Relationships between Landscape Patterns and Hydrological Processes in the Subtropical Monsoon Climate Zone of Southeastern China
With rapid economic development, extensive human activity has changed landscape patterns (LPs) dramatically, which has further influenced hydrological processes. However, the effects of LPs changes on hydrological processes, especially for the streamflow–sediment relationship in the subtropical mons...
Ausführliche Beschreibung
Autor*in: |
Chong Wei [verfasserIn] Xiaohua Dong [verfasserIn] Yaoming Ma [verfasserIn] Menghui Leng [verfasserIn] Wenyi Zhao [verfasserIn] Chengyan Zhang [verfasserIn] Dan Yu [verfasserIn] Bob Su [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
suspended sediment concentration |
---|
Übergeordnetes Werk: |
In: Remote Sensing - MDPI AG, 2009, 15(2023), 9, p 2290 |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:2023 ; number:9, p 2290 |
Links: |
---|
DOI / URN: |
10.3390/rs15092290 |
---|
Katalog-ID: |
DOAJ090340205 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ090340205 | ||
003 | DE-627 | ||
005 | 20240413035227.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230526s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/rs15092290 |2 doi | |
035 | |a (DE-627)DOAJ090340205 | ||
035 | |a (DE-599)DOAJ74b64473f05f4fecb1c3ab5731f4a8b1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Chong Wei |e verfasserin |4 aut | |
245 | 1 | 0 | |a Relationships between Landscape Patterns and Hydrological Processes in the Subtropical Monsoon Climate Zone of Southeastern China |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a With rapid economic development, extensive human activity has changed landscape patterns (LPs) dramatically, which has further influenced hydrological processes. However, the effects of LPs changes on hydrological processes, especially for the streamflow–sediment relationship in the subtropical monsoon climate zone, have not been reported. In our study, 10 watersheds with different sizes in the subtropical monsoon climate zone of southeastern China were chosen as the study area, and the effect of the 14 most commonly used landscape metrics (LMs) on 4 typical hydrological indices (water yields (WY), the runoff coefficient (RC), the soil erosion modulus (SEM), and the suspended sediment concentration (SSC)) were analyzed based on land use maps and hydrological data from 1990 to 2019. The results reveal that the LP characteristics within the study area have changed significantly. The number of patches and landscape shape indices were significantly positively correlated with watershed size (<i<p</i< < 0.01). For most watersheds, the largest patch index was negatively correlated with WY, RC, and SEM, and the perimeter area fractal dimension was positively correlated with WY, RC, SEM, and SSC. The effects of several LMs on the hydrological indices had scale effects. WY/RC and the interspersion and juxtaposition index were negatively correlated in most larger watersheds but were positively correlated in most smaller watersheds. Similar results were found for Shannon’s diversity/evenness index and SEM. In general, an increase in a small patch of landscape and in landscape diversity would increase WY, the fragmentation of LPs would result in more soil erosion, and LPs would affect the relationship between streamflow and sediment yield. As a result, a proper decrease in landscape fragmentation and physical connectivity in the subtropical monsoon climate zone of southeastern China would benefit soil erosion prevention. These results enhance the knowledge about the relationship between LPs and hydrological processes in the subtropical monsoon climate zone of southeastern China and benefit local water and soil conservation efforts. | ||
650 | 4 | |a landscape pattern | |
650 | 4 | |a runoff coefficient | |
650 | 4 | |a soil erosion modulus | |
650 | 4 | |a suspended sediment concentration | |
650 | 4 | |a subtropical monsoon climate zone | |
650 | 4 | |a southeastern China | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Xiaohua Dong |e verfasserin |4 aut | |
700 | 0 | |a Yaoming Ma |e verfasserin |4 aut | |
700 | 0 | |a Menghui Leng |e verfasserin |4 aut | |
700 | 0 | |a Wenyi Zhao |e verfasserin |4 aut | |
700 | 0 | |a Chengyan Zhang |e verfasserin |4 aut | |
700 | 0 | |a Dan Yu |e verfasserin |4 aut | |
700 | 0 | |a Bob Su |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Remote Sensing |d MDPI AG, 2009 |g 15(2023), 9, p 2290 |w (DE-627)608937916 |w (DE-600)2513863-7 |x 20724292 |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:2023 |g number:9, p 2290 |
856 | 4 | 0 | |u https://doi.org/10.3390/rs15092290 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/74b64473f05f4fecb1c3ab5731f4a8b1 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2072-4292/15/9/2290 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2072-4292 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 15 |j 2023 |e 9, p 2290 |
author_variant |
c w cw x d xd y m ym m l ml w z wz c z cz d y dy b s bs |
---|---|
matchkey_str |
article:20724292:2023----::eainhpbtenadcpptenadyrlgclrcseiteutoiamnon |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.3390/rs15092290 doi (DE-627)DOAJ090340205 (DE-599)DOAJ74b64473f05f4fecb1c3ab5731f4a8b1 DE-627 ger DE-627 rakwb eng Chong Wei verfasserin aut Relationships between Landscape Patterns and Hydrological Processes in the Subtropical Monsoon Climate Zone of Southeastern China 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With rapid economic development, extensive human activity has changed landscape patterns (LPs) dramatically, which has further influenced hydrological processes. However, the effects of LPs changes on hydrological processes, especially for the streamflow–sediment relationship in the subtropical monsoon climate zone, have not been reported. In our study, 10 watersheds with different sizes in the subtropical monsoon climate zone of southeastern China were chosen as the study area, and the effect of the 14 most commonly used landscape metrics (LMs) on 4 typical hydrological indices (water yields (WY), the runoff coefficient (RC), the soil erosion modulus (SEM), and the suspended sediment concentration (SSC)) were analyzed based on land use maps and hydrological data from 1990 to 2019. The results reveal that the LP characteristics within the study area have changed significantly. The number of patches and landscape shape indices were significantly positively correlated with watershed size (<i<p</i< < 0.01). For most watersheds, the largest patch index was negatively correlated with WY, RC, and SEM, and the perimeter area fractal dimension was positively correlated with WY, RC, SEM, and SSC. The effects of several LMs on the hydrological indices had scale effects. WY/RC and the interspersion and juxtaposition index were negatively correlated in most larger watersheds but were positively correlated in most smaller watersheds. Similar results were found for Shannon’s diversity/evenness index and SEM. In general, an increase in a small patch of landscape and in landscape diversity would increase WY, the fragmentation of LPs would result in more soil erosion, and LPs would affect the relationship between streamflow and sediment yield. As a result, a proper decrease in landscape fragmentation and physical connectivity in the subtropical monsoon climate zone of southeastern China would benefit soil erosion prevention. These results enhance the knowledge about the relationship between LPs and hydrological processes in the subtropical monsoon climate zone of southeastern China and benefit local water and soil conservation efforts. landscape pattern runoff coefficient soil erosion modulus suspended sediment concentration subtropical monsoon climate zone southeastern China Science Q Xiaohua Dong verfasserin aut Yaoming Ma verfasserin aut Menghui Leng verfasserin aut Wenyi Zhao verfasserin aut Chengyan Zhang verfasserin aut Dan Yu verfasserin aut Bob Su verfasserin aut In Remote Sensing MDPI AG, 2009 15(2023), 9, p 2290 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:15 year:2023 number:9, p 2290 https://doi.org/10.3390/rs15092290 kostenfrei https://doaj.org/article/74b64473f05f4fecb1c3ab5731f4a8b1 kostenfrei https://www.mdpi.com/2072-4292/15/9/2290 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 15 2023 9, p 2290 |
spelling |
10.3390/rs15092290 doi (DE-627)DOAJ090340205 (DE-599)DOAJ74b64473f05f4fecb1c3ab5731f4a8b1 DE-627 ger DE-627 rakwb eng Chong Wei verfasserin aut Relationships between Landscape Patterns and Hydrological Processes in the Subtropical Monsoon Climate Zone of Southeastern China 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With rapid economic development, extensive human activity has changed landscape patterns (LPs) dramatically, which has further influenced hydrological processes. However, the effects of LPs changes on hydrological processes, especially for the streamflow–sediment relationship in the subtropical monsoon climate zone, have not been reported. In our study, 10 watersheds with different sizes in the subtropical monsoon climate zone of southeastern China were chosen as the study area, and the effect of the 14 most commonly used landscape metrics (LMs) on 4 typical hydrological indices (water yields (WY), the runoff coefficient (RC), the soil erosion modulus (SEM), and the suspended sediment concentration (SSC)) were analyzed based on land use maps and hydrological data from 1990 to 2019. The results reveal that the LP characteristics within the study area have changed significantly. The number of patches and landscape shape indices were significantly positively correlated with watershed size (<i<p</i< < 0.01). For most watersheds, the largest patch index was negatively correlated with WY, RC, and SEM, and the perimeter area fractal dimension was positively correlated with WY, RC, SEM, and SSC. The effects of several LMs on the hydrological indices had scale effects. WY/RC and the interspersion and juxtaposition index were negatively correlated in most larger watersheds but were positively correlated in most smaller watersheds. Similar results were found for Shannon’s diversity/evenness index and SEM. In general, an increase in a small patch of landscape and in landscape diversity would increase WY, the fragmentation of LPs would result in more soil erosion, and LPs would affect the relationship between streamflow and sediment yield. As a result, a proper decrease in landscape fragmentation and physical connectivity in the subtropical monsoon climate zone of southeastern China would benefit soil erosion prevention. These results enhance the knowledge about the relationship between LPs and hydrological processes in the subtropical monsoon climate zone of southeastern China and benefit local water and soil conservation efforts. landscape pattern runoff coefficient soil erosion modulus suspended sediment concentration subtropical monsoon climate zone southeastern China Science Q Xiaohua Dong verfasserin aut Yaoming Ma verfasserin aut Menghui Leng verfasserin aut Wenyi Zhao verfasserin aut Chengyan Zhang verfasserin aut Dan Yu verfasserin aut Bob Su verfasserin aut In Remote Sensing MDPI AG, 2009 15(2023), 9, p 2290 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:15 year:2023 number:9, p 2290 https://doi.org/10.3390/rs15092290 kostenfrei https://doaj.org/article/74b64473f05f4fecb1c3ab5731f4a8b1 kostenfrei https://www.mdpi.com/2072-4292/15/9/2290 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 15 2023 9, p 2290 |
allfields_unstemmed |
10.3390/rs15092290 doi (DE-627)DOAJ090340205 (DE-599)DOAJ74b64473f05f4fecb1c3ab5731f4a8b1 DE-627 ger DE-627 rakwb eng Chong Wei verfasserin aut Relationships between Landscape Patterns and Hydrological Processes in the Subtropical Monsoon Climate Zone of Southeastern China 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With rapid economic development, extensive human activity has changed landscape patterns (LPs) dramatically, which has further influenced hydrological processes. However, the effects of LPs changes on hydrological processes, especially for the streamflow–sediment relationship in the subtropical monsoon climate zone, have not been reported. In our study, 10 watersheds with different sizes in the subtropical monsoon climate zone of southeastern China were chosen as the study area, and the effect of the 14 most commonly used landscape metrics (LMs) on 4 typical hydrological indices (water yields (WY), the runoff coefficient (RC), the soil erosion modulus (SEM), and the suspended sediment concentration (SSC)) were analyzed based on land use maps and hydrological data from 1990 to 2019. The results reveal that the LP characteristics within the study area have changed significantly. The number of patches and landscape shape indices were significantly positively correlated with watershed size (<i<p</i< < 0.01). For most watersheds, the largest patch index was negatively correlated with WY, RC, and SEM, and the perimeter area fractal dimension was positively correlated with WY, RC, SEM, and SSC. The effects of several LMs on the hydrological indices had scale effects. WY/RC and the interspersion and juxtaposition index were negatively correlated in most larger watersheds but were positively correlated in most smaller watersheds. Similar results were found for Shannon’s diversity/evenness index and SEM. In general, an increase in a small patch of landscape and in landscape diversity would increase WY, the fragmentation of LPs would result in more soil erosion, and LPs would affect the relationship between streamflow and sediment yield. As a result, a proper decrease in landscape fragmentation and physical connectivity in the subtropical monsoon climate zone of southeastern China would benefit soil erosion prevention. These results enhance the knowledge about the relationship between LPs and hydrological processes in the subtropical monsoon climate zone of southeastern China and benefit local water and soil conservation efforts. landscape pattern runoff coefficient soil erosion modulus suspended sediment concentration subtropical monsoon climate zone southeastern China Science Q Xiaohua Dong verfasserin aut Yaoming Ma verfasserin aut Menghui Leng verfasserin aut Wenyi Zhao verfasserin aut Chengyan Zhang verfasserin aut Dan Yu verfasserin aut Bob Su verfasserin aut In Remote Sensing MDPI AG, 2009 15(2023), 9, p 2290 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:15 year:2023 number:9, p 2290 https://doi.org/10.3390/rs15092290 kostenfrei https://doaj.org/article/74b64473f05f4fecb1c3ab5731f4a8b1 kostenfrei https://www.mdpi.com/2072-4292/15/9/2290 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 15 2023 9, p 2290 |
allfieldsGer |
10.3390/rs15092290 doi (DE-627)DOAJ090340205 (DE-599)DOAJ74b64473f05f4fecb1c3ab5731f4a8b1 DE-627 ger DE-627 rakwb eng Chong Wei verfasserin aut Relationships between Landscape Patterns and Hydrological Processes in the Subtropical Monsoon Climate Zone of Southeastern China 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With rapid economic development, extensive human activity has changed landscape patterns (LPs) dramatically, which has further influenced hydrological processes. However, the effects of LPs changes on hydrological processes, especially for the streamflow–sediment relationship in the subtropical monsoon climate zone, have not been reported. In our study, 10 watersheds with different sizes in the subtropical monsoon climate zone of southeastern China were chosen as the study area, and the effect of the 14 most commonly used landscape metrics (LMs) on 4 typical hydrological indices (water yields (WY), the runoff coefficient (RC), the soil erosion modulus (SEM), and the suspended sediment concentration (SSC)) were analyzed based on land use maps and hydrological data from 1990 to 2019. The results reveal that the LP characteristics within the study area have changed significantly. The number of patches and landscape shape indices were significantly positively correlated with watershed size (<i<p</i< < 0.01). For most watersheds, the largest patch index was negatively correlated with WY, RC, and SEM, and the perimeter area fractal dimension was positively correlated with WY, RC, SEM, and SSC. The effects of several LMs on the hydrological indices had scale effects. WY/RC and the interspersion and juxtaposition index were negatively correlated in most larger watersheds but were positively correlated in most smaller watersheds. Similar results were found for Shannon’s diversity/evenness index and SEM. In general, an increase in a small patch of landscape and in landscape diversity would increase WY, the fragmentation of LPs would result in more soil erosion, and LPs would affect the relationship between streamflow and sediment yield. As a result, a proper decrease in landscape fragmentation and physical connectivity in the subtropical monsoon climate zone of southeastern China would benefit soil erosion prevention. These results enhance the knowledge about the relationship between LPs and hydrological processes in the subtropical monsoon climate zone of southeastern China and benefit local water and soil conservation efforts. landscape pattern runoff coefficient soil erosion modulus suspended sediment concentration subtropical monsoon climate zone southeastern China Science Q Xiaohua Dong verfasserin aut Yaoming Ma verfasserin aut Menghui Leng verfasserin aut Wenyi Zhao verfasserin aut Chengyan Zhang verfasserin aut Dan Yu verfasserin aut Bob Su verfasserin aut In Remote Sensing MDPI AG, 2009 15(2023), 9, p 2290 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:15 year:2023 number:9, p 2290 https://doi.org/10.3390/rs15092290 kostenfrei https://doaj.org/article/74b64473f05f4fecb1c3ab5731f4a8b1 kostenfrei https://www.mdpi.com/2072-4292/15/9/2290 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 15 2023 9, p 2290 |
allfieldsSound |
10.3390/rs15092290 doi (DE-627)DOAJ090340205 (DE-599)DOAJ74b64473f05f4fecb1c3ab5731f4a8b1 DE-627 ger DE-627 rakwb eng Chong Wei verfasserin aut Relationships between Landscape Patterns and Hydrological Processes in the Subtropical Monsoon Climate Zone of Southeastern China 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With rapid economic development, extensive human activity has changed landscape patterns (LPs) dramatically, which has further influenced hydrological processes. However, the effects of LPs changes on hydrological processes, especially for the streamflow–sediment relationship in the subtropical monsoon climate zone, have not been reported. In our study, 10 watersheds with different sizes in the subtropical monsoon climate zone of southeastern China were chosen as the study area, and the effect of the 14 most commonly used landscape metrics (LMs) on 4 typical hydrological indices (water yields (WY), the runoff coefficient (RC), the soil erosion modulus (SEM), and the suspended sediment concentration (SSC)) were analyzed based on land use maps and hydrological data from 1990 to 2019. The results reveal that the LP characteristics within the study area have changed significantly. The number of patches and landscape shape indices were significantly positively correlated with watershed size (<i<p</i< < 0.01). For most watersheds, the largest patch index was negatively correlated with WY, RC, and SEM, and the perimeter area fractal dimension was positively correlated with WY, RC, SEM, and SSC. The effects of several LMs on the hydrological indices had scale effects. WY/RC and the interspersion and juxtaposition index were negatively correlated in most larger watersheds but were positively correlated in most smaller watersheds. Similar results were found for Shannon’s diversity/evenness index and SEM. In general, an increase in a small patch of landscape and in landscape diversity would increase WY, the fragmentation of LPs would result in more soil erosion, and LPs would affect the relationship between streamflow and sediment yield. As a result, a proper decrease in landscape fragmentation and physical connectivity in the subtropical monsoon climate zone of southeastern China would benefit soil erosion prevention. These results enhance the knowledge about the relationship between LPs and hydrological processes in the subtropical monsoon climate zone of southeastern China and benefit local water and soil conservation efforts. landscape pattern runoff coefficient soil erosion modulus suspended sediment concentration subtropical monsoon climate zone southeastern China Science Q Xiaohua Dong verfasserin aut Yaoming Ma verfasserin aut Menghui Leng verfasserin aut Wenyi Zhao verfasserin aut Chengyan Zhang verfasserin aut Dan Yu verfasserin aut Bob Su verfasserin aut In Remote Sensing MDPI AG, 2009 15(2023), 9, p 2290 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:15 year:2023 number:9, p 2290 https://doi.org/10.3390/rs15092290 kostenfrei https://doaj.org/article/74b64473f05f4fecb1c3ab5731f4a8b1 kostenfrei https://www.mdpi.com/2072-4292/15/9/2290 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 15 2023 9, p 2290 |
language |
English |
source |
In Remote Sensing 15(2023), 9, p 2290 volume:15 year:2023 number:9, p 2290 |
sourceStr |
In Remote Sensing 15(2023), 9, p 2290 volume:15 year:2023 number:9, p 2290 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
landscape pattern runoff coefficient soil erosion modulus suspended sediment concentration subtropical monsoon climate zone southeastern China Science Q |
isfreeaccess_bool |
true |
container_title |
Remote Sensing |
authorswithroles_txt_mv |
Chong Wei @@aut@@ Xiaohua Dong @@aut@@ Yaoming Ma @@aut@@ Menghui Leng @@aut@@ Wenyi Zhao @@aut@@ Chengyan Zhang @@aut@@ Dan Yu @@aut@@ Bob Su @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
608937916 |
id |
DOAJ090340205 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ090340205</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413035227.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230526s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs15092290</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ090340205</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ74b64473f05f4fecb1c3ab5731f4a8b1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Chong Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Relationships between Landscape Patterns and Hydrological Processes in the Subtropical Monsoon Climate Zone of Southeastern China</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">With rapid economic development, extensive human activity has changed landscape patterns (LPs) dramatically, which has further influenced hydrological processes. However, the effects of LPs changes on hydrological processes, especially for the streamflow–sediment relationship in the subtropical monsoon climate zone, have not been reported. In our study, 10 watersheds with different sizes in the subtropical monsoon climate zone of southeastern China were chosen as the study area, and the effect of the 14 most commonly used landscape metrics (LMs) on 4 typical hydrological indices (water yields (WY), the runoff coefficient (RC), the soil erosion modulus (SEM), and the suspended sediment concentration (SSC)) were analyzed based on land use maps and hydrological data from 1990 to 2019. The results reveal that the LP characteristics within the study area have changed significantly. The number of patches and landscape shape indices were significantly positively correlated with watershed size (<i<p</i< < 0.01). For most watersheds, the largest patch index was negatively correlated with WY, RC, and SEM, and the perimeter area fractal dimension was positively correlated with WY, RC, SEM, and SSC. The effects of several LMs on the hydrological indices had scale effects. WY/RC and the interspersion and juxtaposition index were negatively correlated in most larger watersheds but were positively correlated in most smaller watersheds. Similar results were found for Shannon’s diversity/evenness index and SEM. In general, an increase in a small patch of landscape and in landscape diversity would increase WY, the fragmentation of LPs would result in more soil erosion, and LPs would affect the relationship between streamflow and sediment yield. As a result, a proper decrease in landscape fragmentation and physical connectivity in the subtropical monsoon climate zone of southeastern China would benefit soil erosion prevention. These results enhance the knowledge about the relationship between LPs and hydrological processes in the subtropical monsoon climate zone of southeastern China and benefit local water and soil conservation efforts.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">landscape pattern</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">runoff coefficient</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">soil erosion modulus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">suspended sediment concentration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">subtropical monsoon climate zone</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">southeastern China</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaohua Dong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yaoming Ma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Menghui Leng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenyi Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chengyan Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dan Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bob Su</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">15(2023), 9, p 2290</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:9, p 2290</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs15092290</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/74b64473f05f4fecb1c3ab5731f4a8b1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-4292/15/9/2290</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2023</subfield><subfield code="e">9, p 2290</subfield></datafield></record></collection>
|
author |
Chong Wei |
spellingShingle |
Chong Wei misc landscape pattern misc runoff coefficient misc soil erosion modulus misc suspended sediment concentration misc subtropical monsoon climate zone misc southeastern China misc Science misc Q Relationships between Landscape Patterns and Hydrological Processes in the Subtropical Monsoon Climate Zone of Southeastern China |
authorStr |
Chong Wei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)608937916 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20724292 |
topic_title |
Relationships between Landscape Patterns and Hydrological Processes in the Subtropical Monsoon Climate Zone of Southeastern China landscape pattern runoff coefficient soil erosion modulus suspended sediment concentration subtropical monsoon climate zone southeastern China |
topic |
misc landscape pattern misc runoff coefficient misc soil erosion modulus misc suspended sediment concentration misc subtropical monsoon climate zone misc southeastern China misc Science misc Q |
topic_unstemmed |
misc landscape pattern misc runoff coefficient misc soil erosion modulus misc suspended sediment concentration misc subtropical monsoon climate zone misc southeastern China misc Science misc Q |
topic_browse |
misc landscape pattern misc runoff coefficient misc soil erosion modulus misc suspended sediment concentration misc subtropical monsoon climate zone misc southeastern China misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Remote Sensing |
hierarchy_parent_id |
608937916 |
hierarchy_top_title |
Remote Sensing |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)608937916 (DE-600)2513863-7 |
title |
Relationships between Landscape Patterns and Hydrological Processes in the Subtropical Monsoon Climate Zone of Southeastern China |
ctrlnum |
(DE-627)DOAJ090340205 (DE-599)DOAJ74b64473f05f4fecb1c3ab5731f4a8b1 |
title_full |
Relationships between Landscape Patterns and Hydrological Processes in the Subtropical Monsoon Climate Zone of Southeastern China |
author_sort |
Chong Wei |
journal |
Remote Sensing |
journalStr |
Remote Sensing |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Chong Wei Xiaohua Dong Yaoming Ma Menghui Leng Wenyi Zhao Chengyan Zhang Dan Yu Bob Su |
container_volume |
15 |
format_se |
Elektronische Aufsätze |
author-letter |
Chong Wei |
doi_str_mv |
10.3390/rs15092290 |
author2-role |
verfasserin |
title_sort |
relationships between landscape patterns and hydrological processes in the subtropical monsoon climate zone of southeastern china |
title_auth |
Relationships between Landscape Patterns and Hydrological Processes in the Subtropical Monsoon Climate Zone of Southeastern China |
abstract |
With rapid economic development, extensive human activity has changed landscape patterns (LPs) dramatically, which has further influenced hydrological processes. However, the effects of LPs changes on hydrological processes, especially for the streamflow–sediment relationship in the subtropical monsoon climate zone, have not been reported. In our study, 10 watersheds with different sizes in the subtropical monsoon climate zone of southeastern China were chosen as the study area, and the effect of the 14 most commonly used landscape metrics (LMs) on 4 typical hydrological indices (water yields (WY), the runoff coefficient (RC), the soil erosion modulus (SEM), and the suspended sediment concentration (SSC)) were analyzed based on land use maps and hydrological data from 1990 to 2019. The results reveal that the LP characteristics within the study area have changed significantly. The number of patches and landscape shape indices were significantly positively correlated with watershed size (<i<p</i< < 0.01). For most watersheds, the largest patch index was negatively correlated with WY, RC, and SEM, and the perimeter area fractal dimension was positively correlated with WY, RC, SEM, and SSC. The effects of several LMs on the hydrological indices had scale effects. WY/RC and the interspersion and juxtaposition index were negatively correlated in most larger watersheds but were positively correlated in most smaller watersheds. Similar results were found for Shannon’s diversity/evenness index and SEM. In general, an increase in a small patch of landscape and in landscape diversity would increase WY, the fragmentation of LPs would result in more soil erosion, and LPs would affect the relationship between streamflow and sediment yield. As a result, a proper decrease in landscape fragmentation and physical connectivity in the subtropical monsoon climate zone of southeastern China would benefit soil erosion prevention. These results enhance the knowledge about the relationship between LPs and hydrological processes in the subtropical monsoon climate zone of southeastern China and benefit local water and soil conservation efforts. |
abstractGer |
With rapid economic development, extensive human activity has changed landscape patterns (LPs) dramatically, which has further influenced hydrological processes. However, the effects of LPs changes on hydrological processes, especially for the streamflow–sediment relationship in the subtropical monsoon climate zone, have not been reported. In our study, 10 watersheds with different sizes in the subtropical monsoon climate zone of southeastern China were chosen as the study area, and the effect of the 14 most commonly used landscape metrics (LMs) on 4 typical hydrological indices (water yields (WY), the runoff coefficient (RC), the soil erosion modulus (SEM), and the suspended sediment concentration (SSC)) were analyzed based on land use maps and hydrological data from 1990 to 2019. The results reveal that the LP characteristics within the study area have changed significantly. The number of patches and landscape shape indices were significantly positively correlated with watershed size (<i<p</i< < 0.01). For most watersheds, the largest patch index was negatively correlated with WY, RC, and SEM, and the perimeter area fractal dimension was positively correlated with WY, RC, SEM, and SSC. The effects of several LMs on the hydrological indices had scale effects. WY/RC and the interspersion and juxtaposition index were negatively correlated in most larger watersheds but were positively correlated in most smaller watersheds. Similar results were found for Shannon’s diversity/evenness index and SEM. In general, an increase in a small patch of landscape and in landscape diversity would increase WY, the fragmentation of LPs would result in more soil erosion, and LPs would affect the relationship between streamflow and sediment yield. As a result, a proper decrease in landscape fragmentation and physical connectivity in the subtropical monsoon climate zone of southeastern China would benefit soil erosion prevention. These results enhance the knowledge about the relationship between LPs and hydrological processes in the subtropical monsoon climate zone of southeastern China and benefit local water and soil conservation efforts. |
abstract_unstemmed |
With rapid economic development, extensive human activity has changed landscape patterns (LPs) dramatically, which has further influenced hydrological processes. However, the effects of LPs changes on hydrological processes, especially for the streamflow–sediment relationship in the subtropical monsoon climate zone, have not been reported. In our study, 10 watersheds with different sizes in the subtropical monsoon climate zone of southeastern China were chosen as the study area, and the effect of the 14 most commonly used landscape metrics (LMs) on 4 typical hydrological indices (water yields (WY), the runoff coefficient (RC), the soil erosion modulus (SEM), and the suspended sediment concentration (SSC)) were analyzed based on land use maps and hydrological data from 1990 to 2019. The results reveal that the LP characteristics within the study area have changed significantly. The number of patches and landscape shape indices were significantly positively correlated with watershed size (<i<p</i< < 0.01). For most watersheds, the largest patch index was negatively correlated with WY, RC, and SEM, and the perimeter area fractal dimension was positively correlated with WY, RC, SEM, and SSC. The effects of several LMs on the hydrological indices had scale effects. WY/RC and the interspersion and juxtaposition index were negatively correlated in most larger watersheds but were positively correlated in most smaller watersheds. Similar results were found for Shannon’s diversity/evenness index and SEM. In general, an increase in a small patch of landscape and in landscape diversity would increase WY, the fragmentation of LPs would result in more soil erosion, and LPs would affect the relationship between streamflow and sediment yield. As a result, a proper decrease in landscape fragmentation and physical connectivity in the subtropical monsoon climate zone of southeastern China would benefit soil erosion prevention. These results enhance the knowledge about the relationship between LPs and hydrological processes in the subtropical monsoon climate zone of southeastern China and benefit local water and soil conservation efforts. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 |
container_issue |
9, p 2290 |
title_short |
Relationships between Landscape Patterns and Hydrological Processes in the Subtropical Monsoon Climate Zone of Southeastern China |
url |
https://doi.org/10.3390/rs15092290 https://doaj.org/article/74b64473f05f4fecb1c3ab5731f4a8b1 https://www.mdpi.com/2072-4292/15/9/2290 https://doaj.org/toc/2072-4292 |
remote_bool |
true |
author2 |
Xiaohua Dong Yaoming Ma Menghui Leng Wenyi Zhao Chengyan Zhang Dan Yu Bob Su |
author2Str |
Xiaohua Dong Yaoming Ma Menghui Leng Wenyi Zhao Chengyan Zhang Dan Yu Bob Su |
ppnlink |
608937916 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/rs15092290 |
up_date |
2024-07-03T14:11:21.629Z |
_version_ |
1803567373096058880 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ090340205</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413035227.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230526s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs15092290</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ090340205</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ74b64473f05f4fecb1c3ab5731f4a8b1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Chong Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Relationships between Landscape Patterns and Hydrological Processes in the Subtropical Monsoon Climate Zone of Southeastern China</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">With rapid economic development, extensive human activity has changed landscape patterns (LPs) dramatically, which has further influenced hydrological processes. However, the effects of LPs changes on hydrological processes, especially for the streamflow–sediment relationship in the subtropical monsoon climate zone, have not been reported. In our study, 10 watersheds with different sizes in the subtropical monsoon climate zone of southeastern China were chosen as the study area, and the effect of the 14 most commonly used landscape metrics (LMs) on 4 typical hydrological indices (water yields (WY), the runoff coefficient (RC), the soil erosion modulus (SEM), and the suspended sediment concentration (SSC)) were analyzed based on land use maps and hydrological data from 1990 to 2019. The results reveal that the LP characteristics within the study area have changed significantly. The number of patches and landscape shape indices were significantly positively correlated with watershed size (<i<p</i< < 0.01). For most watersheds, the largest patch index was negatively correlated with WY, RC, and SEM, and the perimeter area fractal dimension was positively correlated with WY, RC, SEM, and SSC. The effects of several LMs on the hydrological indices had scale effects. WY/RC and the interspersion and juxtaposition index were negatively correlated in most larger watersheds but were positively correlated in most smaller watersheds. Similar results were found for Shannon’s diversity/evenness index and SEM. In general, an increase in a small patch of landscape and in landscape diversity would increase WY, the fragmentation of LPs would result in more soil erosion, and LPs would affect the relationship between streamflow and sediment yield. As a result, a proper decrease in landscape fragmentation and physical connectivity in the subtropical monsoon climate zone of southeastern China would benefit soil erosion prevention. These results enhance the knowledge about the relationship between LPs and hydrological processes in the subtropical monsoon climate zone of southeastern China and benefit local water and soil conservation efforts.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">landscape pattern</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">runoff coefficient</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">soil erosion modulus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">suspended sediment concentration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">subtropical monsoon climate zone</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">southeastern China</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaohua Dong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yaoming Ma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Menghui Leng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenyi Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chengyan Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dan Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bob Su</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">15(2023), 9, p 2290</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:9, p 2290</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs15092290</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/74b64473f05f4fecb1c3ab5731f4a8b1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-4292/15/9/2290</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2023</subfield><subfield code="e">9, p 2290</subfield></datafield></record></collection>
|
score |
7.4016 |