Output Feedback Control for Spacecraft Attitude System with Practical Predefined-Time Stability Based on Anti-Windup Compensator
This paper investigates the problem of output feedback attitude control for rigid spacecraft subject to inertia matrix uncertainty, space disturbance, and input saturation. Firstly, a model transformation is adopted to convert an attitude system with immeasurable angular velocity into a new system....
Ausführliche Beschreibung
Autor*in: |
Nguyen Xuan-Mung [verfasserIn] Mehdi Golestani [verfasserIn] Huu Tiep Nguyen [verfasserIn] Ngoc Anh Nguyen [verfasserIn] Afef Fekih [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Mathematics - MDPI AG, 2013, 11(2023), 9, p 2149 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2023 ; number:9, p 2149 |
Links: |
---|
DOI / URN: |
10.3390/math11092149 |
---|
Katalog-ID: |
DOAJ090353102 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ090353102 | ||
003 | DE-627 | ||
005 | 20240413035419.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230526s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/math11092149 |2 doi | |
035 | |a (DE-627)DOAJ090353102 | ||
035 | |a (DE-599)DOAJ98d9b392b03445a4a4631cd1a900d895 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA1-939 | |
100 | 0 | |a Nguyen Xuan-Mung |e verfasserin |4 aut | |
245 | 1 | 0 | |a Output Feedback Control for Spacecraft Attitude System with Practical Predefined-Time Stability Based on Anti-Windup Compensator |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This paper investigates the problem of output feedback attitude control for rigid spacecraft subject to inertia matrix uncertainty, space disturbance, and input saturation. Firstly, a model transformation is adopted to convert an attitude system with immeasurable angular velocity into a new system. All states of the new converted system are measurable and available for feedback; however, the system contains mismatched uncertainty resulting from the coordinate transformation. Then, an adaptive nonsingular back-stepping control with practical predefined-time convergence is designed. To resolve the problem of input saturation, an anti-windup compensator is developed. It is analytically proved that the spacecraft attitude and angular velocity are practical predefined-time stable, such that the convergence time is a given tunable constant. The simulation results reveal that the proposed control framework provides rapid attitude maneuver and actuator saturation elimination. | ||
650 | 4 | |a spacecraft attitude system | |
650 | 4 | |a output feedback | |
650 | 4 | |a practical predefined-time stability | |
650 | 4 | |a back-stepping control | |
650 | 4 | |a anti-windup compensator | |
653 | 0 | |a Mathematics | |
700 | 0 | |a Mehdi Golestani |e verfasserin |4 aut | |
700 | 0 | |a Huu Tiep Nguyen |e verfasserin |4 aut | |
700 | 0 | |a Ngoc Anh Nguyen |e verfasserin |4 aut | |
700 | 0 | |a Afef Fekih |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Mathematics |d MDPI AG, 2013 |g 11(2023), 9, p 2149 |w (DE-627)737287764 |w (DE-600)2704244-3 |x 22277390 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2023 |g number:9, p 2149 |
856 | 4 | 0 | |u https://doi.org/10.3390/math11092149 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/98d9b392b03445a4a4631cd1a900d895 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2227-7390/11/9/2149 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2227-7390 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2023 |e 9, p 2149 |
author_variant |
n x m nxm m g mg h t n htn n a n nan a f af |
---|---|
matchkey_str |
article:22277390:2023----::uptedakotofrpccattiueytmihrciapeeietmsaiiy |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QA |
publishDate |
2023 |
allfields |
10.3390/math11092149 doi (DE-627)DOAJ090353102 (DE-599)DOAJ98d9b392b03445a4a4631cd1a900d895 DE-627 ger DE-627 rakwb eng QA1-939 Nguyen Xuan-Mung verfasserin aut Output Feedback Control for Spacecraft Attitude System with Practical Predefined-Time Stability Based on Anti-Windup Compensator 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper investigates the problem of output feedback attitude control for rigid spacecraft subject to inertia matrix uncertainty, space disturbance, and input saturation. Firstly, a model transformation is adopted to convert an attitude system with immeasurable angular velocity into a new system. All states of the new converted system are measurable and available for feedback; however, the system contains mismatched uncertainty resulting from the coordinate transformation. Then, an adaptive nonsingular back-stepping control with practical predefined-time convergence is designed. To resolve the problem of input saturation, an anti-windup compensator is developed. It is analytically proved that the spacecraft attitude and angular velocity are practical predefined-time stable, such that the convergence time is a given tunable constant. The simulation results reveal that the proposed control framework provides rapid attitude maneuver and actuator saturation elimination. spacecraft attitude system output feedback practical predefined-time stability back-stepping control anti-windup compensator Mathematics Mehdi Golestani verfasserin aut Huu Tiep Nguyen verfasserin aut Ngoc Anh Nguyen verfasserin aut Afef Fekih verfasserin aut In Mathematics MDPI AG, 2013 11(2023), 9, p 2149 (DE-627)737287764 (DE-600)2704244-3 22277390 nnns volume:11 year:2023 number:9, p 2149 https://doi.org/10.3390/math11092149 kostenfrei https://doaj.org/article/98d9b392b03445a4a4631cd1a900d895 kostenfrei https://www.mdpi.com/2227-7390/11/9/2149 kostenfrei https://doaj.org/toc/2227-7390 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 9, p 2149 |
spelling |
10.3390/math11092149 doi (DE-627)DOAJ090353102 (DE-599)DOAJ98d9b392b03445a4a4631cd1a900d895 DE-627 ger DE-627 rakwb eng QA1-939 Nguyen Xuan-Mung verfasserin aut Output Feedback Control for Spacecraft Attitude System with Practical Predefined-Time Stability Based on Anti-Windup Compensator 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper investigates the problem of output feedback attitude control for rigid spacecraft subject to inertia matrix uncertainty, space disturbance, and input saturation. Firstly, a model transformation is adopted to convert an attitude system with immeasurable angular velocity into a new system. All states of the new converted system are measurable and available for feedback; however, the system contains mismatched uncertainty resulting from the coordinate transformation. Then, an adaptive nonsingular back-stepping control with practical predefined-time convergence is designed. To resolve the problem of input saturation, an anti-windup compensator is developed. It is analytically proved that the spacecraft attitude and angular velocity are practical predefined-time stable, such that the convergence time is a given tunable constant. The simulation results reveal that the proposed control framework provides rapid attitude maneuver and actuator saturation elimination. spacecraft attitude system output feedback practical predefined-time stability back-stepping control anti-windup compensator Mathematics Mehdi Golestani verfasserin aut Huu Tiep Nguyen verfasserin aut Ngoc Anh Nguyen verfasserin aut Afef Fekih verfasserin aut In Mathematics MDPI AG, 2013 11(2023), 9, p 2149 (DE-627)737287764 (DE-600)2704244-3 22277390 nnns volume:11 year:2023 number:9, p 2149 https://doi.org/10.3390/math11092149 kostenfrei https://doaj.org/article/98d9b392b03445a4a4631cd1a900d895 kostenfrei https://www.mdpi.com/2227-7390/11/9/2149 kostenfrei https://doaj.org/toc/2227-7390 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 9, p 2149 |
allfields_unstemmed |
10.3390/math11092149 doi (DE-627)DOAJ090353102 (DE-599)DOAJ98d9b392b03445a4a4631cd1a900d895 DE-627 ger DE-627 rakwb eng QA1-939 Nguyen Xuan-Mung verfasserin aut Output Feedback Control for Spacecraft Attitude System with Practical Predefined-Time Stability Based on Anti-Windup Compensator 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper investigates the problem of output feedback attitude control for rigid spacecraft subject to inertia matrix uncertainty, space disturbance, and input saturation. Firstly, a model transformation is adopted to convert an attitude system with immeasurable angular velocity into a new system. All states of the new converted system are measurable and available for feedback; however, the system contains mismatched uncertainty resulting from the coordinate transformation. Then, an adaptive nonsingular back-stepping control with practical predefined-time convergence is designed. To resolve the problem of input saturation, an anti-windup compensator is developed. It is analytically proved that the spacecraft attitude and angular velocity are practical predefined-time stable, such that the convergence time is a given tunable constant. The simulation results reveal that the proposed control framework provides rapid attitude maneuver and actuator saturation elimination. spacecraft attitude system output feedback practical predefined-time stability back-stepping control anti-windup compensator Mathematics Mehdi Golestani verfasserin aut Huu Tiep Nguyen verfasserin aut Ngoc Anh Nguyen verfasserin aut Afef Fekih verfasserin aut In Mathematics MDPI AG, 2013 11(2023), 9, p 2149 (DE-627)737287764 (DE-600)2704244-3 22277390 nnns volume:11 year:2023 number:9, p 2149 https://doi.org/10.3390/math11092149 kostenfrei https://doaj.org/article/98d9b392b03445a4a4631cd1a900d895 kostenfrei https://www.mdpi.com/2227-7390/11/9/2149 kostenfrei https://doaj.org/toc/2227-7390 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 9, p 2149 |
allfieldsGer |
10.3390/math11092149 doi (DE-627)DOAJ090353102 (DE-599)DOAJ98d9b392b03445a4a4631cd1a900d895 DE-627 ger DE-627 rakwb eng QA1-939 Nguyen Xuan-Mung verfasserin aut Output Feedback Control for Spacecraft Attitude System with Practical Predefined-Time Stability Based on Anti-Windup Compensator 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper investigates the problem of output feedback attitude control for rigid spacecraft subject to inertia matrix uncertainty, space disturbance, and input saturation. Firstly, a model transformation is adopted to convert an attitude system with immeasurable angular velocity into a new system. All states of the new converted system are measurable and available for feedback; however, the system contains mismatched uncertainty resulting from the coordinate transformation. Then, an adaptive nonsingular back-stepping control with practical predefined-time convergence is designed. To resolve the problem of input saturation, an anti-windup compensator is developed. It is analytically proved that the spacecraft attitude and angular velocity are practical predefined-time stable, such that the convergence time is a given tunable constant. The simulation results reveal that the proposed control framework provides rapid attitude maneuver and actuator saturation elimination. spacecraft attitude system output feedback practical predefined-time stability back-stepping control anti-windup compensator Mathematics Mehdi Golestani verfasserin aut Huu Tiep Nguyen verfasserin aut Ngoc Anh Nguyen verfasserin aut Afef Fekih verfasserin aut In Mathematics MDPI AG, 2013 11(2023), 9, p 2149 (DE-627)737287764 (DE-600)2704244-3 22277390 nnns volume:11 year:2023 number:9, p 2149 https://doi.org/10.3390/math11092149 kostenfrei https://doaj.org/article/98d9b392b03445a4a4631cd1a900d895 kostenfrei https://www.mdpi.com/2227-7390/11/9/2149 kostenfrei https://doaj.org/toc/2227-7390 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 9, p 2149 |
allfieldsSound |
10.3390/math11092149 doi (DE-627)DOAJ090353102 (DE-599)DOAJ98d9b392b03445a4a4631cd1a900d895 DE-627 ger DE-627 rakwb eng QA1-939 Nguyen Xuan-Mung verfasserin aut Output Feedback Control for Spacecraft Attitude System with Practical Predefined-Time Stability Based on Anti-Windup Compensator 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper investigates the problem of output feedback attitude control for rigid spacecraft subject to inertia matrix uncertainty, space disturbance, and input saturation. Firstly, a model transformation is adopted to convert an attitude system with immeasurable angular velocity into a new system. All states of the new converted system are measurable and available for feedback; however, the system contains mismatched uncertainty resulting from the coordinate transformation. Then, an adaptive nonsingular back-stepping control with practical predefined-time convergence is designed. To resolve the problem of input saturation, an anti-windup compensator is developed. It is analytically proved that the spacecraft attitude and angular velocity are practical predefined-time stable, such that the convergence time is a given tunable constant. The simulation results reveal that the proposed control framework provides rapid attitude maneuver and actuator saturation elimination. spacecraft attitude system output feedback practical predefined-time stability back-stepping control anti-windup compensator Mathematics Mehdi Golestani verfasserin aut Huu Tiep Nguyen verfasserin aut Ngoc Anh Nguyen verfasserin aut Afef Fekih verfasserin aut In Mathematics MDPI AG, 2013 11(2023), 9, p 2149 (DE-627)737287764 (DE-600)2704244-3 22277390 nnns volume:11 year:2023 number:9, p 2149 https://doi.org/10.3390/math11092149 kostenfrei https://doaj.org/article/98d9b392b03445a4a4631cd1a900d895 kostenfrei https://www.mdpi.com/2227-7390/11/9/2149 kostenfrei https://doaj.org/toc/2227-7390 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 9, p 2149 |
language |
English |
source |
In Mathematics 11(2023), 9, p 2149 volume:11 year:2023 number:9, p 2149 |
sourceStr |
In Mathematics 11(2023), 9, p 2149 volume:11 year:2023 number:9, p 2149 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
spacecraft attitude system output feedback practical predefined-time stability back-stepping control anti-windup compensator Mathematics |
isfreeaccess_bool |
true |
container_title |
Mathematics |
authorswithroles_txt_mv |
Nguyen Xuan-Mung @@aut@@ Mehdi Golestani @@aut@@ Huu Tiep Nguyen @@aut@@ Ngoc Anh Nguyen @@aut@@ Afef Fekih @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
737287764 |
id |
DOAJ090353102 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ090353102</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413035419.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230526s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/math11092149</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ090353102</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ98d9b392b03445a4a4631cd1a900d895</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Nguyen Xuan-Mung</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Output Feedback Control for Spacecraft Attitude System with Practical Predefined-Time Stability Based on Anti-Windup Compensator</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper investigates the problem of output feedback attitude control for rigid spacecraft subject to inertia matrix uncertainty, space disturbance, and input saturation. Firstly, a model transformation is adopted to convert an attitude system with immeasurable angular velocity into a new system. All states of the new converted system are measurable and available for feedback; however, the system contains mismatched uncertainty resulting from the coordinate transformation. Then, an adaptive nonsingular back-stepping control with practical predefined-time convergence is designed. To resolve the problem of input saturation, an anti-windup compensator is developed. It is analytically proved that the spacecraft attitude and angular velocity are practical predefined-time stable, such that the convergence time is a given tunable constant. The simulation results reveal that the proposed control framework provides rapid attitude maneuver and actuator saturation elimination.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spacecraft attitude system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">output feedback</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">practical predefined-time stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">back-stepping control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">anti-windup compensator</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mehdi Golestani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huu Tiep Nguyen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ngoc Anh Nguyen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Afef Fekih</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Mathematics</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">11(2023), 9, p 2149</subfield><subfield code="w">(DE-627)737287764</subfield><subfield code="w">(DE-600)2704244-3</subfield><subfield code="x">22277390</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:9, p 2149</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/math11092149</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/98d9b392b03445a4a4631cd1a900d895</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2227-7390/11/9/2149</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2227-7390</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2023</subfield><subfield code="e">9, p 2149</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Nguyen Xuan-Mung |
spellingShingle |
Nguyen Xuan-Mung misc QA1-939 misc spacecraft attitude system misc output feedback misc practical predefined-time stability misc back-stepping control misc anti-windup compensator misc Mathematics Output Feedback Control for Spacecraft Attitude System with Practical Predefined-Time Stability Based on Anti-Windup Compensator |
authorStr |
Nguyen Xuan-Mung |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737287764 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA1-939 |
illustrated |
Not Illustrated |
issn |
22277390 |
topic_title |
QA1-939 Output Feedback Control for Spacecraft Attitude System with Practical Predefined-Time Stability Based on Anti-Windup Compensator spacecraft attitude system output feedback practical predefined-time stability back-stepping control anti-windup compensator |
topic |
misc QA1-939 misc spacecraft attitude system misc output feedback misc practical predefined-time stability misc back-stepping control misc anti-windup compensator misc Mathematics |
topic_unstemmed |
misc QA1-939 misc spacecraft attitude system misc output feedback misc practical predefined-time stability misc back-stepping control misc anti-windup compensator misc Mathematics |
topic_browse |
misc QA1-939 misc spacecraft attitude system misc output feedback misc practical predefined-time stability misc back-stepping control misc anti-windup compensator misc Mathematics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Mathematics |
hierarchy_parent_id |
737287764 |
hierarchy_top_title |
Mathematics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737287764 (DE-600)2704244-3 |
title |
Output Feedback Control for Spacecraft Attitude System with Practical Predefined-Time Stability Based on Anti-Windup Compensator |
ctrlnum |
(DE-627)DOAJ090353102 (DE-599)DOAJ98d9b392b03445a4a4631cd1a900d895 |
title_full |
Output Feedback Control for Spacecraft Attitude System with Practical Predefined-Time Stability Based on Anti-Windup Compensator |
author_sort |
Nguyen Xuan-Mung |
journal |
Mathematics |
journalStr |
Mathematics |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Nguyen Xuan-Mung Mehdi Golestani Huu Tiep Nguyen Ngoc Anh Nguyen Afef Fekih |
container_volume |
11 |
class |
QA1-939 |
format_se |
Elektronische Aufsätze |
author-letter |
Nguyen Xuan-Mung |
doi_str_mv |
10.3390/math11092149 |
author2-role |
verfasserin |
title_sort |
output feedback control for spacecraft attitude system with practical predefined-time stability based on anti-windup compensator |
callnumber |
QA1-939 |
title_auth |
Output Feedback Control for Spacecraft Attitude System with Practical Predefined-Time Stability Based on Anti-Windup Compensator |
abstract |
This paper investigates the problem of output feedback attitude control for rigid spacecraft subject to inertia matrix uncertainty, space disturbance, and input saturation. Firstly, a model transformation is adopted to convert an attitude system with immeasurable angular velocity into a new system. All states of the new converted system are measurable and available for feedback; however, the system contains mismatched uncertainty resulting from the coordinate transformation. Then, an adaptive nonsingular back-stepping control with practical predefined-time convergence is designed. To resolve the problem of input saturation, an anti-windup compensator is developed. It is analytically proved that the spacecraft attitude and angular velocity are practical predefined-time stable, such that the convergence time is a given tunable constant. The simulation results reveal that the proposed control framework provides rapid attitude maneuver and actuator saturation elimination. |
abstractGer |
This paper investigates the problem of output feedback attitude control for rigid spacecraft subject to inertia matrix uncertainty, space disturbance, and input saturation. Firstly, a model transformation is adopted to convert an attitude system with immeasurable angular velocity into a new system. All states of the new converted system are measurable and available for feedback; however, the system contains mismatched uncertainty resulting from the coordinate transformation. Then, an adaptive nonsingular back-stepping control with practical predefined-time convergence is designed. To resolve the problem of input saturation, an anti-windup compensator is developed. It is analytically proved that the spacecraft attitude and angular velocity are practical predefined-time stable, such that the convergence time is a given tunable constant. The simulation results reveal that the proposed control framework provides rapid attitude maneuver and actuator saturation elimination. |
abstract_unstemmed |
This paper investigates the problem of output feedback attitude control for rigid spacecraft subject to inertia matrix uncertainty, space disturbance, and input saturation. Firstly, a model transformation is adopted to convert an attitude system with immeasurable angular velocity into a new system. All states of the new converted system are measurable and available for feedback; however, the system contains mismatched uncertainty resulting from the coordinate transformation. Then, an adaptive nonsingular back-stepping control with practical predefined-time convergence is designed. To resolve the problem of input saturation, an anti-windup compensator is developed. It is analytically proved that the spacecraft attitude and angular velocity are practical predefined-time stable, such that the convergence time is a given tunable constant. The simulation results reveal that the proposed control framework provides rapid attitude maneuver and actuator saturation elimination. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
9, p 2149 |
title_short |
Output Feedback Control for Spacecraft Attitude System with Practical Predefined-Time Stability Based on Anti-Windup Compensator |
url |
https://doi.org/10.3390/math11092149 https://doaj.org/article/98d9b392b03445a4a4631cd1a900d895 https://www.mdpi.com/2227-7390/11/9/2149 https://doaj.org/toc/2227-7390 |
remote_bool |
true |
author2 |
Mehdi Golestani Huu Tiep Nguyen Ngoc Anh Nguyen Afef Fekih |
author2Str |
Mehdi Golestani Huu Tiep Nguyen Ngoc Anh Nguyen Afef Fekih |
ppnlink |
737287764 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/math11092149 |
callnumber-a |
QA1-939 |
up_date |
2024-07-03T14:16:02.471Z |
_version_ |
1803567667582337024 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ090353102</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413035419.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230526s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/math11092149</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ090353102</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ98d9b392b03445a4a4631cd1a900d895</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Nguyen Xuan-Mung</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Output Feedback Control for Spacecraft Attitude System with Practical Predefined-Time Stability Based on Anti-Windup Compensator</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper investigates the problem of output feedback attitude control for rigid spacecraft subject to inertia matrix uncertainty, space disturbance, and input saturation. Firstly, a model transformation is adopted to convert an attitude system with immeasurable angular velocity into a new system. All states of the new converted system are measurable and available for feedback; however, the system contains mismatched uncertainty resulting from the coordinate transformation. Then, an adaptive nonsingular back-stepping control with practical predefined-time convergence is designed. To resolve the problem of input saturation, an anti-windup compensator is developed. It is analytically proved that the spacecraft attitude and angular velocity are practical predefined-time stable, such that the convergence time is a given tunable constant. The simulation results reveal that the proposed control framework provides rapid attitude maneuver and actuator saturation elimination.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spacecraft attitude system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">output feedback</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">practical predefined-time stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">back-stepping control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">anti-windup compensator</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mehdi Golestani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huu Tiep Nguyen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ngoc Anh Nguyen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Afef Fekih</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Mathematics</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">11(2023), 9, p 2149</subfield><subfield code="w">(DE-627)737287764</subfield><subfield code="w">(DE-600)2704244-3</subfield><subfield code="x">22277390</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:9, p 2149</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/math11092149</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/98d9b392b03445a4a4631cd1a900d895</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2227-7390/11/9/2149</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2227-7390</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2023</subfield><subfield code="e">9, p 2149</subfield></datafield></record></collection>
|
score |
7.4027395 |