup<</mrow<</semantics<</math<</inline-formula<, and tends to stabilize at <i<S</i< = 80 mm. With an increase in <i<F</i< and an increase in <i<S</i<, the permeability of the SRM exhibits a linear “zonal” distribution that declines in order. When <i<F</i< is greater than 12, the dispersion of the permeability value distribution is especially small. With an increase in <i<P</i<, the permeability of the SRM decreases gradually before rising abruptly. <i<P</i< is crucial for the grading and structural makeup of the SRM. Overall, this paper concludes that the conditions of <i<R</i< = 60 ppi, center segmentation type, <i<S</i< = 80 mm, <i<F</i< ≥ 12, and <i<P</i< set by demand can be used to select and generate the size of the SRM optimal representative elementary volume (REV) numerical calculation model. The SRM can serve as a general reference for test and engineering construction as a common geotechnical engineering material. soil–rock mixture lattice Boltzmann method size effect permeability Mathematics Xuesong Mao verfasserin aut Ke Lou verfasserin aut Zhihui Yun verfasserin aut In Mathematics MDPI AG, 2013 11(2023), 8, p 1968 (DE-627)737287764 (DE-600)2704244-3 22277390 nnns volume:11 year:2023 number:8, p 1968 https://doi.org/10.3390/math11081968 kostenfrei https://doaj.org/article/f39023bdeed44d6987792dc6ae8f8d1b kostenfrei https://www.mdpi.com/2227-7390/11/8/1968 kostenfrei https://doaj.org/toc/2227-7390 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 8, p 1968 |
allfieldsSound |
10.3390/math11081968 doi (DE-627)DOAJ089815823 (DE-599)DOAJf39023bdeed44d6987792dc6ae8f8d1b DE-627 ger DE-627 rakwb eng QA1-939 Peichen Cai verfasserin aut Lattice Boltzmann Numerical Study on Mesoscopic Seepage Characteristics of Soil–Rock Mixture Considering Size Effect 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier One of the hot topics in the study of rock and soil hydraulics is the size effect of a soil–rock mixture’s (SRM) seepage characteristics. The seepage process of the SRM was simulated from the pore scale through the lattice Boltzmann method (LBM) in this paper to explore the internal influence mechanism of sample size effect on the SRM seepage characteristics. SRM samples were generated using the improved Monte Carlo method (IMCM), and through 342 simulation test conditions the influence of size feature parameters such as resolution (<i<R</i<), segmentation type, model feature size (<i<S</i<), feature length ratio (<i<F</i<), and soil/rock particle size feature ratio (<i<P</i<) was examined. The study demonstrated that as <i<R</i< increases, the permeability of the SRM gradually rises and tends to stabilize when <i<R</i< reaches 60 ppi. At the same <i<S</i<, the dispersion degree of model permeability obtained by the four segmentation types is in the order of center < random < equal < top. With an increase in <i<S</i<, the permeability (<i<k</i<) of the SRM gradually decreases, conforming to the dimensionless mathematical model, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<k</mi<<mo<=</mo<<msub<<mrow<<mi<a</mi<</mrow<<mrow<<mn<0</mn<</mrow<</msub<<mo<·</mo<<msup<<mrow<<mi<S</mi<</mrow<<mrow<<mo<−</mo<<msub<<mrow<<mi<b</mi<</mrow<<mrow<<mn<0</mn<</mrow<</msub<</mrow<</msup<</mrow<</semantics<</math<</inline-formula<, and tends to stabilize at <i<S</i< = 80 mm. With an increase in <i<F</i< and an increase in <i<S</i<, the permeability of the SRM exhibits a linear “zonal” distribution that declines in order. When <i<F</i< is greater than 12, the dispersion of the permeability value distribution is especially small. With an increase in <i<P</i<, the permeability of the SRM decreases gradually before rising abruptly. <i<P</i< is crucial for the grading and structural makeup of the SRM. Overall, this paper concludes that the conditions of <i<R</i< = 60 ppi, center segmentation type, <i<S</i< = 80 mm, <i<F</i< ≥ 12, and <i<P</i< set by demand can be used to select and generate the size of the SRM optimal representative elementary volume (REV) numerical calculation model. The SRM can serve as a general reference for test and engineering construction as a common geotechnical engineering material. soil–rock mixture lattice Boltzmann method size effect permeability Mathematics Xuesong Mao verfasserin aut Ke Lou verfasserin aut Zhihui Yun verfasserin aut In Mathematics MDPI AG, 2013 11(2023), 8, p 1968 (DE-627)737287764 (DE-600)2704244-3 22277390 nnns volume:11 year:2023 number:8, p 1968 https://doi.org/10.3390/math11081968 kostenfrei https://doaj.org/article/f39023bdeed44d6987792dc6ae8f8d1b kostenfrei https://www.mdpi.com/2227-7390/11/8/1968 kostenfrei https://doaj.org/toc/2227-7390 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 8, p 1968 |
language |
English |
source |
In Mathematics 11(2023), 8, p 1968 volume:11 year:2023 number:8, p 1968 |
sourceStr |
In Mathematics 11(2023), 8, p 1968 volume:11 year:2023 number:8, p 1968 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
soil–rock mixture lattice Boltzmann method size effect permeability Mathematics |
isfreeaccess_bool |
true |
container_title |
Mathematics |
authorswithroles_txt_mv |
Peichen Cai @@aut@@ Xuesong Mao @@aut@@ Ke Lou @@aut@@ Zhihui Yun @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
737287764 |
id |
DOAJ089815823 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ089815823</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413040855.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/math11081968</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ089815823</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf39023bdeed44d6987792dc6ae8f8d1b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Peichen Cai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lattice Boltzmann Numerical Study on Mesoscopic Seepage Characteristics of Soil–Rock Mixture Considering Size Effect</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">One of the hot topics in the study of rock and soil hydraulics is the size effect of a soil–rock mixture’s (SRM) seepage characteristics. The seepage process of the SRM was simulated from the pore scale through the lattice Boltzmann method (LBM) in this paper to explore the internal influence mechanism of sample size effect on the SRM seepage characteristics. SRM samples were generated using the improved Monte Carlo method (IMCM), and through 342 simulation test conditions the influence of size feature parameters such as resolution (<i<R</i<), segmentation type, model feature size (<i<S</i<), feature length ratio (<i<F</i<), and soil/rock particle size feature ratio (<i<P</i<) was examined. The study demonstrated that as <i<R</i< increases, the permeability of the SRM gradually rises and tends to stabilize when <i<R</i< reaches 60 ppi. At the same <i<S</i<, the dispersion degree of model permeability obtained by the four segmentation types is in the order of center < random < equal < top. With an increase in <i<S</i<, the permeability (<i<k</i<) of the SRM gradually decreases, conforming to the dimensionless mathematical model, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<k</mi<<mo<=</mo<<msub<<mrow<<mi<a</mi<</mrow<<mrow<<mn<0</mn<</mrow<</msub<<mo<·</mo<<msup<<mrow<<mi<S</mi<</mrow<<mrow<<mo<−</mo<<msub<<mrow<<mi<b</mi<</mrow<<mrow<<mn<0</mn<</mrow<</msub<</mrow<</msup<</mrow<</semantics<</math<</inline-formula<, and tends to stabilize at <i<S</i< = 80 mm. With an increase in <i<F</i< and an increase in <i<S</i<, the permeability of the SRM exhibits a linear “zonal” distribution that declines in order. When <i<F</i< is greater than 12, the dispersion of the permeability value distribution is especially small. With an increase in <i<P</i<, the permeability of the SRM decreases gradually before rising abruptly. <i<P</i< is crucial for the grading and structural makeup of the SRM. Overall, this paper concludes that the conditions of <i<R</i< = 60 ppi, center segmentation type, <i<S</i< = 80 mm, <i<F</i< ≥ 12, and <i<P</i< set by demand can be used to select and generate the size of the SRM optimal representative elementary volume (REV) numerical calculation model. The SRM can serve as a general reference for test and engineering construction as a common geotechnical engineering material.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">soil–rock mixture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lattice Boltzmann method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">size effect</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">permeability</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xuesong Mao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ke Lou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhihui Yun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Mathematics</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">11(2023), 8, p 1968</subfield><subfield code="w">(DE-627)737287764</subfield><subfield code="w">(DE-600)2704244-3</subfield><subfield code="x">22277390</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:8, p 1968</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/math11081968</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f39023bdeed44d6987792dc6ae8f8d1b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2227-7390/11/8/1968</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2227-7390</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2023</subfield><subfield code="e">8, p 1968</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Peichen Cai |
spellingShingle |
Peichen Cai misc QA1-939 misc soil–rock mixture misc lattice Boltzmann method misc size effect misc permeability misc Mathematics Lattice Boltzmann Numerical Study on Mesoscopic Seepage Characteristics of Soil–Rock Mixture Considering Size Effect |
authorStr |
Peichen Cai |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737287764 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA1-939 |
illustrated |
Not Illustrated |
issn |
22277390 |
topic_title |
QA1-939 Lattice Boltzmann Numerical Study on Mesoscopic Seepage Characteristics of Soil–Rock Mixture Considering Size Effect soil–rock mixture lattice Boltzmann method size effect permeability |
topic |
misc QA1-939 misc soil–rock mixture misc lattice Boltzmann method misc size effect misc permeability misc Mathematics |
topic_unstemmed |
misc QA1-939 misc soil–rock mixture misc lattice Boltzmann method misc size effect misc permeability misc Mathematics |
topic_browse |
misc QA1-939 misc soil–rock mixture misc lattice Boltzmann method misc size effect misc permeability misc Mathematics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Mathematics |
hierarchy_parent_id |
737287764 |
hierarchy_top_title |
Mathematics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737287764 (DE-600)2704244-3 |
title |
Lattice Boltzmann Numerical Study on Mesoscopic Seepage Characteristics of Soil–Rock Mixture Considering Size Effect |
ctrlnum |
(DE-627)DOAJ089815823 (DE-599)DOAJf39023bdeed44d6987792dc6ae8f8d1b |
title_full |
Lattice Boltzmann Numerical Study on Mesoscopic Seepage Characteristics of Soil–Rock Mixture Considering Size Effect |
author_sort |
Peichen Cai |
journal |
Mathematics |
journalStr |
Mathematics |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Peichen Cai Xuesong Mao Ke Lou Zhihui Yun |
container_volume |
11 |
class |
QA1-939 |
format_se |
Elektronische Aufsätze |
author-letter |
Peichen Cai |
doi_str_mv |
10.3390/math11081968 |
author2-role |
verfasserin |
title_sort |
lattice boltzmann numerical study on mesoscopic seepage characteristics of soil–rock mixture considering size effect |
callnumber |
QA1-939 |
title_auth |
Lattice Boltzmann Numerical Study on Mesoscopic Seepage Characteristics of Soil–Rock Mixture Considering Size Effect |
abstract |
One of the hot topics in the study of rock and soil hydraulics is the size effect of a soil–rock mixture’s (SRM) seepage characteristics. The seepage process of the SRM was simulated from the pore scale through the lattice Boltzmann method (LBM) in this paper to explore the internal influence mechanism of sample size effect on the SRM seepage characteristics. SRM samples were generated using the improved Monte Carlo method (IMCM), and through 342 simulation test conditions the influence of size feature parameters such as resolution (<i<R</i<), segmentation type, model feature size (<i<S</i<), feature length ratio (<i<F</i<), and soil/rock particle size feature ratio (<i<P</i<) was examined. The study demonstrated that as <i<R</i< increases, the permeability of the SRM gradually rises and tends to stabilize when <i<R</i< reaches 60 ppi. At the same <i<S</i<, the dispersion degree of model permeability obtained by the four segmentation types is in the order of center < random < equal < top. With an increase in <i<S</i<, the permeability (<i<k</i<) of the SRM gradually decreases, conforming to the dimensionless mathematical model, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<k</mi<<mo<=</mo<<msub<<mrow<<mi<a</mi<</mrow<<mrow<<mn<0</mn<</mrow<</msub<<mo<·</mo<<msup<<mrow<<mi<S</mi<</mrow<<mrow<<mo<−</mo<<msub<<mrow<<mi<b</mi<</mrow<<mrow<<mn<0</mn<</mrow<</msub<</mrow<</msup<</mrow<</semantics<</math<</inline-formula<, and tends to stabilize at <i<S</i< = 80 mm. With an increase in <i<F</i< and an increase in <i<S</i<, the permeability of the SRM exhibits a linear “zonal” distribution that declines in order. When <i<F</i< is greater than 12, the dispersion of the permeability value distribution is especially small. With an increase in <i<P</i<, the permeability of the SRM decreases gradually before rising abruptly. <i<P</i< is crucial for the grading and structural makeup of the SRM. Overall, this paper concludes that the conditions of <i<R</i< = 60 ppi, center segmentation type, <i<S</i< = 80 mm, <i<F</i< ≥ 12, and <i<P</i< set by demand can be used to select and generate the size of the SRM optimal representative elementary volume (REV) numerical calculation model. The SRM can serve as a general reference for test and engineering construction as a common geotechnical engineering material. |
abstractGer |
One of the hot topics in the study of rock and soil hydraulics is the size effect of a soil–rock mixture’s (SRM) seepage characteristics. The seepage process of the SRM was simulated from the pore scale through the lattice Boltzmann method (LBM) in this paper to explore the internal influence mechanism of sample size effect on the SRM seepage characteristics. SRM samples were generated using the improved Monte Carlo method (IMCM), and through 342 simulation test conditions the influence of size feature parameters such as resolution (<i<R</i<), segmentation type, model feature size (<i<S</i<), feature length ratio (<i<F</i<), and soil/rock particle size feature ratio (<i<P</i<) was examined. The study demonstrated that as <i<R</i< increases, the permeability of the SRM gradually rises and tends to stabilize when <i<R</i< reaches 60 ppi. At the same <i<S</i<, the dispersion degree of model permeability obtained by the four segmentation types is in the order of center < random < equal < top. With an increase in <i<S</i<, the permeability (<i<k</i<) of the SRM gradually decreases, conforming to the dimensionless mathematical model, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<k</mi<<mo<=</mo<<msub<<mrow<<mi<a</mi<</mrow<<mrow<<mn<0</mn<</mrow<</msub<<mo<·</mo<<msup<<mrow<<mi<S</mi<</mrow<<mrow<<mo<−</mo<<msub<<mrow<<mi<b</mi<</mrow<<mrow<<mn<0</mn<</mrow<</msub<</mrow<</msup<</mrow<</semantics<</math<</inline-formula<, and tends to stabilize at <i<S</i< = 80 mm. With an increase in <i<F</i< and an increase in <i<S</i<, the permeability of the SRM exhibits a linear “zonal” distribution that declines in order. When <i<F</i< is greater than 12, the dispersion of the permeability value distribution is especially small. With an increase in <i<P</i<, the permeability of the SRM decreases gradually before rising abruptly. <i<P</i< is crucial for the grading and structural makeup of the SRM. Overall, this paper concludes that the conditions of <i<R</i< = 60 ppi, center segmentation type, <i<S</i< = 80 mm, <i<F</i< ≥ 12, and <i<P</i< set by demand can be used to select and generate the size of the SRM optimal representative elementary volume (REV) numerical calculation model. The SRM can serve as a general reference for test and engineering construction as a common geotechnical engineering material. |
abstract_unstemmed |
One of the hot topics in the study of rock and soil hydraulics is the size effect of a soil–rock mixture’s (SRM) seepage characteristics. The seepage process of the SRM was simulated from the pore scale through the lattice Boltzmann method (LBM) in this paper to explore the internal influence mechanism of sample size effect on the SRM seepage characteristics. SRM samples were generated using the improved Monte Carlo method (IMCM), and through 342 simulation test conditions the influence of size feature parameters such as resolution (<i<R</i<), segmentation type, model feature size (<i<S</i<), feature length ratio (<i<F</i<), and soil/rock particle size feature ratio (<i<P</i<) was examined. The study demonstrated that as <i<R</i< increases, the permeability of the SRM gradually rises and tends to stabilize when <i<R</i< reaches 60 ppi. At the same <i<S</i<, the dispersion degree of model permeability obtained by the four segmentation types is in the order of center < random < equal < top. With an increase in <i<S</i<, the permeability (<i<k</i<) of the SRM gradually decreases, conforming to the dimensionless mathematical model, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<k</mi<<mo<=</mo<<msub<<mrow<<mi<a</mi<</mrow<<mrow<<mn<0</mn<</mrow<</msub<<mo<·</mo<<msup<<mrow<<mi<S</mi<</mrow<<mrow<<mo<−</mo<<msub<<mrow<<mi<b</mi<</mrow<<mrow<<mn<0</mn<</mrow<</msub<</mrow<</msup<</mrow<</semantics<</math<</inline-formula<, and tends to stabilize at <i<S</i< = 80 mm. With an increase in <i<F</i< and an increase in <i<S</i<, the permeability of the SRM exhibits a linear “zonal” distribution that declines in order. When <i<F</i< is greater than 12, the dispersion of the permeability value distribution is especially small. With an increase in <i<P</i<, the permeability of the SRM decreases gradually before rising abruptly. <i<P</i< is crucial for the grading and structural makeup of the SRM. Overall, this paper concludes that the conditions of <i<R</i< = 60 ppi, center segmentation type, <i<S</i< = 80 mm, <i<F</i< ≥ 12, and <i<P</i< set by demand can be used to select and generate the size of the SRM optimal representative elementary volume (REV) numerical calculation model. The SRM can serve as a general reference for test and engineering construction as a common geotechnical engineering material. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
8, p 1968 |
title_short |
Lattice Boltzmann Numerical Study on Mesoscopic Seepage Characteristics of Soil–Rock Mixture Considering Size Effect |
url |
https://doi.org/10.3390/math11081968 https://doaj.org/article/f39023bdeed44d6987792dc6ae8f8d1b https://www.mdpi.com/2227-7390/11/8/1968 https://doaj.org/toc/2227-7390 |
remote_bool |
true |
author2 |
Xuesong Mao Ke Lou Zhihui Yun |
author2Str |
Xuesong Mao Ke Lou Zhihui Yun |
ppnlink |
737287764 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/math11081968 |
callnumber-a |
QA1-939 |
up_date |
2024-07-04T00:46:17.501Z |
_version_ |
1803607319516282880 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ089815823</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413040855.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/math11081968</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ089815823</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf39023bdeed44d6987792dc6ae8f8d1b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Peichen Cai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lattice Boltzmann Numerical Study on Mesoscopic Seepage Characteristics of Soil–Rock Mixture Considering Size Effect</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">One of the hot topics in the study of rock and soil hydraulics is the size effect of a soil–rock mixture’s (SRM) seepage characteristics. The seepage process of the SRM was simulated from the pore scale through the lattice Boltzmann method (LBM) in this paper to explore the internal influence mechanism of sample size effect on the SRM seepage characteristics. SRM samples were generated using the improved Monte Carlo method (IMCM), and through 342 simulation test conditions the influence of size feature parameters such as resolution (<i<R</i<), segmentation type, model feature size (<i<S</i<), feature length ratio (<i<F</i<), and soil/rock particle size feature ratio (<i<P</i<) was examined. The study demonstrated that as <i<R</i< increases, the permeability of the SRM gradually rises and tends to stabilize when <i<R</i< reaches 60 ppi. At the same <i<S</i<, the dispersion degree of model permeability obtained by the four segmentation types is in the order of center < random < equal < top. With an increase in <i<S</i<, the permeability (<i<k</i<) of the SRM gradually decreases, conforming to the dimensionless mathematical model, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi<k</mi<<mo<=</mo<<msub<<mrow<<mi<a</mi<</mrow<<mrow<<mn<0</mn<</mrow<</msub<<mo<·</mo<<msup<<mrow<<mi<S</mi<</mrow<<mrow<<mo<−</mo<<msub<<mrow<<mi<b</mi<</mrow<<mrow<<mn<0</mn<</mrow<</msub<</mrow<</msup<</mrow<</semantics<</math<</inline-formula<, and tends to stabilize at <i<S</i< = 80 mm. With an increase in <i<F</i< and an increase in <i<S</i<, the permeability of the SRM exhibits a linear “zonal” distribution that declines in order. When <i<F</i< is greater than 12, the dispersion of the permeability value distribution is especially small. With an increase in <i<P</i<, the permeability of the SRM decreases gradually before rising abruptly. <i<P</i< is crucial for the grading and structural makeup of the SRM. Overall, this paper concludes that the conditions of <i<R</i< = 60 ppi, center segmentation type, <i<S</i< = 80 mm, <i<F</i< ≥ 12, and <i<P</i< set by demand can be used to select and generate the size of the SRM optimal representative elementary volume (REV) numerical calculation model. The SRM can serve as a general reference for test and engineering construction as a common geotechnical engineering material.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">soil–rock mixture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lattice Boltzmann method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">size effect</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">permeability</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xuesong Mao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ke Lou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhihui Yun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Mathematics</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">11(2023), 8, p 1968</subfield><subfield code="w">(DE-627)737287764</subfield><subfield code="w">(DE-600)2704244-3</subfield><subfield code="x">22277390</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:8, p 1968</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/math11081968</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f39023bdeed44d6987792dc6ae8f8d1b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2227-7390/11/8/1968</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2227-7390</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2023</subfield><subfield code="e">8, p 1968</subfield></datafield></record></collection>
|
score |
7.399102 |