High Temperature Tribological Behavior of Electroless Plating Ni-P-Si<sub<3</sub<N<sub<4</sub<-WS<sub<2</sub< Composite Coatings
Electroless nickel composite coatings have the potential for high-temperature tribological applications, and a combination of high wear resistance and low friction factor is one of the desirable solutions but still a tricky problem. The addition of self-lubricating WS<sub<2</sub< and har...
Ausführliche Beschreibung
Autor*in: |
Xiaohua Zheng [verfasserIn] Yindi Huang [verfasserIn] Chenbin Cai [verfasserIn] Haijun Huang [verfasserIn] Fanger Yang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Coatings - MDPI AG, 2012, 13(2023), 723, p 723 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2023 ; number:723, p 723 |
Links: |
---|
DOI / URN: |
10.3390/coatings13040723 |
---|
Katalog-ID: |
DOAJ089880625 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ089880625 | ||
003 | DE-627 | ||
005 | 20230505022247.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230505s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/coatings13040723 |2 doi | |
035 | |a (DE-627)DOAJ089880625 | ||
035 | |a (DE-599)DOAJ51744e8788db49acafde754b1d98f7c8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1-2040 | |
100 | 0 | |a Xiaohua Zheng |e verfasserin |4 aut | |
245 | 1 | 0 | |a High Temperature Tribological Behavior of Electroless Plating Ni-P-Si<sub<3</sub<N<sub<4</sub<-WS<sub<2</sub< Composite Coatings |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Electroless nickel composite coatings have the potential for high-temperature tribological applications, and a combination of high wear resistance and low friction factor is one of the desirable solutions but still a tricky problem. The addition of self-lubricating WS<sub<2</sub< and hard Si<sub<3</sub<N<sub<4</sub< nanoparticles to the Ni-P coatings is expected to obtain good high-temperature tribological performance. In this work, Ni-P-Si<sub<3</sub<N<sub<4</sub<-WS<sub<2</sub< composite coatings with various contents of WS<sub<2</sub< nanoparticles were prepared using electroless plating and subsequently annealed at 400 °C in an inert atmosphere. The tribological properties of the coatings were evaluated using a ball-on-disc wear instrument at operating temperatures from 25 to 600 °C. The microstructure, chemical composition, and surface morphology of the coatings were characterized by X-ray diffractometry (XRD), energy disperse spectroscopy (EDS), and scanning electron microscopy (SEM). Upon increasing the WS<sub<2</sub< dosage in the bath, the WS<sub<2</sub< content in the coating increased and the micro-hardness of the as-plated coating increased from 539 to 717 HV. After heat treatment, the coating underwent a crystallization process, and the hardness increased from 878 to 1094 HV. The main wear mechanism of the coating changed from adhesive wear in the as-plated state to abrasive wear in the annealed state. The annealed Ni-P-Si<sub<3</sub<N<sub<4</sub<-WS<sub<2</sub< coating with a WS<sub<2</sub< dosage of 2.5 g/L in the bath exhibited excellent mechanical properties, with a hardness of 10.9 GPa, a friction coefficient of ~0.51, and a wear rate of 8.4 × 10<sup<−15</sup< m<sup<3</sup<N<sup<−1</sup<⋅m<sup<−1</sup< at room temperature, and maintained optimal performance at high temperatures. At operating temperatures of 200, 400, and 600 °C, the form of wear was adhesive wear for coatings with a WS<sub<2</sub< dosage <1.5 g/L and abrasive wear for coatings with a WS<sub<2</sub< dosage ≥1.5 g/L. The synergism of WS<sub<2</sub< and Si<sub<3</sub<N<sub<4</sub< particles refined the grains of the Ni-P matrix in as-plated coatings and obviously reduced the friction coefficient of friction pairs in annealed coatings at all operating temperatures. | ||
650 | 4 | |a composite coating | |
650 | 4 | |a nanoparticles | |
650 | 4 | |a nickel phosphorus alloy | |
650 | 4 | |a electroless plating | |
650 | 4 | |a friction | |
650 | 4 | |a high temperature wear | |
653 | 0 | |a Engineering (General). Civil engineering (General) | |
700 | 0 | |a Yindi Huang |e verfasserin |4 aut | |
700 | 0 | |a Chenbin Cai |e verfasserin |4 aut | |
700 | 0 | |a Haijun Huang |e verfasserin |4 aut | |
700 | 0 | |a Fanger Yang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Coatings |d MDPI AG, 2012 |g 13(2023), 723, p 723 |w (DE-627)718627636 |w (DE-600)2662314-6 |x 20796412 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2023 |g number:723, p 723 |
856 | 4 | 0 | |u https://doi.org/10.3390/coatings13040723 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/51744e8788db49acafde754b1d98f7c8 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2079-6412/13/4/723 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2079-6412 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2023 |e 723, p 723 |
author_variant |
x z xz y h yh c c cc h h hh f y fy |
---|---|
matchkey_str |
article:20796412:2023----::iheprtrtiooiabhvooeetoesltnnpiu3unu4u |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TA |
publishDate |
2023 |
allfields |
10.3390/coatings13040723 doi (DE-627)DOAJ089880625 (DE-599)DOAJ51744e8788db49acafde754b1d98f7c8 DE-627 ger DE-627 rakwb eng TA1-2040 Xiaohua Zheng verfasserin aut High Temperature Tribological Behavior of Electroless Plating Ni-P-Si<sub<3</sub<N<sub<4</sub<-WS<sub<2</sub< Composite Coatings 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Electroless nickel composite coatings have the potential for high-temperature tribological applications, and a combination of high wear resistance and low friction factor is one of the desirable solutions but still a tricky problem. The addition of self-lubricating WS<sub<2</sub< and hard Si<sub<3</sub<N<sub<4</sub< nanoparticles to the Ni-P coatings is expected to obtain good high-temperature tribological performance. In this work, Ni-P-Si<sub<3</sub<N<sub<4</sub<-WS<sub<2</sub< composite coatings with various contents of WS<sub<2</sub< nanoparticles were prepared using electroless plating and subsequently annealed at 400 °C in an inert atmosphere. The tribological properties of the coatings were evaluated using a ball-on-disc wear instrument at operating temperatures from 25 to 600 °C. The microstructure, chemical composition, and surface morphology of the coatings were characterized by X-ray diffractometry (XRD), energy disperse spectroscopy (EDS), and scanning electron microscopy (SEM). Upon increasing the WS<sub<2</sub< dosage in the bath, the WS<sub<2</sub< content in the coating increased and the micro-hardness of the as-plated coating increased from 539 to 717 HV. After heat treatment, the coating underwent a crystallization process, and the hardness increased from 878 to 1094 HV. The main wear mechanism of the coating changed from adhesive wear in the as-plated state to abrasive wear in the annealed state. The annealed Ni-P-Si<sub<3</sub<N<sub<4</sub<-WS<sub<2</sub< coating with a WS<sub<2</sub< dosage of 2.5 g/L in the bath exhibited excellent mechanical properties, with a hardness of 10.9 GPa, a friction coefficient of ~0.51, and a wear rate of 8.4 × 10<sup<−15</sup< m<sup<3</sup<N<sup<−1</sup<⋅m<sup<−1</sup< at room temperature, and maintained optimal performance at high temperatures. At operating temperatures of 200, 400, and 600 °C, the form of wear was adhesive wear for coatings with a WS<sub<2</sub< dosage <1.5 g/L and abrasive wear for coatings with a WS<sub<2</sub< dosage ≥1.5 g/L. The synergism of WS<sub<2</sub< and Si<sub<3</sub<N<sub<4</sub< particles refined the grains of the Ni-P matrix in as-plated coatings and obviously reduced the friction coefficient of friction pairs in annealed coatings at all operating temperatures. composite coating nanoparticles nickel phosphorus alloy electroless plating friction high temperature wear Engineering (General). Civil engineering (General) Yindi Huang verfasserin aut Chenbin Cai verfasserin aut Haijun Huang verfasserin aut Fanger Yang verfasserin aut In Coatings MDPI AG, 2012 13(2023), 723, p 723 (DE-627)718627636 (DE-600)2662314-6 20796412 nnns volume:13 year:2023 number:723, p 723 https://doi.org/10.3390/coatings13040723 kostenfrei https://doaj.org/article/51744e8788db49acafde754b1d98f7c8 kostenfrei https://www.mdpi.com/2079-6412/13/4/723 kostenfrei https://doaj.org/toc/2079-6412 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 723, p 723 |
spelling |
10.3390/coatings13040723 doi (DE-627)DOAJ089880625 (DE-599)DOAJ51744e8788db49acafde754b1d98f7c8 DE-627 ger DE-627 rakwb eng TA1-2040 Xiaohua Zheng verfasserin aut High Temperature Tribological Behavior of Electroless Plating Ni-P-Si<sub<3</sub<N<sub<4</sub<-WS<sub<2</sub< Composite Coatings 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Electroless nickel composite coatings have the potential for high-temperature tribological applications, and a combination of high wear resistance and low friction factor is one of the desirable solutions but still a tricky problem. The addition of self-lubricating WS<sub<2</sub< and hard Si<sub<3</sub<N<sub<4</sub< nanoparticles to the Ni-P coatings is expected to obtain good high-temperature tribological performance. In this work, Ni-P-Si<sub<3</sub<N<sub<4</sub<-WS<sub<2</sub< composite coatings with various contents of WS<sub<2</sub< nanoparticles were prepared using electroless plating and subsequently annealed at 400 °C in an inert atmosphere. The tribological properties of the coatings were evaluated using a ball-on-disc wear instrument at operating temperatures from 25 to 600 °C. The microstructure, chemical composition, and surface morphology of the coatings were characterized by X-ray diffractometry (XRD), energy disperse spectroscopy (EDS), and scanning electron microscopy (SEM). Upon increasing the WS<sub<2</sub< dosage in the bath, the WS<sub<2</sub< content in the coating increased and the micro-hardness of the as-plated coating increased from 539 to 717 HV. After heat treatment, the coating underwent a crystallization process, and the hardness increased from 878 to 1094 HV. The main wear mechanism of the coating changed from adhesive wear in the as-plated state to abrasive wear in the annealed state. The annealed Ni-P-Si<sub<3</sub<N<sub<4</sub<-WS<sub<2</sub< coating with a WS<sub<2</sub< dosage of 2.5 g/L in the bath exhibited excellent mechanical properties, with a hardness of 10.9 GPa, a friction coefficient of ~0.51, and a wear rate of 8.4 × 10<sup<−15</sup< m<sup<3</sup<N<sup<−1</sup<⋅m<sup<−1</sup< at room temperature, and maintained optimal performance at high temperatures. At operating temperatures of 200, 400, and 600 °C, the form of wear was adhesive wear for coatings with a WS<sub<2</sub< dosage <1.5 g/L and abrasive wear for coatings with a WS<sub<2</sub< dosage ≥1.5 g/L. The synergism of WS<sub<2</sub< and Si<sub<3</sub<N<sub<4</sub< particles refined the grains of the Ni-P matrix in as-plated coatings and obviously reduced the friction coefficient of friction pairs in annealed coatings at all operating temperatures. composite coating nanoparticles nickel phosphorus alloy electroless plating friction high temperature wear Engineering (General). Civil engineering (General) Yindi Huang verfasserin aut Chenbin Cai verfasserin aut Haijun Huang verfasserin aut Fanger Yang verfasserin aut In Coatings MDPI AG, 2012 13(2023), 723, p 723 (DE-627)718627636 (DE-600)2662314-6 20796412 nnns volume:13 year:2023 number:723, p 723 https://doi.org/10.3390/coatings13040723 kostenfrei https://doaj.org/article/51744e8788db49acafde754b1d98f7c8 kostenfrei https://www.mdpi.com/2079-6412/13/4/723 kostenfrei https://doaj.org/toc/2079-6412 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 723, p 723 |
allfields_unstemmed |
10.3390/coatings13040723 doi (DE-627)DOAJ089880625 (DE-599)DOAJ51744e8788db49acafde754b1d98f7c8 DE-627 ger DE-627 rakwb eng TA1-2040 Xiaohua Zheng verfasserin aut High Temperature Tribological Behavior of Electroless Plating Ni-P-Si<sub<3</sub<N<sub<4</sub<-WS<sub<2</sub< Composite Coatings 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Electroless nickel composite coatings have the potential for high-temperature tribological applications, and a combination of high wear resistance and low friction factor is one of the desirable solutions but still a tricky problem. The addition of self-lubricating WS<sub<2</sub< and hard Si<sub<3</sub<N<sub<4</sub< nanoparticles to the Ni-P coatings is expected to obtain good high-temperature tribological performance. In this work, Ni-P-Si<sub<3</sub<N<sub<4</sub<-WS<sub<2</sub< composite coatings with various contents of WS<sub<2</sub< nanoparticles were prepared using electroless plating and subsequently annealed at 400 °C in an inert atmosphere. The tribological properties of the coatings were evaluated using a ball-on-disc wear instrument at operating temperatures from 25 to 600 °C. The microstructure, chemical composition, and surface morphology of the coatings were characterized by X-ray diffractometry (XRD), energy disperse spectroscopy (EDS), and scanning electron microscopy (SEM). Upon increasing the WS<sub<2</sub< dosage in the bath, the WS<sub<2</sub< content in the coating increased and the micro-hardness of the as-plated coating increased from 539 to 717 HV. After heat treatment, the coating underwent a crystallization process, and the hardness increased from 878 to 1094 HV. The main wear mechanism of the coating changed from adhesive wear in the as-plated state to abrasive wear in the annealed state. The annealed Ni-P-Si<sub<3</sub<N<sub<4</sub<-WS<sub<2</sub< coating with a WS<sub<2</sub< dosage of 2.5 g/L in the bath exhibited excellent mechanical properties, with a hardness of 10.9 GPa, a friction coefficient of ~0.51, and a wear rate of 8.4 × 10<sup<−15</sup< m<sup<3</sup<N<sup<−1</sup<⋅m<sup<−1</sup< at room temperature, and maintained optimal performance at high temperatures. At operating temperatures of 200, 400, and 600 °C, the form of wear was adhesive wear for coatings with a WS<sub<2</sub< dosage <1.5 g/L and abrasive wear for coatings with a WS<sub<2</sub< dosage ≥1.5 g/L. The synergism of WS<sub<2</sub< and Si<sub<3</sub<N<sub<4</sub< particles refined the grains of the Ni-P matrix in as-plated coatings and obviously reduced the friction coefficient of friction pairs in annealed coatings at all operating temperatures. composite coating nanoparticles nickel phosphorus alloy electroless plating friction high temperature wear Engineering (General). Civil engineering (General) Yindi Huang verfasserin aut Chenbin Cai verfasserin aut Haijun Huang verfasserin aut Fanger Yang verfasserin aut In Coatings MDPI AG, 2012 13(2023), 723, p 723 (DE-627)718627636 (DE-600)2662314-6 20796412 nnns volume:13 year:2023 number:723, p 723 https://doi.org/10.3390/coatings13040723 kostenfrei https://doaj.org/article/51744e8788db49acafde754b1d98f7c8 kostenfrei https://www.mdpi.com/2079-6412/13/4/723 kostenfrei https://doaj.org/toc/2079-6412 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 723, p 723 |
allfieldsGer |
10.3390/coatings13040723 doi (DE-627)DOAJ089880625 (DE-599)DOAJ51744e8788db49acafde754b1d98f7c8 DE-627 ger DE-627 rakwb eng TA1-2040 Xiaohua Zheng verfasserin aut High Temperature Tribological Behavior of Electroless Plating Ni-P-Si<sub<3</sub<N<sub<4</sub<-WS<sub<2</sub< Composite Coatings 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Electroless nickel composite coatings have the potential for high-temperature tribological applications, and a combination of high wear resistance and low friction factor is one of the desirable solutions but still a tricky problem. The addition of self-lubricating WS<sub<2</sub< and hard Si<sub<3</sub<N<sub<4</sub< nanoparticles to the Ni-P coatings is expected to obtain good high-temperature tribological performance. In this work, Ni-P-Si<sub<3</sub<N<sub<4</sub<-WS<sub<2</sub< composite coatings with various contents of WS<sub<2</sub< nanoparticles were prepared using electroless plating and subsequently annealed at 400 °C in an inert atmosphere. The tribological properties of the coatings were evaluated using a ball-on-disc wear instrument at operating temperatures from 25 to 600 °C. The microstructure, chemical composition, and surface morphology of the coatings were characterized by X-ray diffractometry (XRD), energy disperse spectroscopy (EDS), and scanning electron microscopy (SEM). Upon increasing the WS<sub<2</sub< dosage in the bath, the WS<sub<2</sub< content in the coating increased and the micro-hardness of the as-plated coating increased from 539 to 717 HV. After heat treatment, the coating underwent a crystallization process, and the hardness increased from 878 to 1094 HV. The main wear mechanism of the coating changed from adhesive wear in the as-plated state to abrasive wear in the annealed state. The annealed Ni-P-Si<sub<3</sub<N<sub<4</sub<-WS<sub<2</sub< coating with a WS<sub<2</sub< dosage of 2.5 g/L in the bath exhibited excellent mechanical properties, with a hardness of 10.9 GPa, a friction coefficient of ~0.51, and a wear rate of 8.4 × 10<sup<−15</sup< m<sup<3</sup<N<sup<−1</sup<⋅m<sup<−1</sup< at room temperature, and maintained optimal performance at high temperatures. At operating temperatures of 200, 400, and 600 °C, the form of wear was adhesive wear for coatings with a WS<sub<2</sub< dosage <1.5 g/L and abrasive wear for coatings with a WS<sub<2</sub< dosage ≥1.5 g/L. The synergism of WS<sub<2</sub< and Si<sub<3</sub<N<sub<4</sub< particles refined the grains of the Ni-P matrix in as-plated coatings and obviously reduced the friction coefficient of friction pairs in annealed coatings at all operating temperatures. composite coating nanoparticles nickel phosphorus alloy electroless plating friction high temperature wear Engineering (General). Civil engineering (General) Yindi Huang verfasserin aut Chenbin Cai verfasserin aut Haijun Huang verfasserin aut Fanger Yang verfasserin aut In Coatings MDPI AG, 2012 13(2023), 723, p 723 (DE-627)718627636 (DE-600)2662314-6 20796412 nnns volume:13 year:2023 number:723, p 723 https://doi.org/10.3390/coatings13040723 kostenfrei https://doaj.org/article/51744e8788db49acafde754b1d98f7c8 kostenfrei https://www.mdpi.com/2079-6412/13/4/723 kostenfrei https://doaj.org/toc/2079-6412 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 723, p 723 |
allfieldsSound |
10.3390/coatings13040723 doi (DE-627)DOAJ089880625 (DE-599)DOAJ51744e8788db49acafde754b1d98f7c8 DE-627 ger DE-627 rakwb eng TA1-2040 Xiaohua Zheng verfasserin aut High Temperature Tribological Behavior of Electroless Plating Ni-P-Si<sub<3</sub<N<sub<4</sub<-WS<sub<2</sub< Composite Coatings 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Electroless nickel composite coatings have the potential for high-temperature tribological applications, and a combination of high wear resistance and low friction factor is one of the desirable solutions but still a tricky problem. The addition of self-lubricating WS<sub<2</sub< and hard Si<sub<3</sub<N<sub<4</sub< nanoparticles to the Ni-P coatings is expected to obtain good high-temperature tribological performance. In this work, Ni-P-Si<sub<3</sub<N<sub<4</sub<-WS<sub<2</sub< composite coatings with various contents of WS<sub<2</sub< nanoparticles were prepared using electroless plating and subsequently annealed at 400 °C in an inert atmosphere. The tribological properties of the coatings were evaluated using a ball-on-disc wear instrument at operating temperatures from 25 to 600 °C. The microstructure, chemical composition, and surface morphology of the coatings were characterized by X-ray diffractometry (XRD), energy disperse spectroscopy (EDS), and scanning electron microscopy (SEM). Upon increasing the WS<sub<2</sub< dosage in the bath, the WS<sub<2</sub< content in the coating increased and the micro-hardness of the as-plated coating increased from 539 to 717 HV. After heat treatment, the coating underwent a crystallization process, and the hardness increased from 878 to 1094 HV. The main wear mechanism of the coating changed from adhesive wear in the as-plated state to abrasive wear in the annealed state. The annealed Ni-P-Si<sub<3</sub<N<sub<4</sub<-WS<sub<2</sub< coating with a WS<sub<2</sub< dosage of 2.5 g/L in the bath exhibited excellent mechanical properties, with a hardness of 10.9 GPa, a friction coefficient of ~0.51, and a wear rate of 8.4 × 10<sup<−15</sup< m<sup<3</sup<N<sup<−1</sup<⋅m<sup<−1</sup< at room temperature, and maintained optimal performance at high temperatures. At operating temperatures of 200, 400, and 600 °C, the form of wear was adhesive wear for coatings with a WS<sub<2</sub< dosage <1.5 g/L and abrasive wear for coatings with a WS<sub<2</sub< dosage ≥1.5 g/L. The synergism of WS<sub<2</sub< and Si<sub<3</sub<N<sub<4</sub< particles refined the grains of the Ni-P matrix in as-plated coatings and obviously reduced the friction coefficient of friction pairs in annealed coatings at all operating temperatures. composite coating nanoparticles nickel phosphorus alloy electroless plating friction high temperature wear Engineering (General). Civil engineering (General) Yindi Huang verfasserin aut Chenbin Cai verfasserin aut Haijun Huang verfasserin aut Fanger Yang verfasserin aut In Coatings MDPI AG, 2012 13(2023), 723, p 723 (DE-627)718627636 (DE-600)2662314-6 20796412 nnns volume:13 year:2023 number:723, p 723 https://doi.org/10.3390/coatings13040723 kostenfrei https://doaj.org/article/51744e8788db49acafde754b1d98f7c8 kostenfrei https://www.mdpi.com/2079-6412/13/4/723 kostenfrei https://doaj.org/toc/2079-6412 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 723, p 723 |
language |
English |
source |
In Coatings 13(2023), 723, p 723 volume:13 year:2023 number:723, p 723 |
sourceStr |
In Coatings 13(2023), 723, p 723 volume:13 year:2023 number:723, p 723 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
composite coating nanoparticles nickel phosphorus alloy electroless plating friction high temperature wear Engineering (General). Civil engineering (General) |
isfreeaccess_bool |
true |
container_title |
Coatings |
authorswithroles_txt_mv |
Xiaohua Zheng @@aut@@ Yindi Huang @@aut@@ Chenbin Cai @@aut@@ Haijun Huang @@aut@@ Fanger Yang @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
718627636 |
id |
DOAJ089880625 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ089880625</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505022247.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/coatings13040723</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ089880625</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ51744e8788db49acafde754b1d98f7c8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xiaohua Zheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">High Temperature Tribological Behavior of Electroless Plating Ni-P-Si<sub<3</sub<N<sub<4</sub<-WS<sub<2</sub< Composite Coatings</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Electroless nickel composite coatings have the potential for high-temperature tribological applications, and a combination of high wear resistance and low friction factor is one of the desirable solutions but still a tricky problem. The addition of self-lubricating WS<sub<2</sub< and hard Si<sub<3</sub<N<sub<4</sub< nanoparticles to the Ni-P coatings is expected to obtain good high-temperature tribological performance. In this work, Ni-P-Si<sub<3</sub<N<sub<4</sub<-WS<sub<2</sub< composite coatings with various contents of WS<sub<2</sub< nanoparticles were prepared using electroless plating and subsequently annealed at 400 °C in an inert atmosphere. The tribological properties of the coatings were evaluated using a ball-on-disc wear instrument at operating temperatures from 25 to 600 °C. The microstructure, chemical composition, and surface morphology of the coatings were characterized by X-ray diffractometry (XRD), energy disperse spectroscopy (EDS), and scanning electron microscopy (SEM). Upon increasing the WS<sub<2</sub< dosage in the bath, the WS<sub<2</sub< content in the coating increased and the micro-hardness of the as-plated coating increased from 539 to 717 HV. After heat treatment, the coating underwent a crystallization process, and the hardness increased from 878 to 1094 HV. The main wear mechanism of the coating changed from adhesive wear in the as-plated state to abrasive wear in the annealed state. The annealed Ni-P-Si<sub<3</sub<N<sub<4</sub<-WS<sub<2</sub< coating with a WS<sub<2</sub< dosage of 2.5 g/L in the bath exhibited excellent mechanical properties, with a hardness of 10.9 GPa, a friction coefficient of ~0.51, and a wear rate of 8.4 × 10<sup<−15</sup< m<sup<3</sup<N<sup<−1</sup<⋅m<sup<−1</sup< at room temperature, and maintained optimal performance at high temperatures. At operating temperatures of 200, 400, and 600 °C, the form of wear was adhesive wear for coatings with a WS<sub<2</sub< dosage <1.5 g/L and abrasive wear for coatings with a WS<sub<2</sub< dosage ≥1.5 g/L. The synergism of WS<sub<2</sub< and Si<sub<3</sub<N<sub<4</sub< particles refined the grains of the Ni-P matrix in as-plated coatings and obviously reduced the friction coefficient of friction pairs in annealed coatings at all operating temperatures.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">composite coating</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanoparticles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nickel phosphorus alloy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electroless plating</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">friction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">high temperature wear</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yindi Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chenbin Cai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haijun Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fanger Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Coatings</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 723, p 723</subfield><subfield code="w">(DE-627)718627636</subfield><subfield code="w">(DE-600)2662314-6</subfield><subfield code="x">20796412</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:723, p 723</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/coatings13040723</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/51744e8788db49acafde754b1d98f7c8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-6412/13/4/723</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-6412</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">723, p 723</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Xiaohua Zheng |
spellingShingle |
Xiaohua Zheng misc TA1-2040 misc composite coating misc nanoparticles misc nickel phosphorus alloy misc electroless plating misc friction misc high temperature wear misc Engineering (General). Civil engineering (General) High Temperature Tribological Behavior of Electroless Plating Ni-P-Si<sub<3</sub<N<sub<4</sub<-WS<sub<2</sub< Composite Coatings |
authorStr |
Xiaohua Zheng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718627636 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1-2040 |
illustrated |
Not Illustrated |
issn |
20796412 |
topic_title |
TA1-2040 High Temperature Tribological Behavior of Electroless Plating Ni-P-Si<sub<3</sub<N<sub<4</sub<-WS<sub<2</sub< Composite Coatings composite coating nanoparticles nickel phosphorus alloy electroless plating friction high temperature wear |
topic |
misc TA1-2040 misc composite coating misc nanoparticles misc nickel phosphorus alloy misc electroless plating misc friction misc high temperature wear misc Engineering (General). Civil engineering (General) |
topic_unstemmed |
misc TA1-2040 misc composite coating misc nanoparticles misc nickel phosphorus alloy misc electroless plating misc friction misc high temperature wear misc Engineering (General). Civil engineering (General) |
topic_browse |
misc TA1-2040 misc composite coating misc nanoparticles misc nickel phosphorus alloy misc electroless plating misc friction misc high temperature wear misc Engineering (General). Civil engineering (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Coatings |
hierarchy_parent_id |
718627636 |
hierarchy_top_title |
Coatings |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718627636 (DE-600)2662314-6 |
title |
High Temperature Tribological Behavior of Electroless Plating Ni-P-Si<sub<3</sub<N<sub<4</sub<-WS<sub<2</sub< Composite Coatings |
ctrlnum |
(DE-627)DOAJ089880625 (DE-599)DOAJ51744e8788db49acafde754b1d98f7c8 |
title_full |
High Temperature Tribological Behavior of Electroless Plating Ni-P-Si<sub<3</sub<N<sub<4</sub<-WS<sub<2</sub< Composite Coatings |
author_sort |
Xiaohua Zheng |
journal |
Coatings |
journalStr |
Coatings |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Xiaohua Zheng Yindi Huang Chenbin Cai Haijun Huang Fanger Yang |
container_volume |
13 |
class |
TA1-2040 |
format_se |
Elektronische Aufsätze |
author-letter |
Xiaohua Zheng |
doi_str_mv |
10.3390/coatings13040723 |
author2-role |
verfasserin |
title_sort |
high temperature tribological behavior of electroless plating ni-p-si<sub<3</sub<n<sub<4</sub<-ws<sub<2</sub< composite coatings |
callnumber |
TA1-2040 |
title_auth |
High Temperature Tribological Behavior of Electroless Plating Ni-P-Si<sub<3</sub<N<sub<4</sub<-WS<sub<2</sub< Composite Coatings |
abstract |
Electroless nickel composite coatings have the potential for high-temperature tribological applications, and a combination of high wear resistance and low friction factor is one of the desirable solutions but still a tricky problem. The addition of self-lubricating WS<sub<2</sub< and hard Si<sub<3</sub<N<sub<4</sub< nanoparticles to the Ni-P coatings is expected to obtain good high-temperature tribological performance. In this work, Ni-P-Si<sub<3</sub<N<sub<4</sub<-WS<sub<2</sub< composite coatings with various contents of WS<sub<2</sub< nanoparticles were prepared using electroless plating and subsequently annealed at 400 °C in an inert atmosphere. The tribological properties of the coatings were evaluated using a ball-on-disc wear instrument at operating temperatures from 25 to 600 °C. The microstructure, chemical composition, and surface morphology of the coatings were characterized by X-ray diffractometry (XRD), energy disperse spectroscopy (EDS), and scanning electron microscopy (SEM). Upon increasing the WS<sub<2</sub< dosage in the bath, the WS<sub<2</sub< content in the coating increased and the micro-hardness of the as-plated coating increased from 539 to 717 HV. After heat treatment, the coating underwent a crystallization process, and the hardness increased from 878 to 1094 HV. The main wear mechanism of the coating changed from adhesive wear in the as-plated state to abrasive wear in the annealed state. The annealed Ni-P-Si<sub<3</sub<N<sub<4</sub<-WS<sub<2</sub< coating with a WS<sub<2</sub< dosage of 2.5 g/L in the bath exhibited excellent mechanical properties, with a hardness of 10.9 GPa, a friction coefficient of ~0.51, and a wear rate of 8.4 × 10<sup<−15</sup< m<sup<3</sup<N<sup<−1</sup<⋅m<sup<−1</sup< at room temperature, and maintained optimal performance at high temperatures. At operating temperatures of 200, 400, and 600 °C, the form of wear was adhesive wear for coatings with a WS<sub<2</sub< dosage <1.5 g/L and abrasive wear for coatings with a WS<sub<2</sub< dosage ≥1.5 g/L. The synergism of WS<sub<2</sub< and Si<sub<3</sub<N<sub<4</sub< particles refined the grains of the Ni-P matrix in as-plated coatings and obviously reduced the friction coefficient of friction pairs in annealed coatings at all operating temperatures. |
abstractGer |
Electroless nickel composite coatings have the potential for high-temperature tribological applications, and a combination of high wear resistance and low friction factor is one of the desirable solutions but still a tricky problem. The addition of self-lubricating WS<sub<2</sub< and hard Si<sub<3</sub<N<sub<4</sub< nanoparticles to the Ni-P coatings is expected to obtain good high-temperature tribological performance. In this work, Ni-P-Si<sub<3</sub<N<sub<4</sub<-WS<sub<2</sub< composite coatings with various contents of WS<sub<2</sub< nanoparticles were prepared using electroless plating and subsequently annealed at 400 °C in an inert atmosphere. The tribological properties of the coatings were evaluated using a ball-on-disc wear instrument at operating temperatures from 25 to 600 °C. The microstructure, chemical composition, and surface morphology of the coatings were characterized by X-ray diffractometry (XRD), energy disperse spectroscopy (EDS), and scanning electron microscopy (SEM). Upon increasing the WS<sub<2</sub< dosage in the bath, the WS<sub<2</sub< content in the coating increased and the micro-hardness of the as-plated coating increased from 539 to 717 HV. After heat treatment, the coating underwent a crystallization process, and the hardness increased from 878 to 1094 HV. The main wear mechanism of the coating changed from adhesive wear in the as-plated state to abrasive wear in the annealed state. The annealed Ni-P-Si<sub<3</sub<N<sub<4</sub<-WS<sub<2</sub< coating with a WS<sub<2</sub< dosage of 2.5 g/L in the bath exhibited excellent mechanical properties, with a hardness of 10.9 GPa, a friction coefficient of ~0.51, and a wear rate of 8.4 × 10<sup<−15</sup< m<sup<3</sup<N<sup<−1</sup<⋅m<sup<−1</sup< at room temperature, and maintained optimal performance at high temperatures. At operating temperatures of 200, 400, and 600 °C, the form of wear was adhesive wear for coatings with a WS<sub<2</sub< dosage <1.5 g/L and abrasive wear for coatings with a WS<sub<2</sub< dosage ≥1.5 g/L. The synergism of WS<sub<2</sub< and Si<sub<3</sub<N<sub<4</sub< particles refined the grains of the Ni-P matrix in as-plated coatings and obviously reduced the friction coefficient of friction pairs in annealed coatings at all operating temperatures. |
abstract_unstemmed |
Electroless nickel composite coatings have the potential for high-temperature tribological applications, and a combination of high wear resistance and low friction factor is one of the desirable solutions but still a tricky problem. The addition of self-lubricating WS<sub<2</sub< and hard Si<sub<3</sub<N<sub<4</sub< nanoparticles to the Ni-P coatings is expected to obtain good high-temperature tribological performance. In this work, Ni-P-Si<sub<3</sub<N<sub<4</sub<-WS<sub<2</sub< composite coatings with various contents of WS<sub<2</sub< nanoparticles were prepared using electroless plating and subsequently annealed at 400 °C in an inert atmosphere. The tribological properties of the coatings were evaluated using a ball-on-disc wear instrument at operating temperatures from 25 to 600 °C. The microstructure, chemical composition, and surface morphology of the coatings were characterized by X-ray diffractometry (XRD), energy disperse spectroscopy (EDS), and scanning electron microscopy (SEM). Upon increasing the WS<sub<2</sub< dosage in the bath, the WS<sub<2</sub< content in the coating increased and the micro-hardness of the as-plated coating increased from 539 to 717 HV. After heat treatment, the coating underwent a crystallization process, and the hardness increased from 878 to 1094 HV. The main wear mechanism of the coating changed from adhesive wear in the as-plated state to abrasive wear in the annealed state. The annealed Ni-P-Si<sub<3</sub<N<sub<4</sub<-WS<sub<2</sub< coating with a WS<sub<2</sub< dosage of 2.5 g/L in the bath exhibited excellent mechanical properties, with a hardness of 10.9 GPa, a friction coefficient of ~0.51, and a wear rate of 8.4 × 10<sup<−15</sup< m<sup<3</sup<N<sup<−1</sup<⋅m<sup<−1</sup< at room temperature, and maintained optimal performance at high temperatures. At operating temperatures of 200, 400, and 600 °C, the form of wear was adhesive wear for coatings with a WS<sub<2</sub< dosage <1.5 g/L and abrasive wear for coatings with a WS<sub<2</sub< dosage ≥1.5 g/L. The synergism of WS<sub<2</sub< and Si<sub<3</sub<N<sub<4</sub< particles refined the grains of the Ni-P matrix in as-plated coatings and obviously reduced the friction coefficient of friction pairs in annealed coatings at all operating temperatures. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
723, p 723 |
title_short |
High Temperature Tribological Behavior of Electroless Plating Ni-P-Si<sub<3</sub<N<sub<4</sub<-WS<sub<2</sub< Composite Coatings |
url |
https://doi.org/10.3390/coatings13040723 https://doaj.org/article/51744e8788db49acafde754b1d98f7c8 https://www.mdpi.com/2079-6412/13/4/723 https://doaj.org/toc/2079-6412 |
remote_bool |
true |
author2 |
Yindi Huang Chenbin Cai Haijun Huang Fanger Yang |
author2Str |
Yindi Huang Chenbin Cai Haijun Huang Fanger Yang |
ppnlink |
718627636 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/coatings13040723 |
callnumber-a |
TA1-2040 |
up_date |
2024-07-04T01:02:16.162Z |
_version_ |
1803608324745199616 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ089880625</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505022247.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230505s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/coatings13040723</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ089880625</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ51744e8788db49acafde754b1d98f7c8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xiaohua Zheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">High Temperature Tribological Behavior of Electroless Plating Ni-P-Si<sub<3</sub<N<sub<4</sub<-WS<sub<2</sub< Composite Coatings</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Electroless nickel composite coatings have the potential for high-temperature tribological applications, and a combination of high wear resistance and low friction factor is one of the desirable solutions but still a tricky problem. The addition of self-lubricating WS<sub<2</sub< and hard Si<sub<3</sub<N<sub<4</sub< nanoparticles to the Ni-P coatings is expected to obtain good high-temperature tribological performance. In this work, Ni-P-Si<sub<3</sub<N<sub<4</sub<-WS<sub<2</sub< composite coatings with various contents of WS<sub<2</sub< nanoparticles were prepared using electroless plating and subsequently annealed at 400 °C in an inert atmosphere. The tribological properties of the coatings were evaluated using a ball-on-disc wear instrument at operating temperatures from 25 to 600 °C. The microstructure, chemical composition, and surface morphology of the coatings were characterized by X-ray diffractometry (XRD), energy disperse spectroscopy (EDS), and scanning electron microscopy (SEM). Upon increasing the WS<sub<2</sub< dosage in the bath, the WS<sub<2</sub< content in the coating increased and the micro-hardness of the as-plated coating increased from 539 to 717 HV. After heat treatment, the coating underwent a crystallization process, and the hardness increased from 878 to 1094 HV. The main wear mechanism of the coating changed from adhesive wear in the as-plated state to abrasive wear in the annealed state. The annealed Ni-P-Si<sub<3</sub<N<sub<4</sub<-WS<sub<2</sub< coating with a WS<sub<2</sub< dosage of 2.5 g/L in the bath exhibited excellent mechanical properties, with a hardness of 10.9 GPa, a friction coefficient of ~0.51, and a wear rate of 8.4 × 10<sup<−15</sup< m<sup<3</sup<N<sup<−1</sup<⋅m<sup<−1</sup< at room temperature, and maintained optimal performance at high temperatures. At operating temperatures of 200, 400, and 600 °C, the form of wear was adhesive wear for coatings with a WS<sub<2</sub< dosage <1.5 g/L and abrasive wear for coatings with a WS<sub<2</sub< dosage ≥1.5 g/L. The synergism of WS<sub<2</sub< and Si<sub<3</sub<N<sub<4</sub< particles refined the grains of the Ni-P matrix in as-plated coatings and obviously reduced the friction coefficient of friction pairs in annealed coatings at all operating temperatures.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">composite coating</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanoparticles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nickel phosphorus alloy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electroless plating</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">friction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">high temperature wear</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yindi Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chenbin Cai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haijun Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fanger Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Coatings</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 723, p 723</subfield><subfield code="w">(DE-627)718627636</subfield><subfield code="w">(DE-600)2662314-6</subfield><subfield code="x">20796412</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:723, p 723</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/coatings13040723</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/51744e8788db49acafde754b1d98f7c8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-6412/13/4/723</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-6412</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">723, p 723</subfield></datafield></record></collection>
|
score |
7.399108 |