A Metabolomics and Big Data Approach to Cannabis Authenticity (Authentomics)
With the increasing accessibility of cannabis (<i<Cannabis sativa</i< L., also known as marijuana and hemp), its products are being developed as extracts for both recreational and therapeutic use. This has led to increased scrutiny by regulatory bodies, who aim to understand and regulate...
Ausführliche Beschreibung
Autor*in: |
Pramodkumar D. Jadhav [verfasserIn] Youn Young Shim [verfasserIn] Ock Jin Paek [verfasserIn] Jung-Tae Jeon [verfasserIn] Hyun-Je Park [verfasserIn] Ilbum Park [verfasserIn] Eui-Seong Park [verfasserIn] Young Jun Kim [verfasserIn] Martin J. T. Reaney [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: International Journal of Molecular Sciences - MDPI AG, 2003, 24(2023), 9, p 8202 |
---|---|
Übergeordnetes Werk: |
volume:24 ; year:2023 ; number:9, p 8202 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.3390/ijms24098202 |
---|
Katalog-ID: |
DOAJ090363701 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ090363701 | ||
003 | DE-627 | ||
005 | 20240413035553.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230526s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/ijms24098202 |2 doi | |
035 | |a (DE-627)DOAJ090363701 | ||
035 | |a (DE-599)DOAJe95bcc997a9c4290814df29c8f9d7cfb | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QH301-705.5 | |
050 | 0 | |a QD1-999 | |
100 | 0 | |a Pramodkumar D. Jadhav |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Metabolomics and Big Data Approach to Cannabis Authenticity (Authentomics) |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a With the increasing accessibility of cannabis (<i<Cannabis sativa</i< L., also known as marijuana and hemp), its products are being developed as extracts for both recreational and therapeutic use. This has led to increased scrutiny by regulatory bodies, who aim to understand and regulate the complex chemistry of these products to ensure their safety and efficacy. Regulators use targeted analyses to track the concentration of key bioactive metabolites and potentially harmful contaminants, such as metals and other impurities. However, the metabolic complexity of cannabis metabolic pathways requires a more comprehensive approach. A non-targeted metabolomic analysis of cannabis products is necessary to generate data that can be used to determine their authenticity and efficacy. An authentomics approach, which involves combining the non-targeted analysis of new samples with big data comparisons to authenticated historic datasets, provides a robust method for verifying the quality of cannabis products. To meet International Organization for Standardization (ISO) standards, it is necessary to implement the authentomics platform technology and build an integrated database of cannabis analytical results. This study is the first to review the topic of the authentomics of cannabis and its potential to meet ISO standards. | ||
650 | 4 | |a cannabis authenticity | |
650 | 4 | |a <i<Cannabis sativa</i< L. authentomics | |
650 | 4 | |a metabolites | |
650 | 4 | |a NMR | |
653 | 0 | |a Biology (General) | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Youn Young Shim |e verfasserin |4 aut | |
700 | 0 | |a Ock Jin Paek |e verfasserin |4 aut | |
700 | 0 | |a Jung-Tae Jeon |e verfasserin |4 aut | |
700 | 0 | |a Hyun-Je Park |e verfasserin |4 aut | |
700 | 0 | |a Ilbum Park |e verfasserin |4 aut | |
700 | 0 | |a Eui-Seong Park |e verfasserin |4 aut | |
700 | 0 | |a Young Jun Kim |e verfasserin |4 aut | |
700 | 0 | |a Martin J. T. Reaney |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t International Journal of Molecular Sciences |d MDPI AG, 2003 |g 24(2023), 9, p 8202 |w (DE-627)316340715 |w (DE-600)2019364-6 |x 14220067 |7 nnns |
773 | 1 | 8 | |g volume:24 |g year:2023 |g number:9, p 8202 |
856 | 4 | 0 | |u https://doi.org/10.3390/ijms24098202 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/e95bcc997a9c4290814df29c8f9d7cfb |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1422-0067/24/9/8202 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1661-6596 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1422-0067 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 24 |j 2023 |e 9, p 8202 |
author_variant |
p d j pdj y y s yys o j p ojp j t j jtj h j p hjp i p ip e s p esp y j k yjk m j t r mjtr |
---|---|
matchkey_str |
article:14220067:2023----::mtblmcadidtapoctcnaiatet |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QH |
publishDate |
2023 |
allfields |
10.3390/ijms24098202 doi (DE-627)DOAJ090363701 (DE-599)DOAJe95bcc997a9c4290814df29c8f9d7cfb DE-627 ger DE-627 rakwb eng QH301-705.5 QD1-999 Pramodkumar D. Jadhav verfasserin aut A Metabolomics and Big Data Approach to Cannabis Authenticity (Authentomics) 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With the increasing accessibility of cannabis (<i<Cannabis sativa</i< L., also known as marijuana and hemp), its products are being developed as extracts for both recreational and therapeutic use. This has led to increased scrutiny by regulatory bodies, who aim to understand and regulate the complex chemistry of these products to ensure their safety and efficacy. Regulators use targeted analyses to track the concentration of key bioactive metabolites and potentially harmful contaminants, such as metals and other impurities. However, the metabolic complexity of cannabis metabolic pathways requires a more comprehensive approach. A non-targeted metabolomic analysis of cannabis products is necessary to generate data that can be used to determine their authenticity and efficacy. An authentomics approach, which involves combining the non-targeted analysis of new samples with big data comparisons to authenticated historic datasets, provides a robust method for verifying the quality of cannabis products. To meet International Organization for Standardization (ISO) standards, it is necessary to implement the authentomics platform technology and build an integrated database of cannabis analytical results. This study is the first to review the topic of the authentomics of cannabis and its potential to meet ISO standards. cannabis authenticity <i<Cannabis sativa</i< L. authentomics metabolites NMR Biology (General) Chemistry Youn Young Shim verfasserin aut Ock Jin Paek verfasserin aut Jung-Tae Jeon verfasserin aut Hyun-Je Park verfasserin aut Ilbum Park verfasserin aut Eui-Seong Park verfasserin aut Young Jun Kim verfasserin aut Martin J. T. Reaney verfasserin aut In International Journal of Molecular Sciences MDPI AG, 2003 24(2023), 9, p 8202 (DE-627)316340715 (DE-600)2019364-6 14220067 nnns volume:24 year:2023 number:9, p 8202 https://doi.org/10.3390/ijms24098202 kostenfrei https://doaj.org/article/e95bcc997a9c4290814df29c8f9d7cfb kostenfrei https://www.mdpi.com/1422-0067/24/9/8202 kostenfrei https://doaj.org/toc/1661-6596 Journal toc kostenfrei https://doaj.org/toc/1422-0067 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2023 9, p 8202 |
spelling |
10.3390/ijms24098202 doi (DE-627)DOAJ090363701 (DE-599)DOAJe95bcc997a9c4290814df29c8f9d7cfb DE-627 ger DE-627 rakwb eng QH301-705.5 QD1-999 Pramodkumar D. Jadhav verfasserin aut A Metabolomics and Big Data Approach to Cannabis Authenticity (Authentomics) 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With the increasing accessibility of cannabis (<i<Cannabis sativa</i< L., also known as marijuana and hemp), its products are being developed as extracts for both recreational and therapeutic use. This has led to increased scrutiny by regulatory bodies, who aim to understand and regulate the complex chemistry of these products to ensure their safety and efficacy. Regulators use targeted analyses to track the concentration of key bioactive metabolites and potentially harmful contaminants, such as metals and other impurities. However, the metabolic complexity of cannabis metabolic pathways requires a more comprehensive approach. A non-targeted metabolomic analysis of cannabis products is necessary to generate data that can be used to determine their authenticity and efficacy. An authentomics approach, which involves combining the non-targeted analysis of new samples with big data comparisons to authenticated historic datasets, provides a robust method for verifying the quality of cannabis products. To meet International Organization for Standardization (ISO) standards, it is necessary to implement the authentomics platform technology and build an integrated database of cannabis analytical results. This study is the first to review the topic of the authentomics of cannabis and its potential to meet ISO standards. cannabis authenticity <i<Cannabis sativa</i< L. authentomics metabolites NMR Biology (General) Chemistry Youn Young Shim verfasserin aut Ock Jin Paek verfasserin aut Jung-Tae Jeon verfasserin aut Hyun-Je Park verfasserin aut Ilbum Park verfasserin aut Eui-Seong Park verfasserin aut Young Jun Kim verfasserin aut Martin J. T. Reaney verfasserin aut In International Journal of Molecular Sciences MDPI AG, 2003 24(2023), 9, p 8202 (DE-627)316340715 (DE-600)2019364-6 14220067 nnns volume:24 year:2023 number:9, p 8202 https://doi.org/10.3390/ijms24098202 kostenfrei https://doaj.org/article/e95bcc997a9c4290814df29c8f9d7cfb kostenfrei https://www.mdpi.com/1422-0067/24/9/8202 kostenfrei https://doaj.org/toc/1661-6596 Journal toc kostenfrei https://doaj.org/toc/1422-0067 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2023 9, p 8202 |
allfields_unstemmed |
10.3390/ijms24098202 doi (DE-627)DOAJ090363701 (DE-599)DOAJe95bcc997a9c4290814df29c8f9d7cfb DE-627 ger DE-627 rakwb eng QH301-705.5 QD1-999 Pramodkumar D. Jadhav verfasserin aut A Metabolomics and Big Data Approach to Cannabis Authenticity (Authentomics) 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With the increasing accessibility of cannabis (<i<Cannabis sativa</i< L., also known as marijuana and hemp), its products are being developed as extracts for both recreational and therapeutic use. This has led to increased scrutiny by regulatory bodies, who aim to understand and regulate the complex chemistry of these products to ensure their safety and efficacy. Regulators use targeted analyses to track the concentration of key bioactive metabolites and potentially harmful contaminants, such as metals and other impurities. However, the metabolic complexity of cannabis metabolic pathways requires a more comprehensive approach. A non-targeted metabolomic analysis of cannabis products is necessary to generate data that can be used to determine their authenticity and efficacy. An authentomics approach, which involves combining the non-targeted analysis of new samples with big data comparisons to authenticated historic datasets, provides a robust method for verifying the quality of cannabis products. To meet International Organization for Standardization (ISO) standards, it is necessary to implement the authentomics platform technology and build an integrated database of cannabis analytical results. This study is the first to review the topic of the authentomics of cannabis and its potential to meet ISO standards. cannabis authenticity <i<Cannabis sativa</i< L. authentomics metabolites NMR Biology (General) Chemistry Youn Young Shim verfasserin aut Ock Jin Paek verfasserin aut Jung-Tae Jeon verfasserin aut Hyun-Je Park verfasserin aut Ilbum Park verfasserin aut Eui-Seong Park verfasserin aut Young Jun Kim verfasserin aut Martin J. T. Reaney verfasserin aut In International Journal of Molecular Sciences MDPI AG, 2003 24(2023), 9, p 8202 (DE-627)316340715 (DE-600)2019364-6 14220067 nnns volume:24 year:2023 number:9, p 8202 https://doi.org/10.3390/ijms24098202 kostenfrei https://doaj.org/article/e95bcc997a9c4290814df29c8f9d7cfb kostenfrei https://www.mdpi.com/1422-0067/24/9/8202 kostenfrei https://doaj.org/toc/1661-6596 Journal toc kostenfrei https://doaj.org/toc/1422-0067 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2023 9, p 8202 |
allfieldsGer |
10.3390/ijms24098202 doi (DE-627)DOAJ090363701 (DE-599)DOAJe95bcc997a9c4290814df29c8f9d7cfb DE-627 ger DE-627 rakwb eng QH301-705.5 QD1-999 Pramodkumar D. Jadhav verfasserin aut A Metabolomics and Big Data Approach to Cannabis Authenticity (Authentomics) 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With the increasing accessibility of cannabis (<i<Cannabis sativa</i< L., also known as marijuana and hemp), its products are being developed as extracts for both recreational and therapeutic use. This has led to increased scrutiny by regulatory bodies, who aim to understand and regulate the complex chemistry of these products to ensure their safety and efficacy. Regulators use targeted analyses to track the concentration of key bioactive metabolites and potentially harmful contaminants, such as metals and other impurities. However, the metabolic complexity of cannabis metabolic pathways requires a more comprehensive approach. A non-targeted metabolomic analysis of cannabis products is necessary to generate data that can be used to determine their authenticity and efficacy. An authentomics approach, which involves combining the non-targeted analysis of new samples with big data comparisons to authenticated historic datasets, provides a robust method for verifying the quality of cannabis products. To meet International Organization for Standardization (ISO) standards, it is necessary to implement the authentomics platform technology and build an integrated database of cannabis analytical results. This study is the first to review the topic of the authentomics of cannabis and its potential to meet ISO standards. cannabis authenticity <i<Cannabis sativa</i< L. authentomics metabolites NMR Biology (General) Chemistry Youn Young Shim verfasserin aut Ock Jin Paek verfasserin aut Jung-Tae Jeon verfasserin aut Hyun-Je Park verfasserin aut Ilbum Park verfasserin aut Eui-Seong Park verfasserin aut Young Jun Kim verfasserin aut Martin J. T. Reaney verfasserin aut In International Journal of Molecular Sciences MDPI AG, 2003 24(2023), 9, p 8202 (DE-627)316340715 (DE-600)2019364-6 14220067 nnns volume:24 year:2023 number:9, p 8202 https://doi.org/10.3390/ijms24098202 kostenfrei https://doaj.org/article/e95bcc997a9c4290814df29c8f9d7cfb kostenfrei https://www.mdpi.com/1422-0067/24/9/8202 kostenfrei https://doaj.org/toc/1661-6596 Journal toc kostenfrei https://doaj.org/toc/1422-0067 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2023 9, p 8202 |
allfieldsSound |
10.3390/ijms24098202 doi (DE-627)DOAJ090363701 (DE-599)DOAJe95bcc997a9c4290814df29c8f9d7cfb DE-627 ger DE-627 rakwb eng QH301-705.5 QD1-999 Pramodkumar D. Jadhav verfasserin aut A Metabolomics and Big Data Approach to Cannabis Authenticity (Authentomics) 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With the increasing accessibility of cannabis (<i<Cannabis sativa</i< L., also known as marijuana and hemp), its products are being developed as extracts for both recreational and therapeutic use. This has led to increased scrutiny by regulatory bodies, who aim to understand and regulate the complex chemistry of these products to ensure their safety and efficacy. Regulators use targeted analyses to track the concentration of key bioactive metabolites and potentially harmful contaminants, such as metals and other impurities. However, the metabolic complexity of cannabis metabolic pathways requires a more comprehensive approach. A non-targeted metabolomic analysis of cannabis products is necessary to generate data that can be used to determine their authenticity and efficacy. An authentomics approach, which involves combining the non-targeted analysis of new samples with big data comparisons to authenticated historic datasets, provides a robust method for verifying the quality of cannabis products. To meet International Organization for Standardization (ISO) standards, it is necessary to implement the authentomics platform technology and build an integrated database of cannabis analytical results. This study is the first to review the topic of the authentomics of cannabis and its potential to meet ISO standards. cannabis authenticity <i<Cannabis sativa</i< L. authentomics metabolites NMR Biology (General) Chemistry Youn Young Shim verfasserin aut Ock Jin Paek verfasserin aut Jung-Tae Jeon verfasserin aut Hyun-Je Park verfasserin aut Ilbum Park verfasserin aut Eui-Seong Park verfasserin aut Young Jun Kim verfasserin aut Martin J. T. Reaney verfasserin aut In International Journal of Molecular Sciences MDPI AG, 2003 24(2023), 9, p 8202 (DE-627)316340715 (DE-600)2019364-6 14220067 nnns volume:24 year:2023 number:9, p 8202 https://doi.org/10.3390/ijms24098202 kostenfrei https://doaj.org/article/e95bcc997a9c4290814df29c8f9d7cfb kostenfrei https://www.mdpi.com/1422-0067/24/9/8202 kostenfrei https://doaj.org/toc/1661-6596 Journal toc kostenfrei https://doaj.org/toc/1422-0067 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2023 9, p 8202 |
language |
English |
source |
In International Journal of Molecular Sciences 24(2023), 9, p 8202 volume:24 year:2023 number:9, p 8202 |
sourceStr |
In International Journal of Molecular Sciences 24(2023), 9, p 8202 volume:24 year:2023 number:9, p 8202 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
cannabis authenticity <i<Cannabis sativa</i< L. authentomics metabolites NMR Biology (General) Chemistry |
isfreeaccess_bool |
true |
container_title |
International Journal of Molecular Sciences |
authorswithroles_txt_mv |
Pramodkumar D. Jadhav @@aut@@ Youn Young Shim @@aut@@ Ock Jin Paek @@aut@@ Jung-Tae Jeon @@aut@@ Hyun-Je Park @@aut@@ Ilbum Park @@aut@@ Eui-Seong Park @@aut@@ Young Jun Kim @@aut@@ Martin J. T. Reaney @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
316340715 |
id |
DOAJ090363701 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ090363701</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413035553.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230526s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ijms24098202</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ090363701</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe95bcc997a9c4290814df29c8f9d7cfb</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Pramodkumar D. Jadhav</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Metabolomics and Big Data Approach to Cannabis Authenticity (Authentomics)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">With the increasing accessibility of cannabis (<i<Cannabis sativa</i< L., also known as marijuana and hemp), its products are being developed as extracts for both recreational and therapeutic use. This has led to increased scrutiny by regulatory bodies, who aim to understand and regulate the complex chemistry of these products to ensure their safety and efficacy. Regulators use targeted analyses to track the concentration of key bioactive metabolites and potentially harmful contaminants, such as metals and other impurities. However, the metabolic complexity of cannabis metabolic pathways requires a more comprehensive approach. A non-targeted metabolomic analysis of cannabis products is necessary to generate data that can be used to determine their authenticity and efficacy. An authentomics approach, which involves combining the non-targeted analysis of new samples with big data comparisons to authenticated historic datasets, provides a robust method for verifying the quality of cannabis products. To meet International Organization for Standardization (ISO) standards, it is necessary to implement the authentomics platform technology and build an integrated database of cannabis analytical results. This study is the first to review the topic of the authentomics of cannabis and its potential to meet ISO standards.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cannabis authenticity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<Cannabis sativa</i< L. authentomics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">metabolites</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NMR</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Youn Young Shim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ock Jin Paek</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jung-Tae Jeon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hyun-Je Park</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ilbum Park</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Eui-Seong Park</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Young Jun Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Martin J. T. Reaney</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International Journal of Molecular Sciences</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">24(2023), 9, p 8202</subfield><subfield code="w">(DE-627)316340715</subfield><subfield code="w">(DE-600)2019364-6</subfield><subfield code="x">14220067</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:9, p 8202</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ijms24098202</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e95bcc997a9c4290814df29c8f9d7cfb</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1422-0067/24/9/8202</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1661-6596</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1422-0067</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2023</subfield><subfield code="e">9, p 8202</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Pramodkumar D. Jadhav |
spellingShingle |
Pramodkumar D. Jadhav misc QH301-705.5 misc QD1-999 misc cannabis authenticity misc <i<Cannabis sativa</i< L. authentomics misc metabolites misc NMR misc Biology (General) misc Chemistry A Metabolomics and Big Data Approach to Cannabis Authenticity (Authentomics) |
authorStr |
Pramodkumar D. Jadhav |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)316340715 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QH301-705 |
illustrated |
Not Illustrated |
issn |
14220067 |
topic_title |
QH301-705.5 QD1-999 A Metabolomics and Big Data Approach to Cannabis Authenticity (Authentomics) cannabis authenticity <i<Cannabis sativa</i< L. authentomics metabolites NMR |
topic |
misc QH301-705.5 misc QD1-999 misc cannabis authenticity misc <i<Cannabis sativa</i< L. authentomics misc metabolites misc NMR misc Biology (General) misc Chemistry |
topic_unstemmed |
misc QH301-705.5 misc QD1-999 misc cannabis authenticity misc <i<Cannabis sativa</i< L. authentomics misc metabolites misc NMR misc Biology (General) misc Chemistry |
topic_browse |
misc QH301-705.5 misc QD1-999 misc cannabis authenticity misc <i<Cannabis sativa</i< L. authentomics misc metabolites misc NMR misc Biology (General) misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International Journal of Molecular Sciences |
hierarchy_parent_id |
316340715 |
hierarchy_top_title |
International Journal of Molecular Sciences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)316340715 (DE-600)2019364-6 |
title |
A Metabolomics and Big Data Approach to Cannabis Authenticity (Authentomics) |
ctrlnum |
(DE-627)DOAJ090363701 (DE-599)DOAJe95bcc997a9c4290814df29c8f9d7cfb |
title_full |
A Metabolomics and Big Data Approach to Cannabis Authenticity (Authentomics) |
author_sort |
Pramodkumar D. Jadhav |
journal |
International Journal of Molecular Sciences |
journalStr |
International Journal of Molecular Sciences |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Pramodkumar D. Jadhav Youn Young Shim Ock Jin Paek Jung-Tae Jeon Hyun-Je Park Ilbum Park Eui-Seong Park Young Jun Kim Martin J. T. Reaney |
container_volume |
24 |
class |
QH301-705.5 QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Pramodkumar D. Jadhav |
doi_str_mv |
10.3390/ijms24098202 |
author2-role |
verfasserin |
title_sort |
metabolomics and big data approach to cannabis authenticity (authentomics) |
callnumber |
QH301-705.5 |
title_auth |
A Metabolomics and Big Data Approach to Cannabis Authenticity (Authentomics) |
abstract |
With the increasing accessibility of cannabis (<i<Cannabis sativa</i< L., also known as marijuana and hemp), its products are being developed as extracts for both recreational and therapeutic use. This has led to increased scrutiny by regulatory bodies, who aim to understand and regulate the complex chemistry of these products to ensure their safety and efficacy. Regulators use targeted analyses to track the concentration of key bioactive metabolites and potentially harmful contaminants, such as metals and other impurities. However, the metabolic complexity of cannabis metabolic pathways requires a more comprehensive approach. A non-targeted metabolomic analysis of cannabis products is necessary to generate data that can be used to determine their authenticity and efficacy. An authentomics approach, which involves combining the non-targeted analysis of new samples with big data comparisons to authenticated historic datasets, provides a robust method for verifying the quality of cannabis products. To meet International Organization for Standardization (ISO) standards, it is necessary to implement the authentomics platform technology and build an integrated database of cannabis analytical results. This study is the first to review the topic of the authentomics of cannabis and its potential to meet ISO standards. |
abstractGer |
With the increasing accessibility of cannabis (<i<Cannabis sativa</i< L., also known as marijuana and hemp), its products are being developed as extracts for both recreational and therapeutic use. This has led to increased scrutiny by regulatory bodies, who aim to understand and regulate the complex chemistry of these products to ensure their safety and efficacy. Regulators use targeted analyses to track the concentration of key bioactive metabolites and potentially harmful contaminants, such as metals and other impurities. However, the metabolic complexity of cannabis metabolic pathways requires a more comprehensive approach. A non-targeted metabolomic analysis of cannabis products is necessary to generate data that can be used to determine their authenticity and efficacy. An authentomics approach, which involves combining the non-targeted analysis of new samples with big data comparisons to authenticated historic datasets, provides a robust method for verifying the quality of cannabis products. To meet International Organization for Standardization (ISO) standards, it is necessary to implement the authentomics platform technology and build an integrated database of cannabis analytical results. This study is the first to review the topic of the authentomics of cannabis and its potential to meet ISO standards. |
abstract_unstemmed |
With the increasing accessibility of cannabis (<i<Cannabis sativa</i< L., also known as marijuana and hemp), its products are being developed as extracts for both recreational and therapeutic use. This has led to increased scrutiny by regulatory bodies, who aim to understand and regulate the complex chemistry of these products to ensure their safety and efficacy. Regulators use targeted analyses to track the concentration of key bioactive metabolites and potentially harmful contaminants, such as metals and other impurities. However, the metabolic complexity of cannabis metabolic pathways requires a more comprehensive approach. A non-targeted metabolomic analysis of cannabis products is necessary to generate data that can be used to determine their authenticity and efficacy. An authentomics approach, which involves combining the non-targeted analysis of new samples with big data comparisons to authenticated historic datasets, provides a robust method for verifying the quality of cannabis products. To meet International Organization for Standardization (ISO) standards, it is necessary to implement the authentomics platform technology and build an integrated database of cannabis analytical results. This study is the first to review the topic of the authentomics of cannabis and its potential to meet ISO standards. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
9, p 8202 |
title_short |
A Metabolomics and Big Data Approach to Cannabis Authenticity (Authentomics) |
url |
https://doi.org/10.3390/ijms24098202 https://doaj.org/article/e95bcc997a9c4290814df29c8f9d7cfb https://www.mdpi.com/1422-0067/24/9/8202 https://doaj.org/toc/1661-6596 https://doaj.org/toc/1422-0067 |
remote_bool |
true |
author2 |
Youn Young Shim Ock Jin Paek Jung-Tae Jeon Hyun-Je Park Ilbum Park Eui-Seong Park Young Jun Kim Martin J. T. Reaney |
author2Str |
Youn Young Shim Ock Jin Paek Jung-Tae Jeon Hyun-Je Park Ilbum Park Eui-Seong Park Young Jun Kim Martin J. T. Reaney |
ppnlink |
316340715 |
callnumber-subject |
QH - Natural History and Biology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/ijms24098202 |
callnumber-a |
QH301-705.5 |
up_date |
2024-07-03T14:19:54.319Z |
_version_ |
1803567910692585472 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ090363701</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413035553.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230526s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ijms24098202</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ090363701</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe95bcc997a9c4290814df29c8f9d7cfb</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Pramodkumar D. Jadhav</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Metabolomics and Big Data Approach to Cannabis Authenticity (Authentomics)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">With the increasing accessibility of cannabis (<i<Cannabis sativa</i< L., also known as marijuana and hemp), its products are being developed as extracts for both recreational and therapeutic use. This has led to increased scrutiny by regulatory bodies, who aim to understand and regulate the complex chemistry of these products to ensure their safety and efficacy. Regulators use targeted analyses to track the concentration of key bioactive metabolites and potentially harmful contaminants, such as metals and other impurities. However, the metabolic complexity of cannabis metabolic pathways requires a more comprehensive approach. A non-targeted metabolomic analysis of cannabis products is necessary to generate data that can be used to determine their authenticity and efficacy. An authentomics approach, which involves combining the non-targeted analysis of new samples with big data comparisons to authenticated historic datasets, provides a robust method for verifying the quality of cannabis products. To meet International Organization for Standardization (ISO) standards, it is necessary to implement the authentomics platform technology and build an integrated database of cannabis analytical results. This study is the first to review the topic of the authentomics of cannabis and its potential to meet ISO standards.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cannabis authenticity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<Cannabis sativa</i< L. authentomics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">metabolites</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NMR</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Youn Young Shim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ock Jin Paek</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jung-Tae Jeon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hyun-Je Park</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ilbum Park</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Eui-Seong Park</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Young Jun Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Martin J. T. Reaney</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International Journal of Molecular Sciences</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">24(2023), 9, p 8202</subfield><subfield code="w">(DE-627)316340715</subfield><subfield code="w">(DE-600)2019364-6</subfield><subfield code="x">14220067</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:9, p 8202</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ijms24098202</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e95bcc997a9c4290814df29c8f9d7cfb</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1422-0067/24/9/8202</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1661-6596</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1422-0067</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2023</subfield><subfield code="e">9, p 8202</subfield></datafield></record></collection>
|
score |
7.4031916 |