The Locations of Features in the Mass Distribution of Merging Binary Black Holes Are Robust against Uncertainties in the Metallicity-dependent Cosmic Star Formation History
New observational facilities are probing astrophysical transients such as stellar explosions and gravitational-wave sources at ever-increasing redshifts, while also revealing new features in source property distributions. To interpret these observations, we need to compare them to predictions from s...
Ausführliche Beschreibung
Autor*in: |
L. A. C. van Son [verfasserIn] S. E. de Mink [verfasserIn] M. Chruślińska [verfasserIn] C. Conroy [verfasserIn] R. Pakmor [verfasserIn] L. Hernquist [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: The Astrophysical Journal - IOP Publishing, 2022, 948(2023), 2, p 105 |
---|---|
Übergeordnetes Werk: |
volume:948 ; year:2023 ; number:2, p 105 |
Links: |
---|
DOI / URN: |
10.3847/1538-4357/acbf51 |
---|
Katalog-ID: |
DOAJ09040095X |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ09040095X | ||
003 | DE-627 | ||
005 | 20230526111000.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230526s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3847/1538-4357/acbf51 |2 doi | |
035 | |a (DE-627)DOAJ09040095X | ||
035 | |a (DE-599)DOAJ4e683ac1c88842e98babf378b64c274f | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QB460-466 | |
100 | 0 | |a L. A. C. van Son |e verfasserin |4 aut | |
245 | 1 | 4 | |a The Locations of Features in the Mass Distribution of Merging Binary Black Holes Are Robust against Uncertainties in the Metallicity-dependent Cosmic Star Formation History |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a New observational facilities are probing astrophysical transients such as stellar explosions and gravitational-wave sources at ever-increasing redshifts, while also revealing new features in source property distributions. To interpret these observations, we need to compare them to predictions from stellar population models. Such models require the metallicity-dependent cosmic star formation history ( ${ \mathcal S }(Z,z)$ ) as an input. Large uncertainties remain in the shape and evolution of this function. In this work, we propose a simple analytical function for ${ \mathcal S }(Z,z)$ . Variations of this function can be easily interpreted because the parameters link to its shape in an intuitive way. We fit our analytical function to the star-forming gas of the cosmological TNG100 simulation and find that it is able to capture the main behavior well. As an example application, we investigate the effect of systematic variations in the ${ \mathcal S }(Z,z)$ parameters on the predicted mass distribution of locally merging binary black holes. Our main findings are that (i) the locations of features are remarkably robust against variations in the metallicity-dependent cosmic star formation history, and (ii) the low-mass end is least affected by these variations. This is promising as it increases our chances of constraining the physics that govern the formation of these objects ( https://github.com/LiekeVanSon/SFRD_fit/tree/7348a1ad0d2ed6b78c70d5100fb3cd2515493f02/ ). | ||
650 | 4 | |a Star formation | |
650 | 4 | |a Gravitational wave astronomy | |
650 | 4 | |a Astrophysical black holes | |
650 | 4 | |a Stellar mass black holes | |
653 | 0 | |a Astrophysics | |
700 | 0 | |a S. E. de Mink |e verfasserin |4 aut | |
700 | 0 | |a M. Chruślińska |e verfasserin |4 aut | |
700 | 0 | |a C. Conroy |e verfasserin |4 aut | |
700 | 0 | |a R. Pakmor |e verfasserin |4 aut | |
700 | 0 | |a L. Hernquist |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t The Astrophysical Journal |d IOP Publishing, 2022 |g 948(2023), 2, p 105 |w (DE-627)269019219 |w (DE-600)1473835-1 |x 15384357 |7 nnns |
773 | 1 | 8 | |g volume:948 |g year:2023 |g number:2, p 105 |
856 | 4 | 0 | |u https://doi.org/10.3847/1538-4357/acbf51 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/4e683ac1c88842e98babf378b64c274f |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.3847/1538-4357/acbf51 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1538-4357 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 948 |j 2023 |e 2, p 105 |
author_variant |
l a c v s lacvs s e d m sedm m c mc c c cc r p rp l h lh |
---|---|
matchkey_str |
article:15384357:2023----::hlctosfetrsnhmsdsrbtoomrigiaylchlsrrbsaantnetiteiteealc |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QB |
publishDate |
2023 |
allfields |
10.3847/1538-4357/acbf51 doi (DE-627)DOAJ09040095X (DE-599)DOAJ4e683ac1c88842e98babf378b64c274f DE-627 ger DE-627 rakwb eng QB460-466 L. A. C. van Son verfasserin aut The Locations of Features in the Mass Distribution of Merging Binary Black Holes Are Robust against Uncertainties in the Metallicity-dependent Cosmic Star Formation History 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier New observational facilities are probing astrophysical transients such as stellar explosions and gravitational-wave sources at ever-increasing redshifts, while also revealing new features in source property distributions. To interpret these observations, we need to compare them to predictions from stellar population models. Such models require the metallicity-dependent cosmic star formation history ( ${ \mathcal S }(Z,z)$ ) as an input. Large uncertainties remain in the shape and evolution of this function. In this work, we propose a simple analytical function for ${ \mathcal S }(Z,z)$ . Variations of this function can be easily interpreted because the parameters link to its shape in an intuitive way. We fit our analytical function to the star-forming gas of the cosmological TNG100 simulation and find that it is able to capture the main behavior well. As an example application, we investigate the effect of systematic variations in the ${ \mathcal S }(Z,z)$ parameters on the predicted mass distribution of locally merging binary black holes. Our main findings are that (i) the locations of features are remarkably robust against variations in the metallicity-dependent cosmic star formation history, and (ii) the low-mass end is least affected by these variations. This is promising as it increases our chances of constraining the physics that govern the formation of these objects ( https://github.com/LiekeVanSon/SFRD_fit/tree/7348a1ad0d2ed6b78c70d5100fb3cd2515493f02/ ). Star formation Gravitational wave astronomy Astrophysical black holes Stellar mass black holes Astrophysics S. E. de Mink verfasserin aut M. Chruślińska verfasserin aut C. Conroy verfasserin aut R. Pakmor verfasserin aut L. Hernquist verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 948(2023), 2, p 105 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:948 year:2023 number:2, p 105 https://doi.org/10.3847/1538-4357/acbf51 kostenfrei https://doaj.org/article/4e683ac1c88842e98babf378b64c274f kostenfrei https://doi.org/10.3847/1538-4357/acbf51 kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 948 2023 2, p 105 |
spelling |
10.3847/1538-4357/acbf51 doi (DE-627)DOAJ09040095X (DE-599)DOAJ4e683ac1c88842e98babf378b64c274f DE-627 ger DE-627 rakwb eng QB460-466 L. A. C. van Son verfasserin aut The Locations of Features in the Mass Distribution of Merging Binary Black Holes Are Robust against Uncertainties in the Metallicity-dependent Cosmic Star Formation History 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier New observational facilities are probing astrophysical transients such as stellar explosions and gravitational-wave sources at ever-increasing redshifts, while also revealing new features in source property distributions. To interpret these observations, we need to compare them to predictions from stellar population models. Such models require the metallicity-dependent cosmic star formation history ( ${ \mathcal S }(Z,z)$ ) as an input. Large uncertainties remain in the shape and evolution of this function. In this work, we propose a simple analytical function for ${ \mathcal S }(Z,z)$ . Variations of this function can be easily interpreted because the parameters link to its shape in an intuitive way. We fit our analytical function to the star-forming gas of the cosmological TNG100 simulation and find that it is able to capture the main behavior well. As an example application, we investigate the effect of systematic variations in the ${ \mathcal S }(Z,z)$ parameters on the predicted mass distribution of locally merging binary black holes. Our main findings are that (i) the locations of features are remarkably robust against variations in the metallicity-dependent cosmic star formation history, and (ii) the low-mass end is least affected by these variations. This is promising as it increases our chances of constraining the physics that govern the formation of these objects ( https://github.com/LiekeVanSon/SFRD_fit/tree/7348a1ad0d2ed6b78c70d5100fb3cd2515493f02/ ). Star formation Gravitational wave astronomy Astrophysical black holes Stellar mass black holes Astrophysics S. E. de Mink verfasserin aut M. Chruślińska verfasserin aut C. Conroy verfasserin aut R. Pakmor verfasserin aut L. Hernquist verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 948(2023), 2, p 105 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:948 year:2023 number:2, p 105 https://doi.org/10.3847/1538-4357/acbf51 kostenfrei https://doaj.org/article/4e683ac1c88842e98babf378b64c274f kostenfrei https://doi.org/10.3847/1538-4357/acbf51 kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 948 2023 2, p 105 |
allfields_unstemmed |
10.3847/1538-4357/acbf51 doi (DE-627)DOAJ09040095X (DE-599)DOAJ4e683ac1c88842e98babf378b64c274f DE-627 ger DE-627 rakwb eng QB460-466 L. A. C. van Son verfasserin aut The Locations of Features in the Mass Distribution of Merging Binary Black Holes Are Robust against Uncertainties in the Metallicity-dependent Cosmic Star Formation History 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier New observational facilities are probing astrophysical transients such as stellar explosions and gravitational-wave sources at ever-increasing redshifts, while also revealing new features in source property distributions. To interpret these observations, we need to compare them to predictions from stellar population models. Such models require the metallicity-dependent cosmic star formation history ( ${ \mathcal S }(Z,z)$ ) as an input. Large uncertainties remain in the shape and evolution of this function. In this work, we propose a simple analytical function for ${ \mathcal S }(Z,z)$ . Variations of this function can be easily interpreted because the parameters link to its shape in an intuitive way. We fit our analytical function to the star-forming gas of the cosmological TNG100 simulation and find that it is able to capture the main behavior well. As an example application, we investigate the effect of systematic variations in the ${ \mathcal S }(Z,z)$ parameters on the predicted mass distribution of locally merging binary black holes. Our main findings are that (i) the locations of features are remarkably robust against variations in the metallicity-dependent cosmic star formation history, and (ii) the low-mass end is least affected by these variations. This is promising as it increases our chances of constraining the physics that govern the formation of these objects ( https://github.com/LiekeVanSon/SFRD_fit/tree/7348a1ad0d2ed6b78c70d5100fb3cd2515493f02/ ). Star formation Gravitational wave astronomy Astrophysical black holes Stellar mass black holes Astrophysics S. E. de Mink verfasserin aut M. Chruślińska verfasserin aut C. Conroy verfasserin aut R. Pakmor verfasserin aut L. Hernquist verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 948(2023), 2, p 105 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:948 year:2023 number:2, p 105 https://doi.org/10.3847/1538-4357/acbf51 kostenfrei https://doaj.org/article/4e683ac1c88842e98babf378b64c274f kostenfrei https://doi.org/10.3847/1538-4357/acbf51 kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 948 2023 2, p 105 |
allfieldsGer |
10.3847/1538-4357/acbf51 doi (DE-627)DOAJ09040095X (DE-599)DOAJ4e683ac1c88842e98babf378b64c274f DE-627 ger DE-627 rakwb eng QB460-466 L. A. C. van Son verfasserin aut The Locations of Features in the Mass Distribution of Merging Binary Black Holes Are Robust against Uncertainties in the Metallicity-dependent Cosmic Star Formation History 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier New observational facilities are probing astrophysical transients such as stellar explosions and gravitational-wave sources at ever-increasing redshifts, while also revealing new features in source property distributions. To interpret these observations, we need to compare them to predictions from stellar population models. Such models require the metallicity-dependent cosmic star formation history ( ${ \mathcal S }(Z,z)$ ) as an input. Large uncertainties remain in the shape and evolution of this function. In this work, we propose a simple analytical function for ${ \mathcal S }(Z,z)$ . Variations of this function can be easily interpreted because the parameters link to its shape in an intuitive way. We fit our analytical function to the star-forming gas of the cosmological TNG100 simulation and find that it is able to capture the main behavior well. As an example application, we investigate the effect of systematic variations in the ${ \mathcal S }(Z,z)$ parameters on the predicted mass distribution of locally merging binary black holes. Our main findings are that (i) the locations of features are remarkably robust against variations in the metallicity-dependent cosmic star formation history, and (ii) the low-mass end is least affected by these variations. This is promising as it increases our chances of constraining the physics that govern the formation of these objects ( https://github.com/LiekeVanSon/SFRD_fit/tree/7348a1ad0d2ed6b78c70d5100fb3cd2515493f02/ ). Star formation Gravitational wave astronomy Astrophysical black holes Stellar mass black holes Astrophysics S. E. de Mink verfasserin aut M. Chruślińska verfasserin aut C. Conroy verfasserin aut R. Pakmor verfasserin aut L. Hernquist verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 948(2023), 2, p 105 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:948 year:2023 number:2, p 105 https://doi.org/10.3847/1538-4357/acbf51 kostenfrei https://doaj.org/article/4e683ac1c88842e98babf378b64c274f kostenfrei https://doi.org/10.3847/1538-4357/acbf51 kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 948 2023 2, p 105 |
allfieldsSound |
10.3847/1538-4357/acbf51 doi (DE-627)DOAJ09040095X (DE-599)DOAJ4e683ac1c88842e98babf378b64c274f DE-627 ger DE-627 rakwb eng QB460-466 L. A. C. van Son verfasserin aut The Locations of Features in the Mass Distribution of Merging Binary Black Holes Are Robust against Uncertainties in the Metallicity-dependent Cosmic Star Formation History 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier New observational facilities are probing astrophysical transients such as stellar explosions and gravitational-wave sources at ever-increasing redshifts, while also revealing new features in source property distributions. To interpret these observations, we need to compare them to predictions from stellar population models. Such models require the metallicity-dependent cosmic star formation history ( ${ \mathcal S }(Z,z)$ ) as an input. Large uncertainties remain in the shape and evolution of this function. In this work, we propose a simple analytical function for ${ \mathcal S }(Z,z)$ . Variations of this function can be easily interpreted because the parameters link to its shape in an intuitive way. We fit our analytical function to the star-forming gas of the cosmological TNG100 simulation and find that it is able to capture the main behavior well. As an example application, we investigate the effect of systematic variations in the ${ \mathcal S }(Z,z)$ parameters on the predicted mass distribution of locally merging binary black holes. Our main findings are that (i) the locations of features are remarkably robust against variations in the metallicity-dependent cosmic star formation history, and (ii) the low-mass end is least affected by these variations. This is promising as it increases our chances of constraining the physics that govern the formation of these objects ( https://github.com/LiekeVanSon/SFRD_fit/tree/7348a1ad0d2ed6b78c70d5100fb3cd2515493f02/ ). Star formation Gravitational wave astronomy Astrophysical black holes Stellar mass black holes Astrophysics S. E. de Mink verfasserin aut M. Chruślińska verfasserin aut C. Conroy verfasserin aut R. Pakmor verfasserin aut L. Hernquist verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 948(2023), 2, p 105 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:948 year:2023 number:2, p 105 https://doi.org/10.3847/1538-4357/acbf51 kostenfrei https://doaj.org/article/4e683ac1c88842e98babf378b64c274f kostenfrei https://doi.org/10.3847/1538-4357/acbf51 kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 948 2023 2, p 105 |
language |
English |
source |
In The Astrophysical Journal 948(2023), 2, p 105 volume:948 year:2023 number:2, p 105 |
sourceStr |
In The Astrophysical Journal 948(2023), 2, p 105 volume:948 year:2023 number:2, p 105 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Star formation Gravitational wave astronomy Astrophysical black holes Stellar mass black holes Astrophysics |
isfreeaccess_bool |
true |
container_title |
The Astrophysical Journal |
authorswithroles_txt_mv |
L. A. C. van Son @@aut@@ S. E. de Mink @@aut@@ M. Chruślińska @@aut@@ C. Conroy @@aut@@ R. Pakmor @@aut@@ L. Hernquist @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
269019219 |
id |
DOAJ09040095X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ09040095X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230526111000.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230526s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3847/1538-4357/acbf51</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ09040095X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4e683ac1c88842e98babf378b64c274f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB460-466</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">L. A. C. van Son</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Locations of Features in the Mass Distribution of Merging Binary Black Holes Are Robust against Uncertainties in the Metallicity-dependent Cosmic Star Formation History</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">New observational facilities are probing astrophysical transients such as stellar explosions and gravitational-wave sources at ever-increasing redshifts, while also revealing new features in source property distributions. To interpret these observations, we need to compare them to predictions from stellar population models. Such models require the metallicity-dependent cosmic star formation history ( ${ \mathcal S }(Z,z)$ ) as an input. Large uncertainties remain in the shape and evolution of this function. In this work, we propose a simple analytical function for ${ \mathcal S }(Z,z)$ . Variations of this function can be easily interpreted because the parameters link to its shape in an intuitive way. We fit our analytical function to the star-forming gas of the cosmological TNG100 simulation and find that it is able to capture the main behavior well. As an example application, we investigate the effect of systematic variations in the ${ \mathcal S }(Z,z)$ parameters on the predicted mass distribution of locally merging binary black holes. Our main findings are that (i) the locations of features are remarkably robust against variations in the metallicity-dependent cosmic star formation history, and (ii) the low-mass end is least affected by these variations. This is promising as it increases our chances of constraining the physics that govern the formation of these objects ( https://github.com/LiekeVanSon/SFRD_fit/tree/7348a1ad0d2ed6b78c70d5100fb3cd2515493f02/ ).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Star formation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gravitational wave astronomy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Astrophysical black holes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stellar mass black holes</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">S. E. de Mink</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">M. Chruślińska</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">C. Conroy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">R. Pakmor</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">L. Hernquist</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">The Astrophysical Journal</subfield><subfield code="d">IOP Publishing, 2022</subfield><subfield code="g">948(2023), 2, p 105</subfield><subfield code="w">(DE-627)269019219</subfield><subfield code="w">(DE-600)1473835-1</subfield><subfield code="x">15384357</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:948</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:2, p 105</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/acbf51</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4e683ac1c88842e98babf378b64c274f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/acbf51</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1538-4357</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">948</subfield><subfield code="j">2023</subfield><subfield code="e">2, p 105</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
L. A. C. van Son |
spellingShingle |
L. A. C. van Son misc QB460-466 misc Star formation misc Gravitational wave astronomy misc Astrophysical black holes misc Stellar mass black holes misc Astrophysics The Locations of Features in the Mass Distribution of Merging Binary Black Holes Are Robust against Uncertainties in the Metallicity-dependent Cosmic Star Formation History |
authorStr |
L. A. C. van Son |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)269019219 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QB460-466 |
illustrated |
Not Illustrated |
issn |
15384357 |
topic_title |
QB460-466 The Locations of Features in the Mass Distribution of Merging Binary Black Holes Are Robust against Uncertainties in the Metallicity-dependent Cosmic Star Formation History Star formation Gravitational wave astronomy Astrophysical black holes Stellar mass black holes |
topic |
misc QB460-466 misc Star formation misc Gravitational wave astronomy misc Astrophysical black holes misc Stellar mass black holes misc Astrophysics |
topic_unstemmed |
misc QB460-466 misc Star formation misc Gravitational wave astronomy misc Astrophysical black holes misc Stellar mass black holes misc Astrophysics |
topic_browse |
misc QB460-466 misc Star formation misc Gravitational wave astronomy misc Astrophysical black holes misc Stellar mass black holes misc Astrophysics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The Astrophysical Journal |
hierarchy_parent_id |
269019219 |
hierarchy_top_title |
The Astrophysical Journal |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)269019219 (DE-600)1473835-1 |
title |
The Locations of Features in the Mass Distribution of Merging Binary Black Holes Are Robust against Uncertainties in the Metallicity-dependent Cosmic Star Formation History |
ctrlnum |
(DE-627)DOAJ09040095X (DE-599)DOAJ4e683ac1c88842e98babf378b64c274f |
title_full |
The Locations of Features in the Mass Distribution of Merging Binary Black Holes Are Robust against Uncertainties in the Metallicity-dependent Cosmic Star Formation History |
author_sort |
L. A. C. van Son |
journal |
The Astrophysical Journal |
journalStr |
The Astrophysical Journal |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
L. A. C. van Son S. E. de Mink M. Chruślińska C. Conroy R. Pakmor L. Hernquist |
container_volume |
948 |
class |
QB460-466 |
format_se |
Elektronische Aufsätze |
author-letter |
L. A. C. van Son |
doi_str_mv |
10.3847/1538-4357/acbf51 |
author2-role |
verfasserin |
title_sort |
locations of features in the mass distribution of merging binary black holes are robust against uncertainties in the metallicity-dependent cosmic star formation history |
callnumber |
QB460-466 |
title_auth |
The Locations of Features in the Mass Distribution of Merging Binary Black Holes Are Robust against Uncertainties in the Metallicity-dependent Cosmic Star Formation History |
abstract |
New observational facilities are probing astrophysical transients such as stellar explosions and gravitational-wave sources at ever-increasing redshifts, while also revealing new features in source property distributions. To interpret these observations, we need to compare them to predictions from stellar population models. Such models require the metallicity-dependent cosmic star formation history ( ${ \mathcal S }(Z,z)$ ) as an input. Large uncertainties remain in the shape and evolution of this function. In this work, we propose a simple analytical function for ${ \mathcal S }(Z,z)$ . Variations of this function can be easily interpreted because the parameters link to its shape in an intuitive way. We fit our analytical function to the star-forming gas of the cosmological TNG100 simulation and find that it is able to capture the main behavior well. As an example application, we investigate the effect of systematic variations in the ${ \mathcal S }(Z,z)$ parameters on the predicted mass distribution of locally merging binary black holes. Our main findings are that (i) the locations of features are remarkably robust against variations in the metallicity-dependent cosmic star formation history, and (ii) the low-mass end is least affected by these variations. This is promising as it increases our chances of constraining the physics that govern the formation of these objects ( https://github.com/LiekeVanSon/SFRD_fit/tree/7348a1ad0d2ed6b78c70d5100fb3cd2515493f02/ ). |
abstractGer |
New observational facilities are probing astrophysical transients such as stellar explosions and gravitational-wave sources at ever-increasing redshifts, while also revealing new features in source property distributions. To interpret these observations, we need to compare them to predictions from stellar population models. Such models require the metallicity-dependent cosmic star formation history ( ${ \mathcal S }(Z,z)$ ) as an input. Large uncertainties remain in the shape and evolution of this function. In this work, we propose a simple analytical function for ${ \mathcal S }(Z,z)$ . Variations of this function can be easily interpreted because the parameters link to its shape in an intuitive way. We fit our analytical function to the star-forming gas of the cosmological TNG100 simulation and find that it is able to capture the main behavior well. As an example application, we investigate the effect of systematic variations in the ${ \mathcal S }(Z,z)$ parameters on the predicted mass distribution of locally merging binary black holes. Our main findings are that (i) the locations of features are remarkably robust against variations in the metallicity-dependent cosmic star formation history, and (ii) the low-mass end is least affected by these variations. This is promising as it increases our chances of constraining the physics that govern the formation of these objects ( https://github.com/LiekeVanSon/SFRD_fit/tree/7348a1ad0d2ed6b78c70d5100fb3cd2515493f02/ ). |
abstract_unstemmed |
New observational facilities are probing astrophysical transients such as stellar explosions and gravitational-wave sources at ever-increasing redshifts, while also revealing new features in source property distributions. To interpret these observations, we need to compare them to predictions from stellar population models. Such models require the metallicity-dependent cosmic star formation history ( ${ \mathcal S }(Z,z)$ ) as an input. Large uncertainties remain in the shape and evolution of this function. In this work, we propose a simple analytical function for ${ \mathcal S }(Z,z)$ . Variations of this function can be easily interpreted because the parameters link to its shape in an intuitive way. We fit our analytical function to the star-forming gas of the cosmological TNG100 simulation and find that it is able to capture the main behavior well. As an example application, we investigate the effect of systematic variations in the ${ \mathcal S }(Z,z)$ parameters on the predicted mass distribution of locally merging binary black holes. Our main findings are that (i) the locations of features are remarkably robust against variations in the metallicity-dependent cosmic star formation history, and (ii) the low-mass end is least affected by these variations. This is promising as it increases our chances of constraining the physics that govern the formation of these objects ( https://github.com/LiekeVanSon/SFRD_fit/tree/7348a1ad0d2ed6b78c70d5100fb3cd2515493f02/ ). |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2, p 105 |
title_short |
The Locations of Features in the Mass Distribution of Merging Binary Black Holes Are Robust against Uncertainties in the Metallicity-dependent Cosmic Star Formation History |
url |
https://doi.org/10.3847/1538-4357/acbf51 https://doaj.org/article/4e683ac1c88842e98babf378b64c274f https://doaj.org/toc/1538-4357 |
remote_bool |
true |
author2 |
S. E. de Mink M. Chruślińska C. Conroy R. Pakmor L. Hernquist |
author2Str |
S. E. de Mink M. Chruślińska C. Conroy R. Pakmor L. Hernquist |
ppnlink |
269019219 |
callnumber-subject |
QB - Astronomy |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3847/1538-4357/acbf51 |
callnumber-a |
QB460-466 |
up_date |
2024-07-03T14:33:04.922Z |
_version_ |
1803568739697819648 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ09040095X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230526111000.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230526s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3847/1538-4357/acbf51</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ09040095X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4e683ac1c88842e98babf378b64c274f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB460-466</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">L. A. C. van Son</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Locations of Features in the Mass Distribution of Merging Binary Black Holes Are Robust against Uncertainties in the Metallicity-dependent Cosmic Star Formation History</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">New observational facilities are probing astrophysical transients such as stellar explosions and gravitational-wave sources at ever-increasing redshifts, while also revealing new features in source property distributions. To interpret these observations, we need to compare them to predictions from stellar population models. Such models require the metallicity-dependent cosmic star formation history ( ${ \mathcal S }(Z,z)$ ) as an input. Large uncertainties remain in the shape and evolution of this function. In this work, we propose a simple analytical function for ${ \mathcal S }(Z,z)$ . Variations of this function can be easily interpreted because the parameters link to its shape in an intuitive way. We fit our analytical function to the star-forming gas of the cosmological TNG100 simulation and find that it is able to capture the main behavior well. As an example application, we investigate the effect of systematic variations in the ${ \mathcal S }(Z,z)$ parameters on the predicted mass distribution of locally merging binary black holes. Our main findings are that (i) the locations of features are remarkably robust against variations in the metallicity-dependent cosmic star formation history, and (ii) the low-mass end is least affected by these variations. This is promising as it increases our chances of constraining the physics that govern the formation of these objects ( https://github.com/LiekeVanSon/SFRD_fit/tree/7348a1ad0d2ed6b78c70d5100fb3cd2515493f02/ ).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Star formation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gravitational wave astronomy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Astrophysical black holes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stellar mass black holes</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">S. E. de Mink</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">M. Chruślińska</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">C. Conroy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">R. Pakmor</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">L. Hernquist</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">The Astrophysical Journal</subfield><subfield code="d">IOP Publishing, 2022</subfield><subfield code="g">948(2023), 2, p 105</subfield><subfield code="w">(DE-627)269019219</subfield><subfield code="w">(DE-600)1473835-1</subfield><subfield code="x">15384357</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:948</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:2, p 105</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/acbf51</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4e683ac1c88842e98babf378b64c274f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/acbf51</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1538-4357</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">948</subfield><subfield code="j">2023</subfield><subfield code="e">2, p 105</subfield></datafield></record></collection>
|
score |
7.4020395 |