A Quantum–Classical Model of Brain Dynamics
The study of the human psyche has elucidated a bipartite structure of logic reflecting the quantum–classical nature of the world. Accordingly, we posited an approach toward studying the brain by means of the quantum–classical dynamics of a mixed Weyl symbol. The mixed Weyl symbol can be used to desc...
Ausführliche Beschreibung
Autor*in: |
Alessandro Sergi [verfasserIn] Antonino Messina [verfasserIn] Carmelo M. Vicario [verfasserIn] Gabriella Martino [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Entropy - MDPI AG, 2003, 25(2023), 4, p 592 |
---|---|
Übergeordnetes Werk: |
volume:25 ; year:2023 ; number:4, p 592 |
Links: |
---|
DOI / URN: |
10.3390/e25040592 |
---|
Katalog-ID: |
DOAJ089865936 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ089865936 | ||
003 | DE-627 | ||
005 | 20240413041614.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230505s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/e25040592 |2 doi | |
035 | |a (DE-627)DOAJ089865936 | ||
035 | |a (DE-599)DOAJ11c3e854a2d24daf92dfe439f87a7131 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QB460-466 | |
050 | 0 | |a QC1-999 | |
100 | 0 | |a Alessandro Sergi |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Quantum–Classical Model of Brain Dynamics |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The study of the human psyche has elucidated a bipartite structure of logic reflecting the quantum–classical nature of the world. Accordingly, we posited an approach toward studying the brain by means of the quantum–classical dynamics of a mixed Weyl symbol. The mixed Weyl symbol can be used to describe brain processes at the microscopic level and, when averaged over an appropriate ensemble, can provide a link to the results of measurements made at the meso and macro scale. Within this approach, quantum variables (such as, for example, nuclear and electron spins, dipole momenta of particles or molecules, tunneling degrees of freedom, and so on) can be represented by spinors, whereas the electromagnetic fields and phonon modes can be treated either classically or semi-classically in phase space by also considering quantum zero-point fluctuations. Quantum zero-point effects can be incorporated into numerical simulations by controlling the temperature of each field mode via coupling to a dedicated Nosé–Hoover chain thermostat. The temperature of each thermostat was chosen in order to reproduce quantum statistics in the canonical ensemble. In this first paper, we introduce a general quantum–classical Hamiltonian model that can be tailored to study physical processes at the interface between the quantum and the classical world in the brain. While the approach is discussed in detail, numerical calculations are not reported in the present paper, but they are planned for future work. Our theory of brain dynamics subsumes some compatible aspects of three well-known quantum approaches to brain dynamics, namely the electromagnetic field theory approach, the orchestrated objective reduction theory, and the dissipative quantum model of the brain. All three models are reviewed. | ||
650 | 4 | |a quantum–classical dynamics | |
650 | 4 | |a quantum brain | |
650 | 4 | |a open quantum systems | |
650 | 4 | |a neuroscience | |
650 | 4 | |a electromagnetic brain stimulation | |
650 | 4 | |a clinical psychology | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
653 | 0 | |a Astrophysics | |
653 | 0 | |a Physics | |
700 | 0 | |a Antonino Messina |e verfasserin |4 aut | |
700 | 0 | |a Carmelo M. Vicario |e verfasserin |4 aut | |
700 | 0 | |a Gabriella Martino |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Entropy |d MDPI AG, 2003 |g 25(2023), 4, p 592 |w (DE-627)316340359 |w (DE-600)2014734-X |x 10994300 |7 nnns |
773 | 1 | 8 | |g volume:25 |g year:2023 |g number:4, p 592 |
856 | 4 | 0 | |u https://doi.org/10.3390/e25040592 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/11c3e854a2d24daf92dfe439f87a7131 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1099-4300/25/4/592 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1099-4300 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 25 |j 2023 |e 4, p 592 |
author_variant |
a s as a m am c m v cmv g m gm |
---|---|
matchkey_str |
article:10994300:2023----::qatmlsiamdlfr |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QB |
publishDate |
2023 |
allfields |
10.3390/e25040592 doi (DE-627)DOAJ089865936 (DE-599)DOAJ11c3e854a2d24daf92dfe439f87a7131 DE-627 ger DE-627 rakwb eng QB460-466 QC1-999 Alessandro Sergi verfasserin aut A Quantum–Classical Model of Brain Dynamics 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The study of the human psyche has elucidated a bipartite structure of logic reflecting the quantum–classical nature of the world. Accordingly, we posited an approach toward studying the brain by means of the quantum–classical dynamics of a mixed Weyl symbol. The mixed Weyl symbol can be used to describe brain processes at the microscopic level and, when averaged over an appropriate ensemble, can provide a link to the results of measurements made at the meso and macro scale. Within this approach, quantum variables (such as, for example, nuclear and electron spins, dipole momenta of particles or molecules, tunneling degrees of freedom, and so on) can be represented by spinors, whereas the electromagnetic fields and phonon modes can be treated either classically or semi-classically in phase space by also considering quantum zero-point fluctuations. Quantum zero-point effects can be incorporated into numerical simulations by controlling the temperature of each field mode via coupling to a dedicated Nosé–Hoover chain thermostat. The temperature of each thermostat was chosen in order to reproduce quantum statistics in the canonical ensemble. In this first paper, we introduce a general quantum–classical Hamiltonian model that can be tailored to study physical processes at the interface between the quantum and the classical world in the brain. While the approach is discussed in detail, numerical calculations are not reported in the present paper, but they are planned for future work. Our theory of brain dynamics subsumes some compatible aspects of three well-known quantum approaches to brain dynamics, namely the electromagnetic field theory approach, the orchestrated objective reduction theory, and the dissipative quantum model of the brain. All three models are reviewed. quantum–classical dynamics quantum brain open quantum systems neuroscience electromagnetic brain stimulation clinical psychology Science Q Astrophysics Physics Antonino Messina verfasserin aut Carmelo M. Vicario verfasserin aut Gabriella Martino verfasserin aut In Entropy MDPI AG, 2003 25(2023), 4, p 592 (DE-627)316340359 (DE-600)2014734-X 10994300 nnns volume:25 year:2023 number:4, p 592 https://doi.org/10.3390/e25040592 kostenfrei https://doaj.org/article/11c3e854a2d24daf92dfe439f87a7131 kostenfrei https://www.mdpi.com/1099-4300/25/4/592 kostenfrei https://doaj.org/toc/1099-4300 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2023 4, p 592 |
spelling |
10.3390/e25040592 doi (DE-627)DOAJ089865936 (DE-599)DOAJ11c3e854a2d24daf92dfe439f87a7131 DE-627 ger DE-627 rakwb eng QB460-466 QC1-999 Alessandro Sergi verfasserin aut A Quantum–Classical Model of Brain Dynamics 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The study of the human psyche has elucidated a bipartite structure of logic reflecting the quantum–classical nature of the world. Accordingly, we posited an approach toward studying the brain by means of the quantum–classical dynamics of a mixed Weyl symbol. The mixed Weyl symbol can be used to describe brain processes at the microscopic level and, when averaged over an appropriate ensemble, can provide a link to the results of measurements made at the meso and macro scale. Within this approach, quantum variables (such as, for example, nuclear and electron spins, dipole momenta of particles or molecules, tunneling degrees of freedom, and so on) can be represented by spinors, whereas the electromagnetic fields and phonon modes can be treated either classically or semi-classically in phase space by also considering quantum zero-point fluctuations. Quantum zero-point effects can be incorporated into numerical simulations by controlling the temperature of each field mode via coupling to a dedicated Nosé–Hoover chain thermostat. The temperature of each thermostat was chosen in order to reproduce quantum statistics in the canonical ensemble. In this first paper, we introduce a general quantum–classical Hamiltonian model that can be tailored to study physical processes at the interface between the quantum and the classical world in the brain. While the approach is discussed in detail, numerical calculations are not reported in the present paper, but they are planned for future work. Our theory of brain dynamics subsumes some compatible aspects of three well-known quantum approaches to brain dynamics, namely the electromagnetic field theory approach, the orchestrated objective reduction theory, and the dissipative quantum model of the brain. All three models are reviewed. quantum–classical dynamics quantum brain open quantum systems neuroscience electromagnetic brain stimulation clinical psychology Science Q Astrophysics Physics Antonino Messina verfasserin aut Carmelo M. Vicario verfasserin aut Gabriella Martino verfasserin aut In Entropy MDPI AG, 2003 25(2023), 4, p 592 (DE-627)316340359 (DE-600)2014734-X 10994300 nnns volume:25 year:2023 number:4, p 592 https://doi.org/10.3390/e25040592 kostenfrei https://doaj.org/article/11c3e854a2d24daf92dfe439f87a7131 kostenfrei https://www.mdpi.com/1099-4300/25/4/592 kostenfrei https://doaj.org/toc/1099-4300 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2023 4, p 592 |
allfields_unstemmed |
10.3390/e25040592 doi (DE-627)DOAJ089865936 (DE-599)DOAJ11c3e854a2d24daf92dfe439f87a7131 DE-627 ger DE-627 rakwb eng QB460-466 QC1-999 Alessandro Sergi verfasserin aut A Quantum–Classical Model of Brain Dynamics 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The study of the human psyche has elucidated a bipartite structure of logic reflecting the quantum–classical nature of the world. Accordingly, we posited an approach toward studying the brain by means of the quantum–classical dynamics of a mixed Weyl symbol. The mixed Weyl symbol can be used to describe brain processes at the microscopic level and, when averaged over an appropriate ensemble, can provide a link to the results of measurements made at the meso and macro scale. Within this approach, quantum variables (such as, for example, nuclear and electron spins, dipole momenta of particles or molecules, tunneling degrees of freedom, and so on) can be represented by spinors, whereas the electromagnetic fields and phonon modes can be treated either classically or semi-classically in phase space by also considering quantum zero-point fluctuations. Quantum zero-point effects can be incorporated into numerical simulations by controlling the temperature of each field mode via coupling to a dedicated Nosé–Hoover chain thermostat. The temperature of each thermostat was chosen in order to reproduce quantum statistics in the canonical ensemble. In this first paper, we introduce a general quantum–classical Hamiltonian model that can be tailored to study physical processes at the interface between the quantum and the classical world in the brain. While the approach is discussed in detail, numerical calculations are not reported in the present paper, but they are planned for future work. Our theory of brain dynamics subsumes some compatible aspects of three well-known quantum approaches to brain dynamics, namely the electromagnetic field theory approach, the orchestrated objective reduction theory, and the dissipative quantum model of the brain. All three models are reviewed. quantum–classical dynamics quantum brain open quantum systems neuroscience electromagnetic brain stimulation clinical psychology Science Q Astrophysics Physics Antonino Messina verfasserin aut Carmelo M. Vicario verfasserin aut Gabriella Martino verfasserin aut In Entropy MDPI AG, 2003 25(2023), 4, p 592 (DE-627)316340359 (DE-600)2014734-X 10994300 nnns volume:25 year:2023 number:4, p 592 https://doi.org/10.3390/e25040592 kostenfrei https://doaj.org/article/11c3e854a2d24daf92dfe439f87a7131 kostenfrei https://www.mdpi.com/1099-4300/25/4/592 kostenfrei https://doaj.org/toc/1099-4300 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2023 4, p 592 |
allfieldsGer |
10.3390/e25040592 doi (DE-627)DOAJ089865936 (DE-599)DOAJ11c3e854a2d24daf92dfe439f87a7131 DE-627 ger DE-627 rakwb eng QB460-466 QC1-999 Alessandro Sergi verfasserin aut A Quantum–Classical Model of Brain Dynamics 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The study of the human psyche has elucidated a bipartite structure of logic reflecting the quantum–classical nature of the world. Accordingly, we posited an approach toward studying the brain by means of the quantum–classical dynamics of a mixed Weyl symbol. The mixed Weyl symbol can be used to describe brain processes at the microscopic level and, when averaged over an appropriate ensemble, can provide a link to the results of measurements made at the meso and macro scale. Within this approach, quantum variables (such as, for example, nuclear and electron spins, dipole momenta of particles or molecules, tunneling degrees of freedom, and so on) can be represented by spinors, whereas the electromagnetic fields and phonon modes can be treated either classically or semi-classically in phase space by also considering quantum zero-point fluctuations. Quantum zero-point effects can be incorporated into numerical simulations by controlling the temperature of each field mode via coupling to a dedicated Nosé–Hoover chain thermostat. The temperature of each thermostat was chosen in order to reproduce quantum statistics in the canonical ensemble. In this first paper, we introduce a general quantum–classical Hamiltonian model that can be tailored to study physical processes at the interface between the quantum and the classical world in the brain. While the approach is discussed in detail, numerical calculations are not reported in the present paper, but they are planned for future work. Our theory of brain dynamics subsumes some compatible aspects of three well-known quantum approaches to brain dynamics, namely the electromagnetic field theory approach, the orchestrated objective reduction theory, and the dissipative quantum model of the brain. All three models are reviewed. quantum–classical dynamics quantum brain open quantum systems neuroscience electromagnetic brain stimulation clinical psychology Science Q Astrophysics Physics Antonino Messina verfasserin aut Carmelo M. Vicario verfasserin aut Gabriella Martino verfasserin aut In Entropy MDPI AG, 2003 25(2023), 4, p 592 (DE-627)316340359 (DE-600)2014734-X 10994300 nnns volume:25 year:2023 number:4, p 592 https://doi.org/10.3390/e25040592 kostenfrei https://doaj.org/article/11c3e854a2d24daf92dfe439f87a7131 kostenfrei https://www.mdpi.com/1099-4300/25/4/592 kostenfrei https://doaj.org/toc/1099-4300 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2023 4, p 592 |
allfieldsSound |
10.3390/e25040592 doi (DE-627)DOAJ089865936 (DE-599)DOAJ11c3e854a2d24daf92dfe439f87a7131 DE-627 ger DE-627 rakwb eng QB460-466 QC1-999 Alessandro Sergi verfasserin aut A Quantum–Classical Model of Brain Dynamics 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The study of the human psyche has elucidated a bipartite structure of logic reflecting the quantum–classical nature of the world. Accordingly, we posited an approach toward studying the brain by means of the quantum–classical dynamics of a mixed Weyl symbol. The mixed Weyl symbol can be used to describe brain processes at the microscopic level and, when averaged over an appropriate ensemble, can provide a link to the results of measurements made at the meso and macro scale. Within this approach, quantum variables (such as, for example, nuclear and electron spins, dipole momenta of particles or molecules, tunneling degrees of freedom, and so on) can be represented by spinors, whereas the electromagnetic fields and phonon modes can be treated either classically or semi-classically in phase space by also considering quantum zero-point fluctuations. Quantum zero-point effects can be incorporated into numerical simulations by controlling the temperature of each field mode via coupling to a dedicated Nosé–Hoover chain thermostat. The temperature of each thermostat was chosen in order to reproduce quantum statistics in the canonical ensemble. In this first paper, we introduce a general quantum–classical Hamiltonian model that can be tailored to study physical processes at the interface between the quantum and the classical world in the brain. While the approach is discussed in detail, numerical calculations are not reported in the present paper, but they are planned for future work. Our theory of brain dynamics subsumes some compatible aspects of three well-known quantum approaches to brain dynamics, namely the electromagnetic field theory approach, the orchestrated objective reduction theory, and the dissipative quantum model of the brain. All three models are reviewed. quantum–classical dynamics quantum brain open quantum systems neuroscience electromagnetic brain stimulation clinical psychology Science Q Astrophysics Physics Antonino Messina verfasserin aut Carmelo M. Vicario verfasserin aut Gabriella Martino verfasserin aut In Entropy MDPI AG, 2003 25(2023), 4, p 592 (DE-627)316340359 (DE-600)2014734-X 10994300 nnns volume:25 year:2023 number:4, p 592 https://doi.org/10.3390/e25040592 kostenfrei https://doaj.org/article/11c3e854a2d24daf92dfe439f87a7131 kostenfrei https://www.mdpi.com/1099-4300/25/4/592 kostenfrei https://doaj.org/toc/1099-4300 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2023 4, p 592 |
language |
English |
source |
In Entropy 25(2023), 4, p 592 volume:25 year:2023 number:4, p 592 |
sourceStr |
In Entropy 25(2023), 4, p 592 volume:25 year:2023 number:4, p 592 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
quantum–classical dynamics quantum brain open quantum systems neuroscience electromagnetic brain stimulation clinical psychology Science Q Astrophysics Physics |
isfreeaccess_bool |
true |
container_title |
Entropy |
authorswithroles_txt_mv |
Alessandro Sergi @@aut@@ Antonino Messina @@aut@@ Carmelo M. Vicario @@aut@@ Gabriella Martino @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
316340359 |
id |
DOAJ089865936 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ089865936</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413041614.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/e25040592</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ089865936</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ11c3e854a2d24daf92dfe439f87a7131</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB460-466</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Alessandro Sergi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Quantum–Classical Model of Brain Dynamics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The study of the human psyche has elucidated a bipartite structure of logic reflecting the quantum–classical nature of the world. Accordingly, we posited an approach toward studying the brain by means of the quantum–classical dynamics of a mixed Weyl symbol. The mixed Weyl symbol can be used to describe brain processes at the microscopic level and, when averaged over an appropriate ensemble, can provide a link to the results of measurements made at the meso and macro scale. Within this approach, quantum variables (such as, for example, nuclear and electron spins, dipole momenta of particles or molecules, tunneling degrees of freedom, and so on) can be represented by spinors, whereas the electromagnetic fields and phonon modes can be treated either classically or semi-classically in phase space by also considering quantum zero-point fluctuations. Quantum zero-point effects can be incorporated into numerical simulations by controlling the temperature of each field mode via coupling to a dedicated Nosé–Hoover chain thermostat. The temperature of each thermostat was chosen in order to reproduce quantum statistics in the canonical ensemble. In this first paper, we introduce a general quantum–classical Hamiltonian model that can be tailored to study physical processes at the interface between the quantum and the classical world in the brain. While the approach is discussed in detail, numerical calculations are not reported in the present paper, but they are planned for future work. Our theory of brain dynamics subsumes some compatible aspects of three well-known quantum approaches to brain dynamics, namely the electromagnetic field theory approach, the orchestrated objective reduction theory, and the dissipative quantum model of the brain. All three models are reviewed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantum–classical dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantum brain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">open quantum systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">neuroscience</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electromagnetic brain stimulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">clinical psychology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Antonino Messina</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Carmelo M. Vicario</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gabriella Martino</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Entropy</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">25(2023), 4, p 592</subfield><subfield code="w">(DE-627)316340359</subfield><subfield code="w">(DE-600)2014734-X</subfield><subfield code="x">10994300</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:4, p 592</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/e25040592</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/11c3e854a2d24daf92dfe439f87a7131</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1099-4300/25/4/592</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1099-4300</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2023</subfield><subfield code="e">4, p 592</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Alessandro Sergi |
spellingShingle |
Alessandro Sergi misc QB460-466 misc QC1-999 misc quantum–classical dynamics misc quantum brain misc open quantum systems misc neuroscience misc electromagnetic brain stimulation misc clinical psychology misc Science misc Q misc Astrophysics misc Physics A Quantum–Classical Model of Brain Dynamics |
authorStr |
Alessandro Sergi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)316340359 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QB460-466 |
illustrated |
Not Illustrated |
issn |
10994300 |
topic_title |
QB460-466 QC1-999 A Quantum–Classical Model of Brain Dynamics quantum–classical dynamics quantum brain open quantum systems neuroscience electromagnetic brain stimulation clinical psychology |
topic |
misc QB460-466 misc QC1-999 misc quantum–classical dynamics misc quantum brain misc open quantum systems misc neuroscience misc electromagnetic brain stimulation misc clinical psychology misc Science misc Q misc Astrophysics misc Physics |
topic_unstemmed |
misc QB460-466 misc QC1-999 misc quantum–classical dynamics misc quantum brain misc open quantum systems misc neuroscience misc electromagnetic brain stimulation misc clinical psychology misc Science misc Q misc Astrophysics misc Physics |
topic_browse |
misc QB460-466 misc QC1-999 misc quantum–classical dynamics misc quantum brain misc open quantum systems misc neuroscience misc electromagnetic brain stimulation misc clinical psychology misc Science misc Q misc Astrophysics misc Physics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Entropy |
hierarchy_parent_id |
316340359 |
hierarchy_top_title |
Entropy |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)316340359 (DE-600)2014734-X |
title |
A Quantum–Classical Model of Brain Dynamics |
ctrlnum |
(DE-627)DOAJ089865936 (DE-599)DOAJ11c3e854a2d24daf92dfe439f87a7131 |
title_full |
A Quantum–Classical Model of Brain Dynamics |
author_sort |
Alessandro Sergi |
journal |
Entropy |
journalStr |
Entropy |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Alessandro Sergi Antonino Messina Carmelo M. Vicario Gabriella Martino |
container_volume |
25 |
class |
QB460-466 QC1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Alessandro Sergi |
doi_str_mv |
10.3390/e25040592 |
author2-role |
verfasserin |
title_sort |
quantum–classical model of brain dynamics |
callnumber |
QB460-466 |
title_auth |
A Quantum–Classical Model of Brain Dynamics |
abstract |
The study of the human psyche has elucidated a bipartite structure of logic reflecting the quantum–classical nature of the world. Accordingly, we posited an approach toward studying the brain by means of the quantum–classical dynamics of a mixed Weyl symbol. The mixed Weyl symbol can be used to describe brain processes at the microscopic level and, when averaged over an appropriate ensemble, can provide a link to the results of measurements made at the meso and macro scale. Within this approach, quantum variables (such as, for example, nuclear and electron spins, dipole momenta of particles or molecules, tunneling degrees of freedom, and so on) can be represented by spinors, whereas the electromagnetic fields and phonon modes can be treated either classically or semi-classically in phase space by also considering quantum zero-point fluctuations. Quantum zero-point effects can be incorporated into numerical simulations by controlling the temperature of each field mode via coupling to a dedicated Nosé–Hoover chain thermostat. The temperature of each thermostat was chosen in order to reproduce quantum statistics in the canonical ensemble. In this first paper, we introduce a general quantum–classical Hamiltonian model that can be tailored to study physical processes at the interface between the quantum and the classical world in the brain. While the approach is discussed in detail, numerical calculations are not reported in the present paper, but they are planned for future work. Our theory of brain dynamics subsumes some compatible aspects of three well-known quantum approaches to brain dynamics, namely the electromagnetic field theory approach, the orchestrated objective reduction theory, and the dissipative quantum model of the brain. All three models are reviewed. |
abstractGer |
The study of the human psyche has elucidated a bipartite structure of logic reflecting the quantum–classical nature of the world. Accordingly, we posited an approach toward studying the brain by means of the quantum–classical dynamics of a mixed Weyl symbol. The mixed Weyl symbol can be used to describe brain processes at the microscopic level and, when averaged over an appropriate ensemble, can provide a link to the results of measurements made at the meso and macro scale. Within this approach, quantum variables (such as, for example, nuclear and electron spins, dipole momenta of particles or molecules, tunneling degrees of freedom, and so on) can be represented by spinors, whereas the electromagnetic fields and phonon modes can be treated either classically or semi-classically in phase space by also considering quantum zero-point fluctuations. Quantum zero-point effects can be incorporated into numerical simulations by controlling the temperature of each field mode via coupling to a dedicated Nosé–Hoover chain thermostat. The temperature of each thermostat was chosen in order to reproduce quantum statistics in the canonical ensemble. In this first paper, we introduce a general quantum–classical Hamiltonian model that can be tailored to study physical processes at the interface between the quantum and the classical world in the brain. While the approach is discussed in detail, numerical calculations are not reported in the present paper, but they are planned for future work. Our theory of brain dynamics subsumes some compatible aspects of three well-known quantum approaches to brain dynamics, namely the electromagnetic field theory approach, the orchestrated objective reduction theory, and the dissipative quantum model of the brain. All three models are reviewed. |
abstract_unstemmed |
The study of the human psyche has elucidated a bipartite structure of logic reflecting the quantum–classical nature of the world. Accordingly, we posited an approach toward studying the brain by means of the quantum–classical dynamics of a mixed Weyl symbol. The mixed Weyl symbol can be used to describe brain processes at the microscopic level and, when averaged over an appropriate ensemble, can provide a link to the results of measurements made at the meso and macro scale. Within this approach, quantum variables (such as, for example, nuclear and electron spins, dipole momenta of particles or molecules, tunneling degrees of freedom, and so on) can be represented by spinors, whereas the electromagnetic fields and phonon modes can be treated either classically or semi-classically in phase space by also considering quantum zero-point fluctuations. Quantum zero-point effects can be incorporated into numerical simulations by controlling the temperature of each field mode via coupling to a dedicated Nosé–Hoover chain thermostat. The temperature of each thermostat was chosen in order to reproduce quantum statistics in the canonical ensemble. In this first paper, we introduce a general quantum–classical Hamiltonian model that can be tailored to study physical processes at the interface between the quantum and the classical world in the brain. While the approach is discussed in detail, numerical calculations are not reported in the present paper, but they are planned for future work. Our theory of brain dynamics subsumes some compatible aspects of three well-known quantum approaches to brain dynamics, namely the electromagnetic field theory approach, the orchestrated objective reduction theory, and the dissipative quantum model of the brain. All three models are reviewed. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
4, p 592 |
title_short |
A Quantum–Classical Model of Brain Dynamics |
url |
https://doi.org/10.3390/e25040592 https://doaj.org/article/11c3e854a2d24daf92dfe439f87a7131 https://www.mdpi.com/1099-4300/25/4/592 https://doaj.org/toc/1099-4300 |
remote_bool |
true |
author2 |
Antonino Messina Carmelo M. Vicario Gabriella Martino |
author2Str |
Antonino Messina Carmelo M. Vicario Gabriella Martino |
ppnlink |
316340359 |
callnumber-subject |
QB - Astronomy |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/e25040592 |
callnumber-a |
QB460-466 |
up_date |
2024-07-04T00:58:49.635Z |
_version_ |
1803608108182798336 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ089865936</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413041614.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/e25040592</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ089865936</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ11c3e854a2d24daf92dfe439f87a7131</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB460-466</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Alessandro Sergi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Quantum–Classical Model of Brain Dynamics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The study of the human psyche has elucidated a bipartite structure of logic reflecting the quantum–classical nature of the world. Accordingly, we posited an approach toward studying the brain by means of the quantum–classical dynamics of a mixed Weyl symbol. The mixed Weyl symbol can be used to describe brain processes at the microscopic level and, when averaged over an appropriate ensemble, can provide a link to the results of measurements made at the meso and macro scale. Within this approach, quantum variables (such as, for example, nuclear and electron spins, dipole momenta of particles or molecules, tunneling degrees of freedom, and so on) can be represented by spinors, whereas the electromagnetic fields and phonon modes can be treated either classically or semi-classically in phase space by also considering quantum zero-point fluctuations. Quantum zero-point effects can be incorporated into numerical simulations by controlling the temperature of each field mode via coupling to a dedicated Nosé–Hoover chain thermostat. The temperature of each thermostat was chosen in order to reproduce quantum statistics in the canonical ensemble. In this first paper, we introduce a general quantum–classical Hamiltonian model that can be tailored to study physical processes at the interface between the quantum and the classical world in the brain. While the approach is discussed in detail, numerical calculations are not reported in the present paper, but they are planned for future work. Our theory of brain dynamics subsumes some compatible aspects of three well-known quantum approaches to brain dynamics, namely the electromagnetic field theory approach, the orchestrated objective reduction theory, and the dissipative quantum model of the brain. All three models are reviewed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantum–classical dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantum brain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">open quantum systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">neuroscience</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electromagnetic brain stimulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">clinical psychology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Antonino Messina</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Carmelo M. Vicario</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gabriella Martino</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Entropy</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">25(2023), 4, p 592</subfield><subfield code="w">(DE-627)316340359</subfield><subfield code="w">(DE-600)2014734-X</subfield><subfield code="x">10994300</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:4, p 592</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/e25040592</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/11c3e854a2d24daf92dfe439f87a7131</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1099-4300/25/4/592</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1099-4300</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2023</subfield><subfield code="e">4, p 592</subfield></datafield></record></collection>
|
score |
7.40281 |