Long-Term Change of Coastline Length along Selected Coastal Countries of Eurasia and African Continents
The acquisition of dynamic coastline change at fine spatial and temporal resolution is essential for enhancing sustainable coastal economic development and coastal environmental conservation. Port construction, land reclamation, urban development, and sediment deposition have resulted in extensive c...
Ausführliche Beschreibung
Autor*in: |
Fan Yang [verfasserIn] Li Zhang [verfasserIn] Bowei Chen [verfasserIn] Kaixin Li [verfasserIn] Jingjuan Liao [verfasserIn] Riffat Mahmood [verfasserIn] Mohammad Emran Hasan [verfasserIn] M. M. Abdullah Al Mamun [verfasserIn] Syed Ahmed Raza [verfasserIn] Dewayany Sutrisno [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Remote Sensing - MDPI AG, 2009, 15(2023), 9, p 2344 |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:2023 ; number:9, p 2344 |
Links: |
---|
DOI / URN: |
10.3390/rs15092344 |
---|
Katalog-ID: |
DOAJ090339657 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ090339657 | ||
003 | DE-627 | ||
005 | 20240413035222.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230526s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/rs15092344 |2 doi | |
035 | |a (DE-627)DOAJ090339657 | ||
035 | |a (DE-599)DOAJ39ce580cb51a4e37bb33bbe4ebae3d87 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Fan Yang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Long-Term Change of Coastline Length along Selected Coastal Countries of Eurasia and African Continents |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The acquisition of dynamic coastline change at fine spatial and temporal resolution is essential for enhancing sustainable coastal economic development and coastal environmental conservation. Port construction, land reclamation, urban development, and sediment deposition have resulted in extensive coastline change. In this study, the coastlines along the 56 coastal countries in 1990, 2000, 2010, 2015, and 2020 were delineated and classified into six categories using Landsat time–series images. Five relevant indices, i.e., the length, length ratio, length change rate, index of coastline utilization degree (ICUD), and fractal dimension (FD), were calculated to analyze and explore the spatiotemporal pattern of the coastlines. The results indicate that: (1) The overall length of the coastlines has increased from 3.45 × 10<sup<5</sup< km to 3.48 × 10<sup<5</sup< km in the past 30 years, with a net increase of nearly 3904 km. Between 1990 and 2020, the length of the artificial coastline increased by about 13,835 km (4.9~8.8%), while the length of the natural coastline decreased by 9932 km (95.1~91.2%). The increase in artificial coastline is concentrated in Southeast Asia and South Asia. (2) The coastline fractal dimensions (FDs) of countries and continents show that the average FD values of countries in South Asia (1.3~1.4) and Southeast Asia (1.2~1.3) were higher than other countries in the study regions, meaning that the coastlines in South Asia and Southeast Asia are more complex and curved. (3) The value of the ICUD index increased consistently between 1990 and 2015 (177.7~186.6) but decreased sharply between 2015 and 2020 (186.6~162.4), implying that the impact of human activities on the coastline continued to increase until 2015 and began to decrease after 2015. Our study examined the changes in various types of coastlines, which could be significant for sustainable development and environmental protection in coastal areas. | ||
650 | 4 | |a coastline change | |
650 | 4 | |a coastline structure change | |
650 | 4 | |a fractal dimension | |
650 | 4 | |a index of coastline utilization degree | |
650 | 4 | |a land-sea pattern | |
650 | 4 | |a Landsat imagery | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Li Zhang |e verfasserin |4 aut | |
700 | 0 | |a Bowei Chen |e verfasserin |4 aut | |
700 | 0 | |a Kaixin Li |e verfasserin |4 aut | |
700 | 0 | |a Jingjuan Liao |e verfasserin |4 aut | |
700 | 0 | |a Riffat Mahmood |e verfasserin |4 aut | |
700 | 0 | |a Mohammad Emran Hasan |e verfasserin |4 aut | |
700 | 0 | |a M. M. Abdullah Al Mamun |e verfasserin |4 aut | |
700 | 0 | |a Syed Ahmed Raza |e verfasserin |4 aut | |
700 | 0 | |a Dewayany Sutrisno |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Remote Sensing |d MDPI AG, 2009 |g 15(2023), 9, p 2344 |w (DE-627)608937916 |w (DE-600)2513863-7 |x 20724292 |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:2023 |g number:9, p 2344 |
856 | 4 | 0 | |u https://doi.org/10.3390/rs15092344 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/39ce580cb51a4e37bb33bbe4ebae3d87 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2072-4292/15/9/2344 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2072-4292 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 15 |j 2023 |e 9, p 2344 |
author_variant |
f y fy l z lz b c bc k l kl j l jl r m rm m e h meh m m a a m mmaam s a r sar d s ds |
---|---|
matchkey_str |
article:20724292:2023----::ogemhnefoslnlntaogeetdosacutisfua |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.3390/rs15092344 doi (DE-627)DOAJ090339657 (DE-599)DOAJ39ce580cb51a4e37bb33bbe4ebae3d87 DE-627 ger DE-627 rakwb eng Fan Yang verfasserin aut Long-Term Change of Coastline Length along Selected Coastal Countries of Eurasia and African Continents 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The acquisition of dynamic coastline change at fine spatial and temporal resolution is essential for enhancing sustainable coastal economic development and coastal environmental conservation. Port construction, land reclamation, urban development, and sediment deposition have resulted in extensive coastline change. In this study, the coastlines along the 56 coastal countries in 1990, 2000, 2010, 2015, and 2020 were delineated and classified into six categories using Landsat time–series images. Five relevant indices, i.e., the length, length ratio, length change rate, index of coastline utilization degree (ICUD), and fractal dimension (FD), were calculated to analyze and explore the spatiotemporal pattern of the coastlines. The results indicate that: (1) The overall length of the coastlines has increased from 3.45 × 10<sup<5</sup< km to 3.48 × 10<sup<5</sup< km in the past 30 years, with a net increase of nearly 3904 km. Between 1990 and 2020, the length of the artificial coastline increased by about 13,835 km (4.9~8.8%), while the length of the natural coastline decreased by 9932 km (95.1~91.2%). The increase in artificial coastline is concentrated in Southeast Asia and South Asia. (2) The coastline fractal dimensions (FDs) of countries and continents show that the average FD values of countries in South Asia (1.3~1.4) and Southeast Asia (1.2~1.3) were higher than other countries in the study regions, meaning that the coastlines in South Asia and Southeast Asia are more complex and curved. (3) The value of the ICUD index increased consistently between 1990 and 2015 (177.7~186.6) but decreased sharply between 2015 and 2020 (186.6~162.4), implying that the impact of human activities on the coastline continued to increase until 2015 and began to decrease after 2015. Our study examined the changes in various types of coastlines, which could be significant for sustainable development and environmental protection in coastal areas. coastline change coastline structure change fractal dimension index of coastline utilization degree land-sea pattern Landsat imagery Science Q Li Zhang verfasserin aut Bowei Chen verfasserin aut Kaixin Li verfasserin aut Jingjuan Liao verfasserin aut Riffat Mahmood verfasserin aut Mohammad Emran Hasan verfasserin aut M. M. Abdullah Al Mamun verfasserin aut Syed Ahmed Raza verfasserin aut Dewayany Sutrisno verfasserin aut In Remote Sensing MDPI AG, 2009 15(2023), 9, p 2344 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:15 year:2023 number:9, p 2344 https://doi.org/10.3390/rs15092344 kostenfrei https://doaj.org/article/39ce580cb51a4e37bb33bbe4ebae3d87 kostenfrei https://www.mdpi.com/2072-4292/15/9/2344 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 15 2023 9, p 2344 |
spelling |
10.3390/rs15092344 doi (DE-627)DOAJ090339657 (DE-599)DOAJ39ce580cb51a4e37bb33bbe4ebae3d87 DE-627 ger DE-627 rakwb eng Fan Yang verfasserin aut Long-Term Change of Coastline Length along Selected Coastal Countries of Eurasia and African Continents 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The acquisition of dynamic coastline change at fine spatial and temporal resolution is essential for enhancing sustainable coastal economic development and coastal environmental conservation. Port construction, land reclamation, urban development, and sediment deposition have resulted in extensive coastline change. In this study, the coastlines along the 56 coastal countries in 1990, 2000, 2010, 2015, and 2020 were delineated and classified into six categories using Landsat time–series images. Five relevant indices, i.e., the length, length ratio, length change rate, index of coastline utilization degree (ICUD), and fractal dimension (FD), were calculated to analyze and explore the spatiotemporal pattern of the coastlines. The results indicate that: (1) The overall length of the coastlines has increased from 3.45 × 10<sup<5</sup< km to 3.48 × 10<sup<5</sup< km in the past 30 years, with a net increase of nearly 3904 km. Between 1990 and 2020, the length of the artificial coastline increased by about 13,835 km (4.9~8.8%), while the length of the natural coastline decreased by 9932 km (95.1~91.2%). The increase in artificial coastline is concentrated in Southeast Asia and South Asia. (2) The coastline fractal dimensions (FDs) of countries and continents show that the average FD values of countries in South Asia (1.3~1.4) and Southeast Asia (1.2~1.3) were higher than other countries in the study regions, meaning that the coastlines in South Asia and Southeast Asia are more complex and curved. (3) The value of the ICUD index increased consistently between 1990 and 2015 (177.7~186.6) but decreased sharply between 2015 and 2020 (186.6~162.4), implying that the impact of human activities on the coastline continued to increase until 2015 and began to decrease after 2015. Our study examined the changes in various types of coastlines, which could be significant for sustainable development and environmental protection in coastal areas. coastline change coastline structure change fractal dimension index of coastline utilization degree land-sea pattern Landsat imagery Science Q Li Zhang verfasserin aut Bowei Chen verfasserin aut Kaixin Li verfasserin aut Jingjuan Liao verfasserin aut Riffat Mahmood verfasserin aut Mohammad Emran Hasan verfasserin aut M. M. Abdullah Al Mamun verfasserin aut Syed Ahmed Raza verfasserin aut Dewayany Sutrisno verfasserin aut In Remote Sensing MDPI AG, 2009 15(2023), 9, p 2344 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:15 year:2023 number:9, p 2344 https://doi.org/10.3390/rs15092344 kostenfrei https://doaj.org/article/39ce580cb51a4e37bb33bbe4ebae3d87 kostenfrei https://www.mdpi.com/2072-4292/15/9/2344 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 15 2023 9, p 2344 |
allfields_unstemmed |
10.3390/rs15092344 doi (DE-627)DOAJ090339657 (DE-599)DOAJ39ce580cb51a4e37bb33bbe4ebae3d87 DE-627 ger DE-627 rakwb eng Fan Yang verfasserin aut Long-Term Change of Coastline Length along Selected Coastal Countries of Eurasia and African Continents 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The acquisition of dynamic coastline change at fine spatial and temporal resolution is essential for enhancing sustainable coastal economic development and coastal environmental conservation. Port construction, land reclamation, urban development, and sediment deposition have resulted in extensive coastline change. In this study, the coastlines along the 56 coastal countries in 1990, 2000, 2010, 2015, and 2020 were delineated and classified into six categories using Landsat time–series images. Five relevant indices, i.e., the length, length ratio, length change rate, index of coastline utilization degree (ICUD), and fractal dimension (FD), were calculated to analyze and explore the spatiotemporal pattern of the coastlines. The results indicate that: (1) The overall length of the coastlines has increased from 3.45 × 10<sup<5</sup< km to 3.48 × 10<sup<5</sup< km in the past 30 years, with a net increase of nearly 3904 km. Between 1990 and 2020, the length of the artificial coastline increased by about 13,835 km (4.9~8.8%), while the length of the natural coastline decreased by 9932 km (95.1~91.2%). The increase in artificial coastline is concentrated in Southeast Asia and South Asia. (2) The coastline fractal dimensions (FDs) of countries and continents show that the average FD values of countries in South Asia (1.3~1.4) and Southeast Asia (1.2~1.3) were higher than other countries in the study regions, meaning that the coastlines in South Asia and Southeast Asia are more complex and curved. (3) The value of the ICUD index increased consistently between 1990 and 2015 (177.7~186.6) but decreased sharply between 2015 and 2020 (186.6~162.4), implying that the impact of human activities on the coastline continued to increase until 2015 and began to decrease after 2015. Our study examined the changes in various types of coastlines, which could be significant for sustainable development and environmental protection in coastal areas. coastline change coastline structure change fractal dimension index of coastline utilization degree land-sea pattern Landsat imagery Science Q Li Zhang verfasserin aut Bowei Chen verfasserin aut Kaixin Li verfasserin aut Jingjuan Liao verfasserin aut Riffat Mahmood verfasserin aut Mohammad Emran Hasan verfasserin aut M. M. Abdullah Al Mamun verfasserin aut Syed Ahmed Raza verfasserin aut Dewayany Sutrisno verfasserin aut In Remote Sensing MDPI AG, 2009 15(2023), 9, p 2344 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:15 year:2023 number:9, p 2344 https://doi.org/10.3390/rs15092344 kostenfrei https://doaj.org/article/39ce580cb51a4e37bb33bbe4ebae3d87 kostenfrei https://www.mdpi.com/2072-4292/15/9/2344 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 15 2023 9, p 2344 |
allfieldsGer |
10.3390/rs15092344 doi (DE-627)DOAJ090339657 (DE-599)DOAJ39ce580cb51a4e37bb33bbe4ebae3d87 DE-627 ger DE-627 rakwb eng Fan Yang verfasserin aut Long-Term Change of Coastline Length along Selected Coastal Countries of Eurasia and African Continents 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The acquisition of dynamic coastline change at fine spatial and temporal resolution is essential for enhancing sustainable coastal economic development and coastal environmental conservation. Port construction, land reclamation, urban development, and sediment deposition have resulted in extensive coastline change. In this study, the coastlines along the 56 coastal countries in 1990, 2000, 2010, 2015, and 2020 were delineated and classified into six categories using Landsat time–series images. Five relevant indices, i.e., the length, length ratio, length change rate, index of coastline utilization degree (ICUD), and fractal dimension (FD), were calculated to analyze and explore the spatiotemporal pattern of the coastlines. The results indicate that: (1) The overall length of the coastlines has increased from 3.45 × 10<sup<5</sup< km to 3.48 × 10<sup<5</sup< km in the past 30 years, with a net increase of nearly 3904 km. Between 1990 and 2020, the length of the artificial coastline increased by about 13,835 km (4.9~8.8%), while the length of the natural coastline decreased by 9932 km (95.1~91.2%). The increase in artificial coastline is concentrated in Southeast Asia and South Asia. (2) The coastline fractal dimensions (FDs) of countries and continents show that the average FD values of countries in South Asia (1.3~1.4) and Southeast Asia (1.2~1.3) were higher than other countries in the study regions, meaning that the coastlines in South Asia and Southeast Asia are more complex and curved. (3) The value of the ICUD index increased consistently between 1990 and 2015 (177.7~186.6) but decreased sharply between 2015 and 2020 (186.6~162.4), implying that the impact of human activities on the coastline continued to increase until 2015 and began to decrease after 2015. Our study examined the changes in various types of coastlines, which could be significant for sustainable development and environmental protection in coastal areas. coastline change coastline structure change fractal dimension index of coastline utilization degree land-sea pattern Landsat imagery Science Q Li Zhang verfasserin aut Bowei Chen verfasserin aut Kaixin Li verfasserin aut Jingjuan Liao verfasserin aut Riffat Mahmood verfasserin aut Mohammad Emran Hasan verfasserin aut M. M. Abdullah Al Mamun verfasserin aut Syed Ahmed Raza verfasserin aut Dewayany Sutrisno verfasserin aut In Remote Sensing MDPI AG, 2009 15(2023), 9, p 2344 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:15 year:2023 number:9, p 2344 https://doi.org/10.3390/rs15092344 kostenfrei https://doaj.org/article/39ce580cb51a4e37bb33bbe4ebae3d87 kostenfrei https://www.mdpi.com/2072-4292/15/9/2344 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 15 2023 9, p 2344 |
allfieldsSound |
10.3390/rs15092344 doi (DE-627)DOAJ090339657 (DE-599)DOAJ39ce580cb51a4e37bb33bbe4ebae3d87 DE-627 ger DE-627 rakwb eng Fan Yang verfasserin aut Long-Term Change of Coastline Length along Selected Coastal Countries of Eurasia and African Continents 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The acquisition of dynamic coastline change at fine spatial and temporal resolution is essential for enhancing sustainable coastal economic development and coastal environmental conservation. Port construction, land reclamation, urban development, and sediment deposition have resulted in extensive coastline change. In this study, the coastlines along the 56 coastal countries in 1990, 2000, 2010, 2015, and 2020 were delineated and classified into six categories using Landsat time–series images. Five relevant indices, i.e., the length, length ratio, length change rate, index of coastline utilization degree (ICUD), and fractal dimension (FD), were calculated to analyze and explore the spatiotemporal pattern of the coastlines. The results indicate that: (1) The overall length of the coastlines has increased from 3.45 × 10<sup<5</sup< km to 3.48 × 10<sup<5</sup< km in the past 30 years, with a net increase of nearly 3904 km. Between 1990 and 2020, the length of the artificial coastline increased by about 13,835 km (4.9~8.8%), while the length of the natural coastline decreased by 9932 km (95.1~91.2%). The increase in artificial coastline is concentrated in Southeast Asia and South Asia. (2) The coastline fractal dimensions (FDs) of countries and continents show that the average FD values of countries in South Asia (1.3~1.4) and Southeast Asia (1.2~1.3) were higher than other countries in the study regions, meaning that the coastlines in South Asia and Southeast Asia are more complex and curved. (3) The value of the ICUD index increased consistently between 1990 and 2015 (177.7~186.6) but decreased sharply between 2015 and 2020 (186.6~162.4), implying that the impact of human activities on the coastline continued to increase until 2015 and began to decrease after 2015. Our study examined the changes in various types of coastlines, which could be significant for sustainable development and environmental protection in coastal areas. coastline change coastline structure change fractal dimension index of coastline utilization degree land-sea pattern Landsat imagery Science Q Li Zhang verfasserin aut Bowei Chen verfasserin aut Kaixin Li verfasserin aut Jingjuan Liao verfasserin aut Riffat Mahmood verfasserin aut Mohammad Emran Hasan verfasserin aut M. M. Abdullah Al Mamun verfasserin aut Syed Ahmed Raza verfasserin aut Dewayany Sutrisno verfasserin aut In Remote Sensing MDPI AG, 2009 15(2023), 9, p 2344 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:15 year:2023 number:9, p 2344 https://doi.org/10.3390/rs15092344 kostenfrei https://doaj.org/article/39ce580cb51a4e37bb33bbe4ebae3d87 kostenfrei https://www.mdpi.com/2072-4292/15/9/2344 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 15 2023 9, p 2344 |
language |
English |
source |
In Remote Sensing 15(2023), 9, p 2344 volume:15 year:2023 number:9, p 2344 |
sourceStr |
In Remote Sensing 15(2023), 9, p 2344 volume:15 year:2023 number:9, p 2344 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
coastline change coastline structure change fractal dimension index of coastline utilization degree land-sea pattern Landsat imagery Science Q |
isfreeaccess_bool |
true |
container_title |
Remote Sensing |
authorswithroles_txt_mv |
Fan Yang @@aut@@ Li Zhang @@aut@@ Bowei Chen @@aut@@ Kaixin Li @@aut@@ Jingjuan Liao @@aut@@ Riffat Mahmood @@aut@@ Mohammad Emran Hasan @@aut@@ M. M. Abdullah Al Mamun @@aut@@ Syed Ahmed Raza @@aut@@ Dewayany Sutrisno @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
608937916 |
id |
DOAJ090339657 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ090339657</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413035222.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230526s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs15092344</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ090339657</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ39ce580cb51a4e37bb33bbe4ebae3d87</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Fan Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Long-Term Change of Coastline Length along Selected Coastal Countries of Eurasia and African Continents</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The acquisition of dynamic coastline change at fine spatial and temporal resolution is essential for enhancing sustainable coastal economic development and coastal environmental conservation. Port construction, land reclamation, urban development, and sediment deposition have resulted in extensive coastline change. In this study, the coastlines along the 56 coastal countries in 1990, 2000, 2010, 2015, and 2020 were delineated and classified into six categories using Landsat time–series images. Five relevant indices, i.e., the length, length ratio, length change rate, index of coastline utilization degree (ICUD), and fractal dimension (FD), were calculated to analyze and explore the spatiotemporal pattern of the coastlines. The results indicate that: (1) The overall length of the coastlines has increased from 3.45 × 10<sup<5</sup< km to 3.48 × 10<sup<5</sup< km in the past 30 years, with a net increase of nearly 3904 km. Between 1990 and 2020, the length of the artificial coastline increased by about 13,835 km (4.9~8.8%), while the length of the natural coastline decreased by 9932 km (95.1~91.2%). The increase in artificial coastline is concentrated in Southeast Asia and South Asia. (2) The coastline fractal dimensions (FDs) of countries and continents show that the average FD values of countries in South Asia (1.3~1.4) and Southeast Asia (1.2~1.3) were higher than other countries in the study regions, meaning that the coastlines in South Asia and Southeast Asia are more complex and curved. (3) The value of the ICUD index increased consistently between 1990 and 2015 (177.7~186.6) but decreased sharply between 2015 and 2020 (186.6~162.4), implying that the impact of human activities on the coastline continued to increase until 2015 and began to decrease after 2015. Our study examined the changes in various types of coastlines, which could be significant for sustainable development and environmental protection in coastal areas.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coastline change</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coastline structure change</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fractal dimension</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">index of coastline utilization degree</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">land-sea pattern</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Landsat imagery</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Li Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bowei Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kaixin Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jingjuan Liao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Riffat Mahmood</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mohammad Emran Hasan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">M. M. Abdullah Al Mamun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Syed Ahmed Raza</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dewayany Sutrisno</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">15(2023), 9, p 2344</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:9, p 2344</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs15092344</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/39ce580cb51a4e37bb33bbe4ebae3d87</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-4292/15/9/2344</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2023</subfield><subfield code="e">9, p 2344</subfield></datafield></record></collection>
|
author |
Fan Yang |
spellingShingle |
Fan Yang misc coastline change misc coastline structure change misc fractal dimension misc index of coastline utilization degree misc land-sea pattern misc Landsat imagery misc Science misc Q Long-Term Change of Coastline Length along Selected Coastal Countries of Eurasia and African Continents |
authorStr |
Fan Yang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)608937916 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20724292 |
topic_title |
Long-Term Change of Coastline Length along Selected Coastal Countries of Eurasia and African Continents coastline change coastline structure change fractal dimension index of coastline utilization degree land-sea pattern Landsat imagery |
topic |
misc coastline change misc coastline structure change misc fractal dimension misc index of coastline utilization degree misc land-sea pattern misc Landsat imagery misc Science misc Q |
topic_unstemmed |
misc coastline change misc coastline structure change misc fractal dimension misc index of coastline utilization degree misc land-sea pattern misc Landsat imagery misc Science misc Q |
topic_browse |
misc coastline change misc coastline structure change misc fractal dimension misc index of coastline utilization degree misc land-sea pattern misc Landsat imagery misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Remote Sensing |
hierarchy_parent_id |
608937916 |
hierarchy_top_title |
Remote Sensing |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)608937916 (DE-600)2513863-7 |
title |
Long-Term Change of Coastline Length along Selected Coastal Countries of Eurasia and African Continents |
ctrlnum |
(DE-627)DOAJ090339657 (DE-599)DOAJ39ce580cb51a4e37bb33bbe4ebae3d87 |
title_full |
Long-Term Change of Coastline Length along Selected Coastal Countries of Eurasia and African Continents |
author_sort |
Fan Yang |
journal |
Remote Sensing |
journalStr |
Remote Sensing |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Fan Yang Li Zhang Bowei Chen Kaixin Li Jingjuan Liao Riffat Mahmood Mohammad Emran Hasan M. M. Abdullah Al Mamun Syed Ahmed Raza Dewayany Sutrisno |
container_volume |
15 |
format_se |
Elektronische Aufsätze |
author-letter |
Fan Yang |
doi_str_mv |
10.3390/rs15092344 |
author2-role |
verfasserin |
title_sort |
long-term change of coastline length along selected coastal countries of eurasia and african continents |
title_auth |
Long-Term Change of Coastline Length along Selected Coastal Countries of Eurasia and African Continents |
abstract |
The acquisition of dynamic coastline change at fine spatial and temporal resolution is essential for enhancing sustainable coastal economic development and coastal environmental conservation. Port construction, land reclamation, urban development, and sediment deposition have resulted in extensive coastline change. In this study, the coastlines along the 56 coastal countries in 1990, 2000, 2010, 2015, and 2020 were delineated and classified into six categories using Landsat time–series images. Five relevant indices, i.e., the length, length ratio, length change rate, index of coastline utilization degree (ICUD), and fractal dimension (FD), were calculated to analyze and explore the spatiotemporal pattern of the coastlines. The results indicate that: (1) The overall length of the coastlines has increased from 3.45 × 10<sup<5</sup< km to 3.48 × 10<sup<5</sup< km in the past 30 years, with a net increase of nearly 3904 km. Between 1990 and 2020, the length of the artificial coastline increased by about 13,835 km (4.9~8.8%), while the length of the natural coastline decreased by 9932 km (95.1~91.2%). The increase in artificial coastline is concentrated in Southeast Asia and South Asia. (2) The coastline fractal dimensions (FDs) of countries and continents show that the average FD values of countries in South Asia (1.3~1.4) and Southeast Asia (1.2~1.3) were higher than other countries in the study regions, meaning that the coastlines in South Asia and Southeast Asia are more complex and curved. (3) The value of the ICUD index increased consistently between 1990 and 2015 (177.7~186.6) but decreased sharply between 2015 and 2020 (186.6~162.4), implying that the impact of human activities on the coastline continued to increase until 2015 and began to decrease after 2015. Our study examined the changes in various types of coastlines, which could be significant for sustainable development and environmental protection in coastal areas. |
abstractGer |
The acquisition of dynamic coastline change at fine spatial and temporal resolution is essential for enhancing sustainable coastal economic development and coastal environmental conservation. Port construction, land reclamation, urban development, and sediment deposition have resulted in extensive coastline change. In this study, the coastlines along the 56 coastal countries in 1990, 2000, 2010, 2015, and 2020 were delineated and classified into six categories using Landsat time–series images. Five relevant indices, i.e., the length, length ratio, length change rate, index of coastline utilization degree (ICUD), and fractal dimension (FD), were calculated to analyze and explore the spatiotemporal pattern of the coastlines. The results indicate that: (1) The overall length of the coastlines has increased from 3.45 × 10<sup<5</sup< km to 3.48 × 10<sup<5</sup< km in the past 30 years, with a net increase of nearly 3904 km. Between 1990 and 2020, the length of the artificial coastline increased by about 13,835 km (4.9~8.8%), while the length of the natural coastline decreased by 9932 km (95.1~91.2%). The increase in artificial coastline is concentrated in Southeast Asia and South Asia. (2) The coastline fractal dimensions (FDs) of countries and continents show that the average FD values of countries in South Asia (1.3~1.4) and Southeast Asia (1.2~1.3) were higher than other countries in the study regions, meaning that the coastlines in South Asia and Southeast Asia are more complex and curved. (3) The value of the ICUD index increased consistently between 1990 and 2015 (177.7~186.6) but decreased sharply between 2015 and 2020 (186.6~162.4), implying that the impact of human activities on the coastline continued to increase until 2015 and began to decrease after 2015. Our study examined the changes in various types of coastlines, which could be significant for sustainable development and environmental protection in coastal areas. |
abstract_unstemmed |
The acquisition of dynamic coastline change at fine spatial and temporal resolution is essential for enhancing sustainable coastal economic development and coastal environmental conservation. Port construction, land reclamation, urban development, and sediment deposition have resulted in extensive coastline change. In this study, the coastlines along the 56 coastal countries in 1990, 2000, 2010, 2015, and 2020 were delineated and classified into six categories using Landsat time–series images. Five relevant indices, i.e., the length, length ratio, length change rate, index of coastline utilization degree (ICUD), and fractal dimension (FD), were calculated to analyze and explore the spatiotemporal pattern of the coastlines. The results indicate that: (1) The overall length of the coastlines has increased from 3.45 × 10<sup<5</sup< km to 3.48 × 10<sup<5</sup< km in the past 30 years, with a net increase of nearly 3904 km. Between 1990 and 2020, the length of the artificial coastline increased by about 13,835 km (4.9~8.8%), while the length of the natural coastline decreased by 9932 km (95.1~91.2%). The increase in artificial coastline is concentrated in Southeast Asia and South Asia. (2) The coastline fractal dimensions (FDs) of countries and continents show that the average FD values of countries in South Asia (1.3~1.4) and Southeast Asia (1.2~1.3) were higher than other countries in the study regions, meaning that the coastlines in South Asia and Southeast Asia are more complex and curved. (3) The value of the ICUD index increased consistently between 1990 and 2015 (177.7~186.6) but decreased sharply between 2015 and 2020 (186.6~162.4), implying that the impact of human activities on the coastline continued to increase until 2015 and began to decrease after 2015. Our study examined the changes in various types of coastlines, which could be significant for sustainable development and environmental protection in coastal areas. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 |
container_issue |
9, p 2344 |
title_short |
Long-Term Change of Coastline Length along Selected Coastal Countries of Eurasia and African Continents |
url |
https://doi.org/10.3390/rs15092344 https://doaj.org/article/39ce580cb51a4e37bb33bbe4ebae3d87 https://www.mdpi.com/2072-4292/15/9/2344 https://doaj.org/toc/2072-4292 |
remote_bool |
true |
author2 |
Li Zhang Bowei Chen Kaixin Li Jingjuan Liao Riffat Mahmood Mohammad Emran Hasan M. M. Abdullah Al Mamun Syed Ahmed Raza Dewayany Sutrisno |
author2Str |
Li Zhang Bowei Chen Kaixin Li Jingjuan Liao Riffat Mahmood Mohammad Emran Hasan M. M. Abdullah Al Mamun Syed Ahmed Raza Dewayany Sutrisno |
ppnlink |
608937916 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/rs15092344 |
up_date |
2024-07-03T14:11:09.486Z |
_version_ |
1803567360367394816 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ090339657</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413035222.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230526s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs15092344</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ090339657</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ39ce580cb51a4e37bb33bbe4ebae3d87</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Fan Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Long-Term Change of Coastline Length along Selected Coastal Countries of Eurasia and African Continents</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The acquisition of dynamic coastline change at fine spatial and temporal resolution is essential for enhancing sustainable coastal economic development and coastal environmental conservation. Port construction, land reclamation, urban development, and sediment deposition have resulted in extensive coastline change. In this study, the coastlines along the 56 coastal countries in 1990, 2000, 2010, 2015, and 2020 were delineated and classified into six categories using Landsat time–series images. Five relevant indices, i.e., the length, length ratio, length change rate, index of coastline utilization degree (ICUD), and fractal dimension (FD), were calculated to analyze and explore the spatiotemporal pattern of the coastlines. The results indicate that: (1) The overall length of the coastlines has increased from 3.45 × 10<sup<5</sup< km to 3.48 × 10<sup<5</sup< km in the past 30 years, with a net increase of nearly 3904 km. Between 1990 and 2020, the length of the artificial coastline increased by about 13,835 km (4.9~8.8%), while the length of the natural coastline decreased by 9932 km (95.1~91.2%). The increase in artificial coastline is concentrated in Southeast Asia and South Asia. (2) The coastline fractal dimensions (FDs) of countries and continents show that the average FD values of countries in South Asia (1.3~1.4) and Southeast Asia (1.2~1.3) were higher than other countries in the study regions, meaning that the coastlines in South Asia and Southeast Asia are more complex and curved. (3) The value of the ICUD index increased consistently between 1990 and 2015 (177.7~186.6) but decreased sharply between 2015 and 2020 (186.6~162.4), implying that the impact of human activities on the coastline continued to increase until 2015 and began to decrease after 2015. Our study examined the changes in various types of coastlines, which could be significant for sustainable development and environmental protection in coastal areas.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coastline change</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coastline structure change</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fractal dimension</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">index of coastline utilization degree</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">land-sea pattern</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Landsat imagery</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Li Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bowei Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kaixin Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jingjuan Liao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Riffat Mahmood</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mohammad Emran Hasan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">M. M. Abdullah Al Mamun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Syed Ahmed Raza</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dewayany Sutrisno</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">15(2023), 9, p 2344</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:9, p 2344</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs15092344</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/39ce580cb51a4e37bb33bbe4ebae3d87</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-4292/15/9/2344</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2023</subfield><subfield code="e">9, p 2344</subfield></datafield></record></collection>
|
score |
7.3993244 |