AI-Enabled Energy Policy for a Sustainable Future
The present time is a seminal decade for the transition of the energy sector through the deployment of green energy and the optimization of efficiencies using the power of automation and artificial intelligence (AI), which demands competitive policies to handle multidimensional endeavors via a singl...
Ausführliche Beschreibung
Autor*in: |
Mir Sayed Shah Danish [verfasserIn] Tomonobu Senjyu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Sustainability - MDPI AG, 2009, 15(2023), 9, p 7643 |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:2023 ; number:9, p 7643 |
Links: |
---|
DOI / URN: |
10.3390/su15097643 |
---|
Katalog-ID: |
DOAJ090328094 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ090328094 | ||
003 | DE-627 | ||
005 | 20240413035039.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230526s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/su15097643 |2 doi | |
035 | |a (DE-627)DOAJ090328094 | ||
035 | |a (DE-599)DOAJ8860bd2ac6ed4b59aef83b0f45c5b18f | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TD194-195 | |
050 | 0 | |a TJ807-830 | |
050 | 0 | |a GE1-350 | |
100 | 0 | |a Mir Sayed Shah Danish |e verfasserin |4 aut | |
245 | 1 | 0 | |a AI-Enabled Energy Policy for a Sustainable Future |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The present time is a seminal decade for the transition of the energy sector through the deployment of green energy and the optimization of efficiencies using the power of automation and artificial intelligence (AI), which demands competitive policies to handle multidimensional endeavors via a single platform. The failure of energy policies can have far-reaching socioeconomic consequences when policies do not meet the energy and climate goals throughout the lifecycle of the policy. Such shortcomings are reported to be due to inadequate incentives and poor decision making that needs to promote fairness, equality, equity, and inclusiveness in energy policies and project decision making. The integration of AI in energy sectors poses various challenges that this study aims to analyze through a comprehensive examination of energy policy processes. The study focuses on (1) the decision-making process during the development stage, (2) the implementation management process for the execution stage, (3) the integration of data science, machine learning, and deep learning in energy systems, and (4) the requirements of energy systems in the context of substantiality. Synergistically, an emerging blueprint of policy, data science and AI, engineering practices, management process, business models, and social approaches that provides a multilateral design and implementation reference is propounded. Finally, a novel framework is developed to develop and implement modern energy policies that minimize risks, promote successful implementation, and advance society’s journey towards net zero and carbon neutral objectives. | ||
650 | 4 | |a AI-enabled energy policy | |
650 | 4 | |a sustainable energy | |
650 | 4 | |a energy policies management | |
650 | 4 | |a policy development process | |
650 | 4 | |a energy techno-economic analysis | |
650 | 4 | |a policy failure | |
653 | 0 | |a Environmental effects of industries and plants | |
653 | 0 | |a Renewable energy sources | |
653 | 0 | |a Environmental sciences | |
700 | 0 | |a Tomonobu Senjyu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Sustainability |d MDPI AG, 2009 |g 15(2023), 9, p 7643 |w (DE-627)610604120 |w (DE-600)2518383-7 |x 20711050 |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:2023 |g number:9, p 7643 |
856 | 4 | 0 | |u https://doi.org/10.3390/su15097643 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/8860bd2ac6ed4b59aef83b0f45c5b18f |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2071-1050/15/9/7643 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2071-1050 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 15 |j 2023 |e 9, p 7643 |
author_variant |
m s s d mssd t s ts |
---|---|
matchkey_str |
article:20711050:2023----::inbeeegplcfrssa |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TD |
publishDate |
2023 |
allfields |
10.3390/su15097643 doi (DE-627)DOAJ090328094 (DE-599)DOAJ8860bd2ac6ed4b59aef83b0f45c5b18f DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Mir Sayed Shah Danish verfasserin aut AI-Enabled Energy Policy for a Sustainable Future 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The present time is a seminal decade for the transition of the energy sector through the deployment of green energy and the optimization of efficiencies using the power of automation and artificial intelligence (AI), which demands competitive policies to handle multidimensional endeavors via a single platform. The failure of energy policies can have far-reaching socioeconomic consequences when policies do not meet the energy and climate goals throughout the lifecycle of the policy. Such shortcomings are reported to be due to inadequate incentives and poor decision making that needs to promote fairness, equality, equity, and inclusiveness in energy policies and project decision making. The integration of AI in energy sectors poses various challenges that this study aims to analyze through a comprehensive examination of energy policy processes. The study focuses on (1) the decision-making process during the development stage, (2) the implementation management process for the execution stage, (3) the integration of data science, machine learning, and deep learning in energy systems, and (4) the requirements of energy systems in the context of substantiality. Synergistically, an emerging blueprint of policy, data science and AI, engineering practices, management process, business models, and social approaches that provides a multilateral design and implementation reference is propounded. Finally, a novel framework is developed to develop and implement modern energy policies that minimize risks, promote successful implementation, and advance society’s journey towards net zero and carbon neutral objectives. AI-enabled energy policy sustainable energy energy policies management policy development process energy techno-economic analysis policy failure Environmental effects of industries and plants Renewable energy sources Environmental sciences Tomonobu Senjyu verfasserin aut In Sustainability MDPI AG, 2009 15(2023), 9, p 7643 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:15 year:2023 number:9, p 7643 https://doi.org/10.3390/su15097643 kostenfrei https://doaj.org/article/8860bd2ac6ed4b59aef83b0f45c5b18f kostenfrei https://www.mdpi.com/2071-1050/15/9/7643 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 15 2023 9, p 7643 |
spelling |
10.3390/su15097643 doi (DE-627)DOAJ090328094 (DE-599)DOAJ8860bd2ac6ed4b59aef83b0f45c5b18f DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Mir Sayed Shah Danish verfasserin aut AI-Enabled Energy Policy for a Sustainable Future 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The present time is a seminal decade for the transition of the energy sector through the deployment of green energy and the optimization of efficiencies using the power of automation and artificial intelligence (AI), which demands competitive policies to handle multidimensional endeavors via a single platform. The failure of energy policies can have far-reaching socioeconomic consequences when policies do not meet the energy and climate goals throughout the lifecycle of the policy. Such shortcomings are reported to be due to inadequate incentives and poor decision making that needs to promote fairness, equality, equity, and inclusiveness in energy policies and project decision making. The integration of AI in energy sectors poses various challenges that this study aims to analyze through a comprehensive examination of energy policy processes. The study focuses on (1) the decision-making process during the development stage, (2) the implementation management process for the execution stage, (3) the integration of data science, machine learning, and deep learning in energy systems, and (4) the requirements of energy systems in the context of substantiality. Synergistically, an emerging blueprint of policy, data science and AI, engineering practices, management process, business models, and social approaches that provides a multilateral design and implementation reference is propounded. Finally, a novel framework is developed to develop and implement modern energy policies that minimize risks, promote successful implementation, and advance society’s journey towards net zero and carbon neutral objectives. AI-enabled energy policy sustainable energy energy policies management policy development process energy techno-economic analysis policy failure Environmental effects of industries and plants Renewable energy sources Environmental sciences Tomonobu Senjyu verfasserin aut In Sustainability MDPI AG, 2009 15(2023), 9, p 7643 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:15 year:2023 number:9, p 7643 https://doi.org/10.3390/su15097643 kostenfrei https://doaj.org/article/8860bd2ac6ed4b59aef83b0f45c5b18f kostenfrei https://www.mdpi.com/2071-1050/15/9/7643 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 15 2023 9, p 7643 |
allfields_unstemmed |
10.3390/su15097643 doi (DE-627)DOAJ090328094 (DE-599)DOAJ8860bd2ac6ed4b59aef83b0f45c5b18f DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Mir Sayed Shah Danish verfasserin aut AI-Enabled Energy Policy for a Sustainable Future 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The present time is a seminal decade for the transition of the energy sector through the deployment of green energy and the optimization of efficiencies using the power of automation and artificial intelligence (AI), which demands competitive policies to handle multidimensional endeavors via a single platform. The failure of energy policies can have far-reaching socioeconomic consequences when policies do not meet the energy and climate goals throughout the lifecycle of the policy. Such shortcomings are reported to be due to inadequate incentives and poor decision making that needs to promote fairness, equality, equity, and inclusiveness in energy policies and project decision making. The integration of AI in energy sectors poses various challenges that this study aims to analyze through a comprehensive examination of energy policy processes. The study focuses on (1) the decision-making process during the development stage, (2) the implementation management process for the execution stage, (3) the integration of data science, machine learning, and deep learning in energy systems, and (4) the requirements of energy systems in the context of substantiality. Synergistically, an emerging blueprint of policy, data science and AI, engineering practices, management process, business models, and social approaches that provides a multilateral design and implementation reference is propounded. Finally, a novel framework is developed to develop and implement modern energy policies that minimize risks, promote successful implementation, and advance society’s journey towards net zero and carbon neutral objectives. AI-enabled energy policy sustainable energy energy policies management policy development process energy techno-economic analysis policy failure Environmental effects of industries and plants Renewable energy sources Environmental sciences Tomonobu Senjyu verfasserin aut In Sustainability MDPI AG, 2009 15(2023), 9, p 7643 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:15 year:2023 number:9, p 7643 https://doi.org/10.3390/su15097643 kostenfrei https://doaj.org/article/8860bd2ac6ed4b59aef83b0f45c5b18f kostenfrei https://www.mdpi.com/2071-1050/15/9/7643 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 15 2023 9, p 7643 |
allfieldsGer |
10.3390/su15097643 doi (DE-627)DOAJ090328094 (DE-599)DOAJ8860bd2ac6ed4b59aef83b0f45c5b18f DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Mir Sayed Shah Danish verfasserin aut AI-Enabled Energy Policy for a Sustainable Future 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The present time is a seminal decade for the transition of the energy sector through the deployment of green energy and the optimization of efficiencies using the power of automation and artificial intelligence (AI), which demands competitive policies to handle multidimensional endeavors via a single platform. The failure of energy policies can have far-reaching socioeconomic consequences when policies do not meet the energy and climate goals throughout the lifecycle of the policy. Such shortcomings are reported to be due to inadequate incentives and poor decision making that needs to promote fairness, equality, equity, and inclusiveness in energy policies and project decision making. The integration of AI in energy sectors poses various challenges that this study aims to analyze through a comprehensive examination of energy policy processes. The study focuses on (1) the decision-making process during the development stage, (2) the implementation management process for the execution stage, (3) the integration of data science, machine learning, and deep learning in energy systems, and (4) the requirements of energy systems in the context of substantiality. Synergistically, an emerging blueprint of policy, data science and AI, engineering practices, management process, business models, and social approaches that provides a multilateral design and implementation reference is propounded. Finally, a novel framework is developed to develop and implement modern energy policies that minimize risks, promote successful implementation, and advance society’s journey towards net zero and carbon neutral objectives. AI-enabled energy policy sustainable energy energy policies management policy development process energy techno-economic analysis policy failure Environmental effects of industries and plants Renewable energy sources Environmental sciences Tomonobu Senjyu verfasserin aut In Sustainability MDPI AG, 2009 15(2023), 9, p 7643 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:15 year:2023 number:9, p 7643 https://doi.org/10.3390/su15097643 kostenfrei https://doaj.org/article/8860bd2ac6ed4b59aef83b0f45c5b18f kostenfrei https://www.mdpi.com/2071-1050/15/9/7643 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 15 2023 9, p 7643 |
allfieldsSound |
10.3390/su15097643 doi (DE-627)DOAJ090328094 (DE-599)DOAJ8860bd2ac6ed4b59aef83b0f45c5b18f DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Mir Sayed Shah Danish verfasserin aut AI-Enabled Energy Policy for a Sustainable Future 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The present time is a seminal decade for the transition of the energy sector through the deployment of green energy and the optimization of efficiencies using the power of automation and artificial intelligence (AI), which demands competitive policies to handle multidimensional endeavors via a single platform. The failure of energy policies can have far-reaching socioeconomic consequences when policies do not meet the energy and climate goals throughout the lifecycle of the policy. Such shortcomings are reported to be due to inadequate incentives and poor decision making that needs to promote fairness, equality, equity, and inclusiveness in energy policies and project decision making. The integration of AI in energy sectors poses various challenges that this study aims to analyze through a comprehensive examination of energy policy processes. The study focuses on (1) the decision-making process during the development stage, (2) the implementation management process for the execution stage, (3) the integration of data science, machine learning, and deep learning in energy systems, and (4) the requirements of energy systems in the context of substantiality. Synergistically, an emerging blueprint of policy, data science and AI, engineering practices, management process, business models, and social approaches that provides a multilateral design and implementation reference is propounded. Finally, a novel framework is developed to develop and implement modern energy policies that minimize risks, promote successful implementation, and advance society’s journey towards net zero and carbon neutral objectives. AI-enabled energy policy sustainable energy energy policies management policy development process energy techno-economic analysis policy failure Environmental effects of industries and plants Renewable energy sources Environmental sciences Tomonobu Senjyu verfasserin aut In Sustainability MDPI AG, 2009 15(2023), 9, p 7643 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:15 year:2023 number:9, p 7643 https://doi.org/10.3390/su15097643 kostenfrei https://doaj.org/article/8860bd2ac6ed4b59aef83b0f45c5b18f kostenfrei https://www.mdpi.com/2071-1050/15/9/7643 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 15 2023 9, p 7643 |
language |
English |
source |
In Sustainability 15(2023), 9, p 7643 volume:15 year:2023 number:9, p 7643 |
sourceStr |
In Sustainability 15(2023), 9, p 7643 volume:15 year:2023 number:9, p 7643 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
AI-enabled energy policy sustainable energy energy policies management policy development process energy techno-economic analysis policy failure Environmental effects of industries and plants Renewable energy sources Environmental sciences |
isfreeaccess_bool |
true |
container_title |
Sustainability |
authorswithroles_txt_mv |
Mir Sayed Shah Danish @@aut@@ Tomonobu Senjyu @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
610604120 |
id |
DOAJ090328094 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ090328094</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413035039.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230526s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/su15097643</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ090328094</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8860bd2ac6ed4b59aef83b0f45c5b18f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD194-195</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ807-830</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mir Sayed Shah Danish</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">AI-Enabled Energy Policy for a Sustainable Future</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The present time is a seminal decade for the transition of the energy sector through the deployment of green energy and the optimization of efficiencies using the power of automation and artificial intelligence (AI), which demands competitive policies to handle multidimensional endeavors via a single platform. The failure of energy policies can have far-reaching socioeconomic consequences when policies do not meet the energy and climate goals throughout the lifecycle of the policy. Such shortcomings are reported to be due to inadequate incentives and poor decision making that needs to promote fairness, equality, equity, and inclusiveness in energy policies and project decision making. The integration of AI in energy sectors poses various challenges that this study aims to analyze through a comprehensive examination of energy policy processes. The study focuses on (1) the decision-making process during the development stage, (2) the implementation management process for the execution stage, (3) the integration of data science, machine learning, and deep learning in energy systems, and (4) the requirements of energy systems in the context of substantiality. Synergistically, an emerging blueprint of policy, data science and AI, engineering practices, management process, business models, and social approaches that provides a multilateral design and implementation reference is propounded. Finally, a novel framework is developed to develop and implement modern energy policies that minimize risks, promote successful implementation, and advance society’s journey towards net zero and carbon neutral objectives.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">AI-enabled energy policy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sustainable energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">energy policies management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">policy development process</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">energy techno-economic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">policy failure</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental effects of industries and plants</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Renewable energy sources</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tomonobu Senjyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sustainability</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">15(2023), 9, p 7643</subfield><subfield code="w">(DE-627)610604120</subfield><subfield code="w">(DE-600)2518383-7</subfield><subfield code="x">20711050</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:9, p 7643</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/su15097643</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8860bd2ac6ed4b59aef83b0f45c5b18f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2071-1050/15/9/7643</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2071-1050</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2023</subfield><subfield code="e">9, p 7643</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Mir Sayed Shah Danish |
spellingShingle |
Mir Sayed Shah Danish misc TD194-195 misc TJ807-830 misc GE1-350 misc AI-enabled energy policy misc sustainable energy misc energy policies management misc policy development process misc energy techno-economic analysis misc policy failure misc Environmental effects of industries and plants misc Renewable energy sources misc Environmental sciences AI-Enabled Energy Policy for a Sustainable Future |
authorStr |
Mir Sayed Shah Danish |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)610604120 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TD194-195 |
illustrated |
Not Illustrated |
issn |
20711050 |
topic_title |
TD194-195 TJ807-830 GE1-350 AI-Enabled Energy Policy for a Sustainable Future AI-enabled energy policy sustainable energy energy policies management policy development process energy techno-economic analysis policy failure |
topic |
misc TD194-195 misc TJ807-830 misc GE1-350 misc AI-enabled energy policy misc sustainable energy misc energy policies management misc policy development process misc energy techno-economic analysis misc policy failure misc Environmental effects of industries and plants misc Renewable energy sources misc Environmental sciences |
topic_unstemmed |
misc TD194-195 misc TJ807-830 misc GE1-350 misc AI-enabled energy policy misc sustainable energy misc energy policies management misc policy development process misc energy techno-economic analysis misc policy failure misc Environmental effects of industries and plants misc Renewable energy sources misc Environmental sciences |
topic_browse |
misc TD194-195 misc TJ807-830 misc GE1-350 misc AI-enabled energy policy misc sustainable energy misc energy policies management misc policy development process misc energy techno-economic analysis misc policy failure misc Environmental effects of industries and plants misc Renewable energy sources misc Environmental sciences |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Sustainability |
hierarchy_parent_id |
610604120 |
hierarchy_top_title |
Sustainability |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)610604120 (DE-600)2518383-7 |
title |
AI-Enabled Energy Policy for a Sustainable Future |
ctrlnum |
(DE-627)DOAJ090328094 (DE-599)DOAJ8860bd2ac6ed4b59aef83b0f45c5b18f |
title_full |
AI-Enabled Energy Policy for a Sustainable Future |
author_sort |
Mir Sayed Shah Danish |
journal |
Sustainability |
journalStr |
Sustainability |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Mir Sayed Shah Danish Tomonobu Senjyu |
container_volume |
15 |
class |
TD194-195 TJ807-830 GE1-350 |
format_se |
Elektronische Aufsätze |
author-letter |
Mir Sayed Shah Danish |
doi_str_mv |
10.3390/su15097643 |
author2-role |
verfasserin |
title_sort |
ai-enabled energy policy for a sustainable future |
callnumber |
TD194-195 |
title_auth |
AI-Enabled Energy Policy for a Sustainable Future |
abstract |
The present time is a seminal decade for the transition of the energy sector through the deployment of green energy and the optimization of efficiencies using the power of automation and artificial intelligence (AI), which demands competitive policies to handle multidimensional endeavors via a single platform. The failure of energy policies can have far-reaching socioeconomic consequences when policies do not meet the energy and climate goals throughout the lifecycle of the policy. Such shortcomings are reported to be due to inadequate incentives and poor decision making that needs to promote fairness, equality, equity, and inclusiveness in energy policies and project decision making. The integration of AI in energy sectors poses various challenges that this study aims to analyze through a comprehensive examination of energy policy processes. The study focuses on (1) the decision-making process during the development stage, (2) the implementation management process for the execution stage, (3) the integration of data science, machine learning, and deep learning in energy systems, and (4) the requirements of energy systems in the context of substantiality. Synergistically, an emerging blueprint of policy, data science and AI, engineering practices, management process, business models, and social approaches that provides a multilateral design and implementation reference is propounded. Finally, a novel framework is developed to develop and implement modern energy policies that minimize risks, promote successful implementation, and advance society’s journey towards net zero and carbon neutral objectives. |
abstractGer |
The present time is a seminal decade for the transition of the energy sector through the deployment of green energy and the optimization of efficiencies using the power of automation and artificial intelligence (AI), which demands competitive policies to handle multidimensional endeavors via a single platform. The failure of energy policies can have far-reaching socioeconomic consequences when policies do not meet the energy and climate goals throughout the lifecycle of the policy. Such shortcomings are reported to be due to inadequate incentives and poor decision making that needs to promote fairness, equality, equity, and inclusiveness in energy policies and project decision making. The integration of AI in energy sectors poses various challenges that this study aims to analyze through a comprehensive examination of energy policy processes. The study focuses on (1) the decision-making process during the development stage, (2) the implementation management process for the execution stage, (3) the integration of data science, machine learning, and deep learning in energy systems, and (4) the requirements of energy systems in the context of substantiality. Synergistically, an emerging blueprint of policy, data science and AI, engineering practices, management process, business models, and social approaches that provides a multilateral design and implementation reference is propounded. Finally, a novel framework is developed to develop and implement modern energy policies that minimize risks, promote successful implementation, and advance society’s journey towards net zero and carbon neutral objectives. |
abstract_unstemmed |
The present time is a seminal decade for the transition of the energy sector through the deployment of green energy and the optimization of efficiencies using the power of automation and artificial intelligence (AI), which demands competitive policies to handle multidimensional endeavors via a single platform. The failure of energy policies can have far-reaching socioeconomic consequences when policies do not meet the energy and climate goals throughout the lifecycle of the policy. Such shortcomings are reported to be due to inadequate incentives and poor decision making that needs to promote fairness, equality, equity, and inclusiveness in energy policies and project decision making. The integration of AI in energy sectors poses various challenges that this study aims to analyze through a comprehensive examination of energy policy processes. The study focuses on (1) the decision-making process during the development stage, (2) the implementation management process for the execution stage, (3) the integration of data science, machine learning, and deep learning in energy systems, and (4) the requirements of energy systems in the context of substantiality. Synergistically, an emerging blueprint of policy, data science and AI, engineering practices, management process, business models, and social approaches that provides a multilateral design and implementation reference is propounded. Finally, a novel framework is developed to develop and implement modern energy policies that minimize risks, promote successful implementation, and advance society’s journey towards net zero and carbon neutral objectives. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
9, p 7643 |
title_short |
AI-Enabled Energy Policy for a Sustainable Future |
url |
https://doi.org/10.3390/su15097643 https://doaj.org/article/8860bd2ac6ed4b59aef83b0f45c5b18f https://www.mdpi.com/2071-1050/15/9/7643 https://doaj.org/toc/2071-1050 |
remote_bool |
true |
author2 |
Tomonobu Senjyu |
author2Str |
Tomonobu Senjyu |
ppnlink |
610604120 |
callnumber-subject |
TD - Environmental Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/su15097643 |
callnumber-a |
TD194-195 |
up_date |
2024-07-03T14:07:01.213Z |
_version_ |
1803567100031139840 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ090328094</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413035039.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230526s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/su15097643</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ090328094</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8860bd2ac6ed4b59aef83b0f45c5b18f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD194-195</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ807-830</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mir Sayed Shah Danish</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">AI-Enabled Energy Policy for a Sustainable Future</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The present time is a seminal decade for the transition of the energy sector through the deployment of green energy and the optimization of efficiencies using the power of automation and artificial intelligence (AI), which demands competitive policies to handle multidimensional endeavors via a single platform. The failure of energy policies can have far-reaching socioeconomic consequences when policies do not meet the energy and climate goals throughout the lifecycle of the policy. Such shortcomings are reported to be due to inadequate incentives and poor decision making that needs to promote fairness, equality, equity, and inclusiveness in energy policies and project decision making. The integration of AI in energy sectors poses various challenges that this study aims to analyze through a comprehensive examination of energy policy processes. The study focuses on (1) the decision-making process during the development stage, (2) the implementation management process for the execution stage, (3) the integration of data science, machine learning, and deep learning in energy systems, and (4) the requirements of energy systems in the context of substantiality. Synergistically, an emerging blueprint of policy, data science and AI, engineering practices, management process, business models, and social approaches that provides a multilateral design and implementation reference is propounded. Finally, a novel framework is developed to develop and implement modern energy policies that minimize risks, promote successful implementation, and advance society’s journey towards net zero and carbon neutral objectives.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">AI-enabled energy policy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sustainable energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">energy policies management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">policy development process</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">energy techno-economic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">policy failure</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental effects of industries and plants</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Renewable energy sources</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tomonobu Senjyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sustainability</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">15(2023), 9, p 7643</subfield><subfield code="w">(DE-627)610604120</subfield><subfield code="w">(DE-600)2518383-7</subfield><subfield code="x">20711050</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:9, p 7643</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/su15097643</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8860bd2ac6ed4b59aef83b0f45c5b18f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2071-1050/15/9/7643</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2071-1050</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2023</subfield><subfield code="e">9, p 7643</subfield></datafield></record></collection>
|
score |
7.401038 |