Phase-Modulation-Based Stable Radio Frequency Transmission via 125 km Fiber Optic Link
This paper proposes a stable radio frequency (RF) transfer scheme based on phase modulation. The passive compensation method is used to compensate the phase variations. The use of only one mixer reduces the power consumption during the frequency mixing process. By utilizing a phase modulator, the is...
Ausführliche Beschreibung
Autor*in: |
Chenxia Liu [verfasserIn] Tianwei Jiang [verfasserIn] Hanyue Wang [verfasserIn] Mingzheng Lei [verfasserIn] Tao Liu [verfasserIn] Song Yu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Photonics Journal - IEEE, 2015, 15(2023), 3, Seite 5 |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:2023 ; number:3 ; pages:5 |
Links: |
---|
DOI / URN: |
10.1109/JPHOT.2023.3271350 |
---|
Katalog-ID: |
DOAJ090443381 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ090443381 | ||
003 | DE-627 | ||
005 | 20230526111220.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230526s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/JPHOT.2023.3271350 |2 doi | |
035 | |a (DE-627)DOAJ090443381 | ||
035 | |a (DE-599)DOAJ0636456b91bf4e819a6b366e0f144f7e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1501-1820 | |
050 | 0 | |a QC350-467 | |
100 | 0 | |a Chenxia Liu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Phase-Modulation-Based Stable Radio Frequency Transmission via 125 km Fiber Optic Link |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This paper proposes a stable radio frequency (RF) transfer scheme based on phase modulation. The passive compensation method is used to compensate the phase variations. The use of only one mixer reduces the power consumption during the frequency mixing process. By utilizing a phase modulator, the issue of bias drifting, encountered in RF transmission systems with intensity modulation method, is eliminated. A single-mode fiber (SMF) serves as a dispersive medium for phase modulation-to-intensity modulation (PM-to-IM) conversion. Our passive compensation system with phase modulation has the characteristics of robustness and low insertion loss at the modulation module. The RF signal with frequency of 2.4 GHz is transferred via a 125 km fiber optic link. The measured standard Allan deviation (ADEV) of our transmission system is 3.66 × <inline-formula<<tex-math notation="LaTeX"<$10^{-13}$</tex-math<</inline-formula< at 1 s and 2.26 × <inline-formula<<tex-math notation="LaTeX"<$10^{-16}$</tex-math<</inline-formula< at 10000 s, which is better than that of the reference atomic clock. The proposed system will be useful for further applications such as in square kilometer arrays and remote clock comparison. | ||
650 | 4 | |a Radio frequency transfer | |
650 | 4 | |a phase compensation | |
650 | 4 | |a phase modulation | |
653 | 0 | |a Applied optics. Photonics | |
653 | 0 | |a Optics. Light | |
700 | 0 | |a Tianwei Jiang |e verfasserin |4 aut | |
700 | 0 | |a Hanyue Wang |e verfasserin |4 aut | |
700 | 0 | |a Mingzheng Lei |e verfasserin |4 aut | |
700 | 0 | |a Tao Liu |e verfasserin |4 aut | |
700 | 0 | |a Song Yu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Photonics Journal |d IEEE, 2015 |g 15(2023), 3, Seite 5 |w (DE-627)600310272 |w (DE-600)2495610-7 |x 19430655 |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:2023 |g number:3 |g pages:5 |
856 | 4 | 0 | |u https://doi.org/10.1109/JPHOT.2023.3271350 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/0636456b91bf4e819a6b366e0f144f7e |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/10110912/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1943-0655 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 15 |j 2023 |e 3 |h 5 |
author_variant |
c l cl t j tj h w hw m l ml t l tl s y sy |
---|---|
matchkey_str |
article:19430655:2023----::hsmdltobsdtbeaifeunyrnmsini |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TA |
publishDate |
2023 |
allfields |
10.1109/JPHOT.2023.3271350 doi (DE-627)DOAJ090443381 (DE-599)DOAJ0636456b91bf4e819a6b366e0f144f7e DE-627 ger DE-627 rakwb eng TA1501-1820 QC350-467 Chenxia Liu verfasserin aut Phase-Modulation-Based Stable Radio Frequency Transmission via 125 km Fiber Optic Link 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper proposes a stable radio frequency (RF) transfer scheme based on phase modulation. The passive compensation method is used to compensate the phase variations. The use of only one mixer reduces the power consumption during the frequency mixing process. By utilizing a phase modulator, the issue of bias drifting, encountered in RF transmission systems with intensity modulation method, is eliminated. A single-mode fiber (SMF) serves as a dispersive medium for phase modulation-to-intensity modulation (PM-to-IM) conversion. Our passive compensation system with phase modulation has the characteristics of robustness and low insertion loss at the modulation module. The RF signal with frequency of 2.4 GHz is transferred via a 125 km fiber optic link. The measured standard Allan deviation (ADEV) of our transmission system is 3.66 × <inline-formula<<tex-math notation="LaTeX"<$10^{-13}$</tex-math<</inline-formula< at 1 s and 2.26 × <inline-formula<<tex-math notation="LaTeX"<$10^{-16}$</tex-math<</inline-formula< at 10000 s, which is better than that of the reference atomic clock. The proposed system will be useful for further applications such as in square kilometer arrays and remote clock comparison. Radio frequency transfer phase compensation phase modulation Applied optics. Photonics Optics. Light Tianwei Jiang verfasserin aut Hanyue Wang verfasserin aut Mingzheng Lei verfasserin aut Tao Liu verfasserin aut Song Yu verfasserin aut In IEEE Photonics Journal IEEE, 2015 15(2023), 3, Seite 5 (DE-627)600310272 (DE-600)2495610-7 19430655 nnns volume:15 year:2023 number:3 pages:5 https://doi.org/10.1109/JPHOT.2023.3271350 kostenfrei https://doaj.org/article/0636456b91bf4e819a6b366e0f144f7e kostenfrei https://ieeexplore.ieee.org/document/10110912/ kostenfrei https://doaj.org/toc/1943-0655 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2023 3 5 |
spelling |
10.1109/JPHOT.2023.3271350 doi (DE-627)DOAJ090443381 (DE-599)DOAJ0636456b91bf4e819a6b366e0f144f7e DE-627 ger DE-627 rakwb eng TA1501-1820 QC350-467 Chenxia Liu verfasserin aut Phase-Modulation-Based Stable Radio Frequency Transmission via 125 km Fiber Optic Link 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper proposes a stable radio frequency (RF) transfer scheme based on phase modulation. The passive compensation method is used to compensate the phase variations. The use of only one mixer reduces the power consumption during the frequency mixing process. By utilizing a phase modulator, the issue of bias drifting, encountered in RF transmission systems with intensity modulation method, is eliminated. A single-mode fiber (SMF) serves as a dispersive medium for phase modulation-to-intensity modulation (PM-to-IM) conversion. Our passive compensation system with phase modulation has the characteristics of robustness and low insertion loss at the modulation module. The RF signal with frequency of 2.4 GHz is transferred via a 125 km fiber optic link. The measured standard Allan deviation (ADEV) of our transmission system is 3.66 × <inline-formula<<tex-math notation="LaTeX"<$10^{-13}$</tex-math<</inline-formula< at 1 s and 2.26 × <inline-formula<<tex-math notation="LaTeX"<$10^{-16}$</tex-math<</inline-formula< at 10000 s, which is better than that of the reference atomic clock. The proposed system will be useful for further applications such as in square kilometer arrays and remote clock comparison. Radio frequency transfer phase compensation phase modulation Applied optics. Photonics Optics. Light Tianwei Jiang verfasserin aut Hanyue Wang verfasserin aut Mingzheng Lei verfasserin aut Tao Liu verfasserin aut Song Yu verfasserin aut In IEEE Photonics Journal IEEE, 2015 15(2023), 3, Seite 5 (DE-627)600310272 (DE-600)2495610-7 19430655 nnns volume:15 year:2023 number:3 pages:5 https://doi.org/10.1109/JPHOT.2023.3271350 kostenfrei https://doaj.org/article/0636456b91bf4e819a6b366e0f144f7e kostenfrei https://ieeexplore.ieee.org/document/10110912/ kostenfrei https://doaj.org/toc/1943-0655 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2023 3 5 |
allfields_unstemmed |
10.1109/JPHOT.2023.3271350 doi (DE-627)DOAJ090443381 (DE-599)DOAJ0636456b91bf4e819a6b366e0f144f7e DE-627 ger DE-627 rakwb eng TA1501-1820 QC350-467 Chenxia Liu verfasserin aut Phase-Modulation-Based Stable Radio Frequency Transmission via 125 km Fiber Optic Link 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper proposes a stable radio frequency (RF) transfer scheme based on phase modulation. The passive compensation method is used to compensate the phase variations. The use of only one mixer reduces the power consumption during the frequency mixing process. By utilizing a phase modulator, the issue of bias drifting, encountered in RF transmission systems with intensity modulation method, is eliminated. A single-mode fiber (SMF) serves as a dispersive medium for phase modulation-to-intensity modulation (PM-to-IM) conversion. Our passive compensation system with phase modulation has the characteristics of robustness and low insertion loss at the modulation module. The RF signal with frequency of 2.4 GHz is transferred via a 125 km fiber optic link. The measured standard Allan deviation (ADEV) of our transmission system is 3.66 × <inline-formula<<tex-math notation="LaTeX"<$10^{-13}$</tex-math<</inline-formula< at 1 s and 2.26 × <inline-formula<<tex-math notation="LaTeX"<$10^{-16}$</tex-math<</inline-formula< at 10000 s, which is better than that of the reference atomic clock. The proposed system will be useful for further applications such as in square kilometer arrays and remote clock comparison. Radio frequency transfer phase compensation phase modulation Applied optics. Photonics Optics. Light Tianwei Jiang verfasserin aut Hanyue Wang verfasserin aut Mingzheng Lei verfasserin aut Tao Liu verfasserin aut Song Yu verfasserin aut In IEEE Photonics Journal IEEE, 2015 15(2023), 3, Seite 5 (DE-627)600310272 (DE-600)2495610-7 19430655 nnns volume:15 year:2023 number:3 pages:5 https://doi.org/10.1109/JPHOT.2023.3271350 kostenfrei https://doaj.org/article/0636456b91bf4e819a6b366e0f144f7e kostenfrei https://ieeexplore.ieee.org/document/10110912/ kostenfrei https://doaj.org/toc/1943-0655 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2023 3 5 |
allfieldsGer |
10.1109/JPHOT.2023.3271350 doi (DE-627)DOAJ090443381 (DE-599)DOAJ0636456b91bf4e819a6b366e0f144f7e DE-627 ger DE-627 rakwb eng TA1501-1820 QC350-467 Chenxia Liu verfasserin aut Phase-Modulation-Based Stable Radio Frequency Transmission via 125 km Fiber Optic Link 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper proposes a stable radio frequency (RF) transfer scheme based on phase modulation. The passive compensation method is used to compensate the phase variations. The use of only one mixer reduces the power consumption during the frequency mixing process. By utilizing a phase modulator, the issue of bias drifting, encountered in RF transmission systems with intensity modulation method, is eliminated. A single-mode fiber (SMF) serves as a dispersive medium for phase modulation-to-intensity modulation (PM-to-IM) conversion. Our passive compensation system with phase modulation has the characteristics of robustness and low insertion loss at the modulation module. The RF signal with frequency of 2.4 GHz is transferred via a 125 km fiber optic link. The measured standard Allan deviation (ADEV) of our transmission system is 3.66 × <inline-formula<<tex-math notation="LaTeX"<$10^{-13}$</tex-math<</inline-formula< at 1 s and 2.26 × <inline-formula<<tex-math notation="LaTeX"<$10^{-16}$</tex-math<</inline-formula< at 10000 s, which is better than that of the reference atomic clock. The proposed system will be useful for further applications such as in square kilometer arrays and remote clock comparison. Radio frequency transfer phase compensation phase modulation Applied optics. Photonics Optics. Light Tianwei Jiang verfasserin aut Hanyue Wang verfasserin aut Mingzheng Lei verfasserin aut Tao Liu verfasserin aut Song Yu verfasserin aut In IEEE Photonics Journal IEEE, 2015 15(2023), 3, Seite 5 (DE-627)600310272 (DE-600)2495610-7 19430655 nnns volume:15 year:2023 number:3 pages:5 https://doi.org/10.1109/JPHOT.2023.3271350 kostenfrei https://doaj.org/article/0636456b91bf4e819a6b366e0f144f7e kostenfrei https://ieeexplore.ieee.org/document/10110912/ kostenfrei https://doaj.org/toc/1943-0655 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2023 3 5 |
allfieldsSound |
10.1109/JPHOT.2023.3271350 doi (DE-627)DOAJ090443381 (DE-599)DOAJ0636456b91bf4e819a6b366e0f144f7e DE-627 ger DE-627 rakwb eng TA1501-1820 QC350-467 Chenxia Liu verfasserin aut Phase-Modulation-Based Stable Radio Frequency Transmission via 125 km Fiber Optic Link 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper proposes a stable radio frequency (RF) transfer scheme based on phase modulation. The passive compensation method is used to compensate the phase variations. The use of only one mixer reduces the power consumption during the frequency mixing process. By utilizing a phase modulator, the issue of bias drifting, encountered in RF transmission systems with intensity modulation method, is eliminated. A single-mode fiber (SMF) serves as a dispersive medium for phase modulation-to-intensity modulation (PM-to-IM) conversion. Our passive compensation system with phase modulation has the characteristics of robustness and low insertion loss at the modulation module. The RF signal with frequency of 2.4 GHz is transferred via a 125 km fiber optic link. The measured standard Allan deviation (ADEV) of our transmission system is 3.66 × <inline-formula<<tex-math notation="LaTeX"<$10^{-13}$</tex-math<</inline-formula< at 1 s and 2.26 × <inline-formula<<tex-math notation="LaTeX"<$10^{-16}$</tex-math<</inline-formula< at 10000 s, which is better than that of the reference atomic clock. The proposed system will be useful for further applications such as in square kilometer arrays and remote clock comparison. Radio frequency transfer phase compensation phase modulation Applied optics. Photonics Optics. Light Tianwei Jiang verfasserin aut Hanyue Wang verfasserin aut Mingzheng Lei verfasserin aut Tao Liu verfasserin aut Song Yu verfasserin aut In IEEE Photonics Journal IEEE, 2015 15(2023), 3, Seite 5 (DE-627)600310272 (DE-600)2495610-7 19430655 nnns volume:15 year:2023 number:3 pages:5 https://doi.org/10.1109/JPHOT.2023.3271350 kostenfrei https://doaj.org/article/0636456b91bf4e819a6b366e0f144f7e kostenfrei https://ieeexplore.ieee.org/document/10110912/ kostenfrei https://doaj.org/toc/1943-0655 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2023 3 5 |
language |
English |
source |
In IEEE Photonics Journal 15(2023), 3, Seite 5 volume:15 year:2023 number:3 pages:5 |
sourceStr |
In IEEE Photonics Journal 15(2023), 3, Seite 5 volume:15 year:2023 number:3 pages:5 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Radio frequency transfer phase compensation phase modulation Applied optics. Photonics Optics. Light |
isfreeaccess_bool |
true |
container_title |
IEEE Photonics Journal |
authorswithroles_txt_mv |
Chenxia Liu @@aut@@ Tianwei Jiang @@aut@@ Hanyue Wang @@aut@@ Mingzheng Lei @@aut@@ Tao Liu @@aut@@ Song Yu @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
600310272 |
id |
DOAJ090443381 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ090443381</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230526111220.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230526s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/JPHOT.2023.3271350</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ090443381</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ0636456b91bf4e819a6b366e0f144f7e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1501-1820</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC350-467</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Chenxia Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Phase-Modulation-Based Stable Radio Frequency Transmission via 125 km Fiber Optic Link</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper proposes a stable radio frequency (RF) transfer scheme based on phase modulation. The passive compensation method is used to compensate the phase variations. The use of only one mixer reduces the power consumption during the frequency mixing process. By utilizing a phase modulator, the issue of bias drifting, encountered in RF transmission systems with intensity modulation method, is eliminated. A single-mode fiber (SMF) serves as a dispersive medium for phase modulation-to-intensity modulation (PM-to-IM) conversion. Our passive compensation system with phase modulation has the characteristics of robustness and low insertion loss at the modulation module. The RF signal with frequency of 2.4 GHz is transferred via a 125 km fiber optic link. The measured standard Allan deviation (ADEV) of our transmission system is 3.66 × <inline-formula<<tex-math notation="LaTeX"<$10^{-13}$</tex-math<</inline-formula< at 1 s and 2.26 × <inline-formula<<tex-math notation="LaTeX"<$10^{-16}$</tex-math<</inline-formula< at 10000 s, which is better than that of the reference atomic clock. The proposed system will be useful for further applications such as in square kilometer arrays and remote clock comparison.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radio frequency transfer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phase compensation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phase modulation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Applied optics. Photonics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Optics. Light</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tianwei Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hanyue Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mingzheng Lei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tao Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Song Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Photonics Journal</subfield><subfield code="d">IEEE, 2015</subfield><subfield code="g">15(2023), 3, Seite 5</subfield><subfield code="w">(DE-627)600310272</subfield><subfield code="w">(DE-600)2495610-7</subfield><subfield code="x">19430655</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/JPHOT.2023.3271350</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/0636456b91bf4e819a6b366e0f144f7e</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/10110912/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1943-0655</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2023</subfield><subfield code="e">3</subfield><subfield code="h">5</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Chenxia Liu |
spellingShingle |
Chenxia Liu misc TA1501-1820 misc QC350-467 misc Radio frequency transfer misc phase compensation misc phase modulation misc Applied optics. Photonics misc Optics. Light Phase-Modulation-Based Stable Radio Frequency Transmission via 125 km Fiber Optic Link |
authorStr |
Chenxia Liu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)600310272 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1501-1820 |
illustrated |
Not Illustrated |
issn |
19430655 |
topic_title |
TA1501-1820 QC350-467 Phase-Modulation-Based Stable Radio Frequency Transmission via 125 km Fiber Optic Link Radio frequency transfer phase compensation phase modulation |
topic |
misc TA1501-1820 misc QC350-467 misc Radio frequency transfer misc phase compensation misc phase modulation misc Applied optics. Photonics misc Optics. Light |
topic_unstemmed |
misc TA1501-1820 misc QC350-467 misc Radio frequency transfer misc phase compensation misc phase modulation misc Applied optics. Photonics misc Optics. Light |
topic_browse |
misc TA1501-1820 misc QC350-467 misc Radio frequency transfer misc phase compensation misc phase modulation misc Applied optics. Photonics misc Optics. Light |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Photonics Journal |
hierarchy_parent_id |
600310272 |
hierarchy_top_title |
IEEE Photonics Journal |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)600310272 (DE-600)2495610-7 |
title |
Phase-Modulation-Based Stable Radio Frequency Transmission via 125 km Fiber Optic Link |
ctrlnum |
(DE-627)DOAJ090443381 (DE-599)DOAJ0636456b91bf4e819a6b366e0f144f7e |
title_full |
Phase-Modulation-Based Stable Radio Frequency Transmission via 125 km Fiber Optic Link |
author_sort |
Chenxia Liu |
journal |
IEEE Photonics Journal |
journalStr |
IEEE Photonics Journal |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
5 |
author_browse |
Chenxia Liu Tianwei Jiang Hanyue Wang Mingzheng Lei Tao Liu Song Yu |
container_volume |
15 |
class |
TA1501-1820 QC350-467 |
format_se |
Elektronische Aufsätze |
author-letter |
Chenxia Liu |
doi_str_mv |
10.1109/JPHOT.2023.3271350 |
author2-role |
verfasserin |
title_sort |
phase-modulation-based stable radio frequency transmission via 125 km fiber optic link |
callnumber |
TA1501-1820 |
title_auth |
Phase-Modulation-Based Stable Radio Frequency Transmission via 125 km Fiber Optic Link |
abstract |
This paper proposes a stable radio frequency (RF) transfer scheme based on phase modulation. The passive compensation method is used to compensate the phase variations. The use of only one mixer reduces the power consumption during the frequency mixing process. By utilizing a phase modulator, the issue of bias drifting, encountered in RF transmission systems with intensity modulation method, is eliminated. A single-mode fiber (SMF) serves as a dispersive medium for phase modulation-to-intensity modulation (PM-to-IM) conversion. Our passive compensation system with phase modulation has the characteristics of robustness and low insertion loss at the modulation module. The RF signal with frequency of 2.4 GHz is transferred via a 125 km fiber optic link. The measured standard Allan deviation (ADEV) of our transmission system is 3.66 × <inline-formula<<tex-math notation="LaTeX"<$10^{-13}$</tex-math<</inline-formula< at 1 s and 2.26 × <inline-formula<<tex-math notation="LaTeX"<$10^{-16}$</tex-math<</inline-formula< at 10000 s, which is better than that of the reference atomic clock. The proposed system will be useful for further applications such as in square kilometer arrays and remote clock comparison. |
abstractGer |
This paper proposes a stable radio frequency (RF) transfer scheme based on phase modulation. The passive compensation method is used to compensate the phase variations. The use of only one mixer reduces the power consumption during the frequency mixing process. By utilizing a phase modulator, the issue of bias drifting, encountered in RF transmission systems with intensity modulation method, is eliminated. A single-mode fiber (SMF) serves as a dispersive medium for phase modulation-to-intensity modulation (PM-to-IM) conversion. Our passive compensation system with phase modulation has the characteristics of robustness and low insertion loss at the modulation module. The RF signal with frequency of 2.4 GHz is transferred via a 125 km fiber optic link. The measured standard Allan deviation (ADEV) of our transmission system is 3.66 × <inline-formula<<tex-math notation="LaTeX"<$10^{-13}$</tex-math<</inline-formula< at 1 s and 2.26 × <inline-formula<<tex-math notation="LaTeX"<$10^{-16}$</tex-math<</inline-formula< at 10000 s, which is better than that of the reference atomic clock. The proposed system will be useful for further applications such as in square kilometer arrays and remote clock comparison. |
abstract_unstemmed |
This paper proposes a stable radio frequency (RF) transfer scheme based on phase modulation. The passive compensation method is used to compensate the phase variations. The use of only one mixer reduces the power consumption during the frequency mixing process. By utilizing a phase modulator, the issue of bias drifting, encountered in RF transmission systems with intensity modulation method, is eliminated. A single-mode fiber (SMF) serves as a dispersive medium for phase modulation-to-intensity modulation (PM-to-IM) conversion. Our passive compensation system with phase modulation has the characteristics of robustness and low insertion loss at the modulation module. The RF signal with frequency of 2.4 GHz is transferred via a 125 km fiber optic link. The measured standard Allan deviation (ADEV) of our transmission system is 3.66 × <inline-formula<<tex-math notation="LaTeX"<$10^{-13}$</tex-math<</inline-formula< at 1 s and 2.26 × <inline-formula<<tex-math notation="LaTeX"<$10^{-16}$</tex-math<</inline-formula< at 10000 s, which is better than that of the reference atomic clock. The proposed system will be useful for further applications such as in square kilometer arrays and remote clock comparison. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3 |
title_short |
Phase-Modulation-Based Stable Radio Frequency Transmission via 125 km Fiber Optic Link |
url |
https://doi.org/10.1109/JPHOT.2023.3271350 https://doaj.org/article/0636456b91bf4e819a6b366e0f144f7e https://ieeexplore.ieee.org/document/10110912/ https://doaj.org/toc/1943-0655 |
remote_bool |
true |
author2 |
Tianwei Jiang Hanyue Wang Mingzheng Lei Tao Liu Song Yu |
author2Str |
Tianwei Jiang Hanyue Wang Mingzheng Lei Tao Liu Song Yu |
ppnlink |
600310272 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/JPHOT.2023.3271350 |
callnumber-a |
TA1501-1820 |
up_date |
2024-07-03T14:48:38.532Z |
_version_ |
1803569718658859008 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ090443381</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230526111220.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230526s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/JPHOT.2023.3271350</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ090443381</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ0636456b91bf4e819a6b366e0f144f7e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1501-1820</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC350-467</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Chenxia Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Phase-Modulation-Based Stable Radio Frequency Transmission via 125 km Fiber Optic Link</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper proposes a stable radio frequency (RF) transfer scheme based on phase modulation. The passive compensation method is used to compensate the phase variations. The use of only one mixer reduces the power consumption during the frequency mixing process. By utilizing a phase modulator, the issue of bias drifting, encountered in RF transmission systems with intensity modulation method, is eliminated. A single-mode fiber (SMF) serves as a dispersive medium for phase modulation-to-intensity modulation (PM-to-IM) conversion. Our passive compensation system with phase modulation has the characteristics of robustness and low insertion loss at the modulation module. The RF signal with frequency of 2.4 GHz is transferred via a 125 km fiber optic link. The measured standard Allan deviation (ADEV) of our transmission system is 3.66 × <inline-formula<<tex-math notation="LaTeX"<$10^{-13}$</tex-math<</inline-formula< at 1 s and 2.26 × <inline-formula<<tex-math notation="LaTeX"<$10^{-16}$</tex-math<</inline-formula< at 10000 s, which is better than that of the reference atomic clock. The proposed system will be useful for further applications such as in square kilometer arrays and remote clock comparison.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radio frequency transfer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phase compensation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phase modulation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Applied optics. Photonics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Optics. Light</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tianwei Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hanyue Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mingzheng Lei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tao Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Song Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Photonics Journal</subfield><subfield code="d">IEEE, 2015</subfield><subfield code="g">15(2023), 3, Seite 5</subfield><subfield code="w">(DE-627)600310272</subfield><subfield code="w">(DE-600)2495610-7</subfield><subfield code="x">19430655</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/JPHOT.2023.3271350</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/0636456b91bf4e819a6b366e0f144f7e</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/10110912/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1943-0655</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2023</subfield><subfield code="e">3</subfield><subfield code="h">5</subfield></datafield></record></collection>
|
score |
7.4021063 |