Effects of land use/cover change on carbon storage between 2000 and 2040 in the Yellow River Basin, China
Land use/cover change (LUCC) is the primary source of carbon storage changes in the ecosystem. Up to now, there are few studies about the impacts and driving mechanisms of LUCC for carbon storage in the ecosystem at spatial–temporal scales. Characterizing LUCC of the Yellow River Basin (YRB) and its...
Ausführliche Beschreibung
Autor*in: |
Chenglong Xu [verfasserIn] Qibin Zhang [verfasserIn] Qiang Yu [verfasserIn] Jiping Wang [verfasserIn] Fei Wang [verfasserIn] Shi Qiu [verfasserIn] Mingsi Ai [verfasserIn] Jikai Zhao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Ecological Indicators - Elsevier, 2021, 151(2023), Seite 110345- |
---|---|
Übergeordnetes Werk: |
volume:151 ; year:2023 ; pages:110345- |
Links: |
---|
DOI / URN: |
10.1016/j.ecolind.2023.110345 |
---|
Katalog-ID: |
DOAJ090304586 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ090304586 | ||
003 | DE-627 | ||
005 | 20230526112316.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230526s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ecolind.2023.110345 |2 doi | |
035 | |a (DE-627)DOAJ090304586 | ||
035 | |a (DE-599)DOAJ89ec7db9f3264476bfc0029ec0de9ff9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QH540-549.5 | |
100 | 0 | |a Chenglong Xu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Effects of land use/cover change on carbon storage between 2000 and 2040 in the Yellow River Basin, China |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Land use/cover change (LUCC) is the primary source of carbon storage changes in the ecosystem. Up to now, there are few studies about the impacts and driving mechanisms of LUCC for carbon storage in the ecosystem at spatial–temporal scales. Characterizing LUCC of the Yellow River Basin (YRB) and its role in carbon storage are very important and necessary to elucidate the results of human activities on ecosystems. The policies to address potential future risks should be formulated in advance to achieve effective development. In the paper, we regarded the YRB as the study area, analyzed its LUCC during 2000 to 2020, predicted land use patterns in 2040 under the scenarios of natural trend (NT), ecological degradation (ED), and ecological restoration (ER) using Markov model with Patch-generating Land Use Simulation (PLUS) model, and quantified carbon storage in the ecosystems over the last 20 years and under future scenarios according to Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model. The outcome was as follows: (1) During 2000 to 2040, LUCC in the YRB changed markedly, with cropland being transformed into woodland, grassland and built-up land; (2) During 2000 to 2040, carbon storage in the YRB was on an upward trend with a mean annual increase of 1.93×106Mg C, and woodland was the answer to increasing carbon storage, while unused land could induce carbon storage to decrease; (3) Carbon storage in the YRB varied to different degrees under three scenarios, but under the premise of not causing large-scale damage, the conversion of built-up land was an important means of improving carbon storage, greatly enhancing the carbon sequestration efficiency and capacity of the YRB. In conclusion, the future environmental management of the YRB should be continuously oriented to ecological protection and low-carbon development, so that carbon storage in the basin will be able to develop in a benign direction. | ||
650 | 4 | |a LUCC | |
650 | 4 | |a Carbon storage | |
650 | 4 | |a Markov-PLUS model | |
650 | 4 | |a InVEST model | |
650 | 4 | |a Ecological Policies | |
653 | 0 | |a Ecology | |
700 | 0 | |a Qibin Zhang |e verfasserin |4 aut | |
700 | 0 | |a Qiang Yu |e verfasserin |4 aut | |
700 | 0 | |a Jiping Wang |e verfasserin |4 aut | |
700 | 0 | |a Fei Wang |e verfasserin |4 aut | |
700 | 0 | |a Shi Qiu |e verfasserin |4 aut | |
700 | 0 | |a Mingsi Ai |e verfasserin |4 aut | |
700 | 0 | |a Jikai Zhao |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Ecological Indicators |d Elsevier, 2021 |g 151(2023), Seite 110345- |w (DE-627)338074163 |w (DE-600)2063587-4 |x 18727034 |7 nnns |
773 | 1 | 8 | |g volume:151 |g year:2023 |g pages:110345- |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ecolind.2023.110345 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/89ec7db9f3264476bfc0029ec0de9ff9 |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S1470160X23004879 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1470-160X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 151 |j 2023 |h 110345- |
author_variant |
c x cx q z qz q y qy j w jw f w fw s q sq m a ma j z jz |
---|---|
matchkey_str |
article:18727034:2023----::fetolnueoecagocrosoaeewe20ad00n |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QH |
publishDate |
2023 |
allfields |
10.1016/j.ecolind.2023.110345 doi (DE-627)DOAJ090304586 (DE-599)DOAJ89ec7db9f3264476bfc0029ec0de9ff9 DE-627 ger DE-627 rakwb eng QH540-549.5 Chenglong Xu verfasserin aut Effects of land use/cover change on carbon storage between 2000 and 2040 in the Yellow River Basin, China 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Land use/cover change (LUCC) is the primary source of carbon storage changes in the ecosystem. Up to now, there are few studies about the impacts and driving mechanisms of LUCC for carbon storage in the ecosystem at spatial–temporal scales. Characterizing LUCC of the Yellow River Basin (YRB) and its role in carbon storage are very important and necessary to elucidate the results of human activities on ecosystems. The policies to address potential future risks should be formulated in advance to achieve effective development. In the paper, we regarded the YRB as the study area, analyzed its LUCC during 2000 to 2020, predicted land use patterns in 2040 under the scenarios of natural trend (NT), ecological degradation (ED), and ecological restoration (ER) using Markov model with Patch-generating Land Use Simulation (PLUS) model, and quantified carbon storage in the ecosystems over the last 20 years and under future scenarios according to Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model. The outcome was as follows: (1) During 2000 to 2040, LUCC in the YRB changed markedly, with cropland being transformed into woodland, grassland and built-up land; (2) During 2000 to 2040, carbon storage in the YRB was on an upward trend with a mean annual increase of 1.93×106Mg C, and woodland was the answer to increasing carbon storage, while unused land could induce carbon storage to decrease; (3) Carbon storage in the YRB varied to different degrees under three scenarios, but under the premise of not causing large-scale damage, the conversion of built-up land was an important means of improving carbon storage, greatly enhancing the carbon sequestration efficiency and capacity of the YRB. In conclusion, the future environmental management of the YRB should be continuously oriented to ecological protection and low-carbon development, so that carbon storage in the basin will be able to develop in a benign direction. LUCC Carbon storage Markov-PLUS model InVEST model Ecological Policies Ecology Qibin Zhang verfasserin aut Qiang Yu verfasserin aut Jiping Wang verfasserin aut Fei Wang verfasserin aut Shi Qiu verfasserin aut Mingsi Ai verfasserin aut Jikai Zhao verfasserin aut In Ecological Indicators Elsevier, 2021 151(2023), Seite 110345- (DE-627)338074163 (DE-600)2063587-4 18727034 nnns volume:151 year:2023 pages:110345- https://doi.org/10.1016/j.ecolind.2023.110345 kostenfrei https://doaj.org/article/89ec7db9f3264476bfc0029ec0de9ff9 kostenfrei http://www.sciencedirect.com/science/article/pii/S1470160X23004879 kostenfrei https://doaj.org/toc/1470-160X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 151 2023 110345- |
spelling |
10.1016/j.ecolind.2023.110345 doi (DE-627)DOAJ090304586 (DE-599)DOAJ89ec7db9f3264476bfc0029ec0de9ff9 DE-627 ger DE-627 rakwb eng QH540-549.5 Chenglong Xu verfasserin aut Effects of land use/cover change on carbon storage between 2000 and 2040 in the Yellow River Basin, China 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Land use/cover change (LUCC) is the primary source of carbon storage changes in the ecosystem. Up to now, there are few studies about the impacts and driving mechanisms of LUCC for carbon storage in the ecosystem at spatial–temporal scales. Characterizing LUCC of the Yellow River Basin (YRB) and its role in carbon storage are very important and necessary to elucidate the results of human activities on ecosystems. The policies to address potential future risks should be formulated in advance to achieve effective development. In the paper, we regarded the YRB as the study area, analyzed its LUCC during 2000 to 2020, predicted land use patterns in 2040 under the scenarios of natural trend (NT), ecological degradation (ED), and ecological restoration (ER) using Markov model with Patch-generating Land Use Simulation (PLUS) model, and quantified carbon storage in the ecosystems over the last 20 years and under future scenarios according to Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model. The outcome was as follows: (1) During 2000 to 2040, LUCC in the YRB changed markedly, with cropland being transformed into woodland, grassland and built-up land; (2) During 2000 to 2040, carbon storage in the YRB was on an upward trend with a mean annual increase of 1.93×106Mg C, and woodland was the answer to increasing carbon storage, while unused land could induce carbon storage to decrease; (3) Carbon storage in the YRB varied to different degrees under three scenarios, but under the premise of not causing large-scale damage, the conversion of built-up land was an important means of improving carbon storage, greatly enhancing the carbon sequestration efficiency and capacity of the YRB. In conclusion, the future environmental management of the YRB should be continuously oriented to ecological protection and low-carbon development, so that carbon storage in the basin will be able to develop in a benign direction. LUCC Carbon storage Markov-PLUS model InVEST model Ecological Policies Ecology Qibin Zhang verfasserin aut Qiang Yu verfasserin aut Jiping Wang verfasserin aut Fei Wang verfasserin aut Shi Qiu verfasserin aut Mingsi Ai verfasserin aut Jikai Zhao verfasserin aut In Ecological Indicators Elsevier, 2021 151(2023), Seite 110345- (DE-627)338074163 (DE-600)2063587-4 18727034 nnns volume:151 year:2023 pages:110345- https://doi.org/10.1016/j.ecolind.2023.110345 kostenfrei https://doaj.org/article/89ec7db9f3264476bfc0029ec0de9ff9 kostenfrei http://www.sciencedirect.com/science/article/pii/S1470160X23004879 kostenfrei https://doaj.org/toc/1470-160X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 151 2023 110345- |
allfields_unstemmed |
10.1016/j.ecolind.2023.110345 doi (DE-627)DOAJ090304586 (DE-599)DOAJ89ec7db9f3264476bfc0029ec0de9ff9 DE-627 ger DE-627 rakwb eng QH540-549.5 Chenglong Xu verfasserin aut Effects of land use/cover change on carbon storage between 2000 and 2040 in the Yellow River Basin, China 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Land use/cover change (LUCC) is the primary source of carbon storage changes in the ecosystem. Up to now, there are few studies about the impacts and driving mechanisms of LUCC for carbon storage in the ecosystem at spatial–temporal scales. Characterizing LUCC of the Yellow River Basin (YRB) and its role in carbon storage are very important and necessary to elucidate the results of human activities on ecosystems. The policies to address potential future risks should be formulated in advance to achieve effective development. In the paper, we regarded the YRB as the study area, analyzed its LUCC during 2000 to 2020, predicted land use patterns in 2040 under the scenarios of natural trend (NT), ecological degradation (ED), and ecological restoration (ER) using Markov model with Patch-generating Land Use Simulation (PLUS) model, and quantified carbon storage in the ecosystems over the last 20 years and under future scenarios according to Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model. The outcome was as follows: (1) During 2000 to 2040, LUCC in the YRB changed markedly, with cropland being transformed into woodland, grassland and built-up land; (2) During 2000 to 2040, carbon storage in the YRB was on an upward trend with a mean annual increase of 1.93×106Mg C, and woodland was the answer to increasing carbon storage, while unused land could induce carbon storage to decrease; (3) Carbon storage in the YRB varied to different degrees under three scenarios, but under the premise of not causing large-scale damage, the conversion of built-up land was an important means of improving carbon storage, greatly enhancing the carbon sequestration efficiency and capacity of the YRB. In conclusion, the future environmental management of the YRB should be continuously oriented to ecological protection and low-carbon development, so that carbon storage in the basin will be able to develop in a benign direction. LUCC Carbon storage Markov-PLUS model InVEST model Ecological Policies Ecology Qibin Zhang verfasserin aut Qiang Yu verfasserin aut Jiping Wang verfasserin aut Fei Wang verfasserin aut Shi Qiu verfasserin aut Mingsi Ai verfasserin aut Jikai Zhao verfasserin aut In Ecological Indicators Elsevier, 2021 151(2023), Seite 110345- (DE-627)338074163 (DE-600)2063587-4 18727034 nnns volume:151 year:2023 pages:110345- https://doi.org/10.1016/j.ecolind.2023.110345 kostenfrei https://doaj.org/article/89ec7db9f3264476bfc0029ec0de9ff9 kostenfrei http://www.sciencedirect.com/science/article/pii/S1470160X23004879 kostenfrei https://doaj.org/toc/1470-160X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 151 2023 110345- |
allfieldsGer |
10.1016/j.ecolind.2023.110345 doi (DE-627)DOAJ090304586 (DE-599)DOAJ89ec7db9f3264476bfc0029ec0de9ff9 DE-627 ger DE-627 rakwb eng QH540-549.5 Chenglong Xu verfasserin aut Effects of land use/cover change on carbon storage between 2000 and 2040 in the Yellow River Basin, China 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Land use/cover change (LUCC) is the primary source of carbon storage changes in the ecosystem. Up to now, there are few studies about the impacts and driving mechanisms of LUCC for carbon storage in the ecosystem at spatial–temporal scales. Characterizing LUCC of the Yellow River Basin (YRB) and its role in carbon storage are very important and necessary to elucidate the results of human activities on ecosystems. The policies to address potential future risks should be formulated in advance to achieve effective development. In the paper, we regarded the YRB as the study area, analyzed its LUCC during 2000 to 2020, predicted land use patterns in 2040 under the scenarios of natural trend (NT), ecological degradation (ED), and ecological restoration (ER) using Markov model with Patch-generating Land Use Simulation (PLUS) model, and quantified carbon storage in the ecosystems over the last 20 years and under future scenarios according to Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model. The outcome was as follows: (1) During 2000 to 2040, LUCC in the YRB changed markedly, with cropland being transformed into woodland, grassland and built-up land; (2) During 2000 to 2040, carbon storage in the YRB was on an upward trend with a mean annual increase of 1.93×106Mg C, and woodland was the answer to increasing carbon storage, while unused land could induce carbon storage to decrease; (3) Carbon storage in the YRB varied to different degrees under three scenarios, but under the premise of not causing large-scale damage, the conversion of built-up land was an important means of improving carbon storage, greatly enhancing the carbon sequestration efficiency and capacity of the YRB. In conclusion, the future environmental management of the YRB should be continuously oriented to ecological protection and low-carbon development, so that carbon storage in the basin will be able to develop in a benign direction. LUCC Carbon storage Markov-PLUS model InVEST model Ecological Policies Ecology Qibin Zhang verfasserin aut Qiang Yu verfasserin aut Jiping Wang verfasserin aut Fei Wang verfasserin aut Shi Qiu verfasserin aut Mingsi Ai verfasserin aut Jikai Zhao verfasserin aut In Ecological Indicators Elsevier, 2021 151(2023), Seite 110345- (DE-627)338074163 (DE-600)2063587-4 18727034 nnns volume:151 year:2023 pages:110345- https://doi.org/10.1016/j.ecolind.2023.110345 kostenfrei https://doaj.org/article/89ec7db9f3264476bfc0029ec0de9ff9 kostenfrei http://www.sciencedirect.com/science/article/pii/S1470160X23004879 kostenfrei https://doaj.org/toc/1470-160X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 151 2023 110345- |
allfieldsSound |
10.1016/j.ecolind.2023.110345 doi (DE-627)DOAJ090304586 (DE-599)DOAJ89ec7db9f3264476bfc0029ec0de9ff9 DE-627 ger DE-627 rakwb eng QH540-549.5 Chenglong Xu verfasserin aut Effects of land use/cover change on carbon storage between 2000 and 2040 in the Yellow River Basin, China 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Land use/cover change (LUCC) is the primary source of carbon storage changes in the ecosystem. Up to now, there are few studies about the impacts and driving mechanisms of LUCC for carbon storage in the ecosystem at spatial–temporal scales. Characterizing LUCC of the Yellow River Basin (YRB) and its role in carbon storage are very important and necessary to elucidate the results of human activities on ecosystems. The policies to address potential future risks should be formulated in advance to achieve effective development. In the paper, we regarded the YRB as the study area, analyzed its LUCC during 2000 to 2020, predicted land use patterns in 2040 under the scenarios of natural trend (NT), ecological degradation (ED), and ecological restoration (ER) using Markov model with Patch-generating Land Use Simulation (PLUS) model, and quantified carbon storage in the ecosystems over the last 20 years and under future scenarios according to Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model. The outcome was as follows: (1) During 2000 to 2040, LUCC in the YRB changed markedly, with cropland being transformed into woodland, grassland and built-up land; (2) During 2000 to 2040, carbon storage in the YRB was on an upward trend with a mean annual increase of 1.93×106Mg C, and woodland was the answer to increasing carbon storage, while unused land could induce carbon storage to decrease; (3) Carbon storage in the YRB varied to different degrees under three scenarios, but under the premise of not causing large-scale damage, the conversion of built-up land was an important means of improving carbon storage, greatly enhancing the carbon sequestration efficiency and capacity of the YRB. In conclusion, the future environmental management of the YRB should be continuously oriented to ecological protection and low-carbon development, so that carbon storage in the basin will be able to develop in a benign direction. LUCC Carbon storage Markov-PLUS model InVEST model Ecological Policies Ecology Qibin Zhang verfasserin aut Qiang Yu verfasserin aut Jiping Wang verfasserin aut Fei Wang verfasserin aut Shi Qiu verfasserin aut Mingsi Ai verfasserin aut Jikai Zhao verfasserin aut In Ecological Indicators Elsevier, 2021 151(2023), Seite 110345- (DE-627)338074163 (DE-600)2063587-4 18727034 nnns volume:151 year:2023 pages:110345- https://doi.org/10.1016/j.ecolind.2023.110345 kostenfrei https://doaj.org/article/89ec7db9f3264476bfc0029ec0de9ff9 kostenfrei http://www.sciencedirect.com/science/article/pii/S1470160X23004879 kostenfrei https://doaj.org/toc/1470-160X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 151 2023 110345- |
language |
English |
source |
In Ecological Indicators 151(2023), Seite 110345- volume:151 year:2023 pages:110345- |
sourceStr |
In Ecological Indicators 151(2023), Seite 110345- volume:151 year:2023 pages:110345- |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
LUCC Carbon storage Markov-PLUS model InVEST model Ecological Policies Ecology |
isfreeaccess_bool |
true |
container_title |
Ecological Indicators |
authorswithroles_txt_mv |
Chenglong Xu @@aut@@ Qibin Zhang @@aut@@ Qiang Yu @@aut@@ Jiping Wang @@aut@@ Fei Wang @@aut@@ Shi Qiu @@aut@@ Mingsi Ai @@aut@@ Jikai Zhao @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
338074163 |
id |
DOAJ090304586 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ090304586</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230526112316.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230526s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ecolind.2023.110345</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ090304586</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ89ec7db9f3264476bfc0029ec0de9ff9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH540-549.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Chenglong Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effects of land use/cover change on carbon storage between 2000 and 2040 in the Yellow River Basin, China</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Land use/cover change (LUCC) is the primary source of carbon storage changes in the ecosystem. Up to now, there are few studies about the impacts and driving mechanisms of LUCC for carbon storage in the ecosystem at spatial–temporal scales. Characterizing LUCC of the Yellow River Basin (YRB) and its role in carbon storage are very important and necessary to elucidate the results of human activities on ecosystems. The policies to address potential future risks should be formulated in advance to achieve effective development. In the paper, we regarded the YRB as the study area, analyzed its LUCC during 2000 to 2020, predicted land use patterns in 2040 under the scenarios of natural trend (NT), ecological degradation (ED), and ecological restoration (ER) using Markov model with Patch-generating Land Use Simulation (PLUS) model, and quantified carbon storage in the ecosystems over the last 20 years and under future scenarios according to Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model. The outcome was as follows: (1) During 2000 to 2040, LUCC in the YRB changed markedly, with cropland being transformed into woodland, grassland and built-up land; (2) During 2000 to 2040, carbon storage in the YRB was on an upward trend with a mean annual increase of 1.93×106Mg C, and woodland was the answer to increasing carbon storage, while unused land could induce carbon storage to decrease; (3) Carbon storage in the YRB varied to different degrees under three scenarios, but under the premise of not causing large-scale damage, the conversion of built-up land was an important means of improving carbon storage, greatly enhancing the carbon sequestration efficiency and capacity of the YRB. In conclusion, the future environmental management of the YRB should be continuously oriented to ecological protection and low-carbon development, so that carbon storage in the basin will be able to develop in a benign direction.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">LUCC</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon storage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Markov-PLUS model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">InVEST model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ecological Policies</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Ecology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qibin Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qiang Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiping Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fei Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shi Qiu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mingsi Ai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jikai Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Ecological Indicators</subfield><subfield code="d">Elsevier, 2021</subfield><subfield code="g">151(2023), Seite 110345-</subfield><subfield code="w">(DE-627)338074163</subfield><subfield code="w">(DE-600)2063587-4</subfield><subfield code="x">18727034</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:151</subfield><subfield code="g">year:2023</subfield><subfield code="g">pages:110345-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ecolind.2023.110345</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/89ec7db9f3264476bfc0029ec0de9ff9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S1470160X23004879</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1470-160X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">151</subfield><subfield code="j">2023</subfield><subfield code="h">110345-</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Chenglong Xu |
spellingShingle |
Chenglong Xu misc QH540-549.5 misc LUCC misc Carbon storage misc Markov-PLUS model misc InVEST model misc Ecological Policies misc Ecology Effects of land use/cover change on carbon storage between 2000 and 2040 in the Yellow River Basin, China |
authorStr |
Chenglong Xu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)338074163 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QH540-549 |
illustrated |
Not Illustrated |
issn |
18727034 |
topic_title |
QH540-549.5 Effects of land use/cover change on carbon storage between 2000 and 2040 in the Yellow River Basin, China LUCC Carbon storage Markov-PLUS model InVEST model Ecological Policies |
topic |
misc QH540-549.5 misc LUCC misc Carbon storage misc Markov-PLUS model misc InVEST model misc Ecological Policies misc Ecology |
topic_unstemmed |
misc QH540-549.5 misc LUCC misc Carbon storage misc Markov-PLUS model misc InVEST model misc Ecological Policies misc Ecology |
topic_browse |
misc QH540-549.5 misc LUCC misc Carbon storage misc Markov-PLUS model misc InVEST model misc Ecological Policies misc Ecology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Ecological Indicators |
hierarchy_parent_id |
338074163 |
hierarchy_top_title |
Ecological Indicators |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)338074163 (DE-600)2063587-4 |
title |
Effects of land use/cover change on carbon storage between 2000 and 2040 in the Yellow River Basin, China |
ctrlnum |
(DE-627)DOAJ090304586 (DE-599)DOAJ89ec7db9f3264476bfc0029ec0de9ff9 |
title_full |
Effects of land use/cover change on carbon storage between 2000 and 2040 in the Yellow River Basin, China |
author_sort |
Chenglong Xu |
journal |
Ecological Indicators |
journalStr |
Ecological Indicators |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
110345 |
author_browse |
Chenglong Xu Qibin Zhang Qiang Yu Jiping Wang Fei Wang Shi Qiu Mingsi Ai Jikai Zhao |
container_volume |
151 |
class |
QH540-549.5 |
format_se |
Elektronische Aufsätze |
author-letter |
Chenglong Xu |
doi_str_mv |
10.1016/j.ecolind.2023.110345 |
author2-role |
verfasserin |
title_sort |
effects of land use/cover change on carbon storage between 2000 and 2040 in the yellow river basin, china |
callnumber |
QH540-549.5 |
title_auth |
Effects of land use/cover change on carbon storage between 2000 and 2040 in the Yellow River Basin, China |
abstract |
Land use/cover change (LUCC) is the primary source of carbon storage changes in the ecosystem. Up to now, there are few studies about the impacts and driving mechanisms of LUCC for carbon storage in the ecosystem at spatial–temporal scales. Characterizing LUCC of the Yellow River Basin (YRB) and its role in carbon storage are very important and necessary to elucidate the results of human activities on ecosystems. The policies to address potential future risks should be formulated in advance to achieve effective development. In the paper, we regarded the YRB as the study area, analyzed its LUCC during 2000 to 2020, predicted land use patterns in 2040 under the scenarios of natural trend (NT), ecological degradation (ED), and ecological restoration (ER) using Markov model with Patch-generating Land Use Simulation (PLUS) model, and quantified carbon storage in the ecosystems over the last 20 years and under future scenarios according to Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model. The outcome was as follows: (1) During 2000 to 2040, LUCC in the YRB changed markedly, with cropland being transformed into woodland, grassland and built-up land; (2) During 2000 to 2040, carbon storage in the YRB was on an upward trend with a mean annual increase of 1.93×106Mg C, and woodland was the answer to increasing carbon storage, while unused land could induce carbon storage to decrease; (3) Carbon storage in the YRB varied to different degrees under three scenarios, but under the premise of not causing large-scale damage, the conversion of built-up land was an important means of improving carbon storage, greatly enhancing the carbon sequestration efficiency and capacity of the YRB. In conclusion, the future environmental management of the YRB should be continuously oriented to ecological protection and low-carbon development, so that carbon storage in the basin will be able to develop in a benign direction. |
abstractGer |
Land use/cover change (LUCC) is the primary source of carbon storage changes in the ecosystem. Up to now, there are few studies about the impacts and driving mechanisms of LUCC for carbon storage in the ecosystem at spatial–temporal scales. Characterizing LUCC of the Yellow River Basin (YRB) and its role in carbon storage are very important and necessary to elucidate the results of human activities on ecosystems. The policies to address potential future risks should be formulated in advance to achieve effective development. In the paper, we regarded the YRB as the study area, analyzed its LUCC during 2000 to 2020, predicted land use patterns in 2040 under the scenarios of natural trend (NT), ecological degradation (ED), and ecological restoration (ER) using Markov model with Patch-generating Land Use Simulation (PLUS) model, and quantified carbon storage in the ecosystems over the last 20 years and under future scenarios according to Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model. The outcome was as follows: (1) During 2000 to 2040, LUCC in the YRB changed markedly, with cropland being transformed into woodland, grassland and built-up land; (2) During 2000 to 2040, carbon storage in the YRB was on an upward trend with a mean annual increase of 1.93×106Mg C, and woodland was the answer to increasing carbon storage, while unused land could induce carbon storage to decrease; (3) Carbon storage in the YRB varied to different degrees under three scenarios, but under the premise of not causing large-scale damage, the conversion of built-up land was an important means of improving carbon storage, greatly enhancing the carbon sequestration efficiency and capacity of the YRB. In conclusion, the future environmental management of the YRB should be continuously oriented to ecological protection and low-carbon development, so that carbon storage in the basin will be able to develop in a benign direction. |
abstract_unstemmed |
Land use/cover change (LUCC) is the primary source of carbon storage changes in the ecosystem. Up to now, there are few studies about the impacts and driving mechanisms of LUCC for carbon storage in the ecosystem at spatial–temporal scales. Characterizing LUCC of the Yellow River Basin (YRB) and its role in carbon storage are very important and necessary to elucidate the results of human activities on ecosystems. The policies to address potential future risks should be formulated in advance to achieve effective development. In the paper, we regarded the YRB as the study area, analyzed its LUCC during 2000 to 2020, predicted land use patterns in 2040 under the scenarios of natural trend (NT), ecological degradation (ED), and ecological restoration (ER) using Markov model with Patch-generating Land Use Simulation (PLUS) model, and quantified carbon storage in the ecosystems over the last 20 years and under future scenarios according to Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model. The outcome was as follows: (1) During 2000 to 2040, LUCC in the YRB changed markedly, with cropland being transformed into woodland, grassland and built-up land; (2) During 2000 to 2040, carbon storage in the YRB was on an upward trend with a mean annual increase of 1.93×106Mg C, and woodland was the answer to increasing carbon storage, while unused land could induce carbon storage to decrease; (3) Carbon storage in the YRB varied to different degrees under three scenarios, but under the premise of not causing large-scale damage, the conversion of built-up land was an important means of improving carbon storage, greatly enhancing the carbon sequestration efficiency and capacity of the YRB. In conclusion, the future environmental management of the YRB should be continuously oriented to ecological protection and low-carbon development, so that carbon storage in the basin will be able to develop in a benign direction. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Effects of land use/cover change on carbon storage between 2000 and 2040 in the Yellow River Basin, China |
url |
https://doi.org/10.1016/j.ecolind.2023.110345 https://doaj.org/article/89ec7db9f3264476bfc0029ec0de9ff9 http://www.sciencedirect.com/science/article/pii/S1470160X23004879 https://doaj.org/toc/1470-160X |
remote_bool |
true |
author2 |
Qibin Zhang Qiang Yu Jiping Wang Fei Wang Shi Qiu Mingsi Ai Jikai Zhao |
author2Str |
Qibin Zhang Qiang Yu Jiping Wang Fei Wang Shi Qiu Mingsi Ai Jikai Zhao |
ppnlink |
338074163 |
callnumber-subject |
QH - Natural History and Biology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ecolind.2023.110345 |
callnumber-a |
QH540-549.5 |
up_date |
2024-07-03T13:59:29.674Z |
_version_ |
1803566626564472832 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ090304586</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230526112316.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230526s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ecolind.2023.110345</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ090304586</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ89ec7db9f3264476bfc0029ec0de9ff9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH540-549.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Chenglong Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effects of land use/cover change on carbon storage between 2000 and 2040 in the Yellow River Basin, China</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Land use/cover change (LUCC) is the primary source of carbon storage changes in the ecosystem. Up to now, there are few studies about the impacts and driving mechanisms of LUCC for carbon storage in the ecosystem at spatial–temporal scales. Characterizing LUCC of the Yellow River Basin (YRB) and its role in carbon storage are very important and necessary to elucidate the results of human activities on ecosystems. The policies to address potential future risks should be formulated in advance to achieve effective development. In the paper, we regarded the YRB as the study area, analyzed its LUCC during 2000 to 2020, predicted land use patterns in 2040 under the scenarios of natural trend (NT), ecological degradation (ED), and ecological restoration (ER) using Markov model with Patch-generating Land Use Simulation (PLUS) model, and quantified carbon storage in the ecosystems over the last 20 years and under future scenarios according to Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model. The outcome was as follows: (1) During 2000 to 2040, LUCC in the YRB changed markedly, with cropland being transformed into woodland, grassland and built-up land; (2) During 2000 to 2040, carbon storage in the YRB was on an upward trend with a mean annual increase of 1.93×106Mg C, and woodland was the answer to increasing carbon storage, while unused land could induce carbon storage to decrease; (3) Carbon storage in the YRB varied to different degrees under three scenarios, but under the premise of not causing large-scale damage, the conversion of built-up land was an important means of improving carbon storage, greatly enhancing the carbon sequestration efficiency and capacity of the YRB. In conclusion, the future environmental management of the YRB should be continuously oriented to ecological protection and low-carbon development, so that carbon storage in the basin will be able to develop in a benign direction.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">LUCC</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon storage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Markov-PLUS model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">InVEST model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ecological Policies</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Ecology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qibin Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qiang Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiping Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fei Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shi Qiu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mingsi Ai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jikai Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Ecological Indicators</subfield><subfield code="d">Elsevier, 2021</subfield><subfield code="g">151(2023), Seite 110345-</subfield><subfield code="w">(DE-627)338074163</subfield><subfield code="w">(DE-600)2063587-4</subfield><subfield code="x">18727034</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:151</subfield><subfield code="g">year:2023</subfield><subfield code="g">pages:110345-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ecolind.2023.110345</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/89ec7db9f3264476bfc0029ec0de9ff9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S1470160X23004879</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1470-160X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">151</subfield><subfield code="j">2023</subfield><subfield code="h">110345-</subfield></datafield></record></collection>
|
score |
7.4014044 |