Regulation of Star Formation by a Hot Circumgalactic Medium
Galactic outflows driven by supernovae (SNe) are thought to be a powerful regulator of a galaxy’s star-forming efficiency. Mass, energy, and metal outflows ( η _M , η _E , and η _Z , here normalized by the star formation rate, the SNe energy, and metal production rates, respectively) shape galaxy pr...
Ausführliche Beschreibung
Autor*in: |
Christopher Carr [verfasserIn] Greg L. Bryan [verfasserIn] Drummond B. Fielding [verfasserIn] Viraj Pandya [verfasserIn] Rachel S. Somerville [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: The Astrophysical Journal - IOP Publishing, 2022, 949(2023), 1, p 21 |
---|---|
Übergeordnetes Werk: |
volume:949 ; year:2023 ; number:1, p 21 |
Links: |
---|
DOI / URN: |
10.3847/1538-4357/acc4c7 |
---|
Katalog-ID: |
DOAJ090474287 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ090474287 | ||
003 | DE-627 | ||
005 | 20230526111742.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230526s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3847/1538-4357/acc4c7 |2 doi | |
035 | |a (DE-627)DOAJ090474287 | ||
035 | |a (DE-599)DOAJ7e667a3ab5134daba1bf4cd450864a61 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QB460-466 | |
100 | 0 | |a Christopher Carr |e verfasserin |4 aut | |
245 | 1 | 0 | |a Regulation of Star Formation by a Hot Circumgalactic Medium |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Galactic outflows driven by supernovae (SNe) are thought to be a powerful regulator of a galaxy’s star-forming efficiency. Mass, energy, and metal outflows ( η _M , η _E , and η _Z , here normalized by the star formation rate, the SNe energy, and metal production rates, respectively) shape galaxy properties by both ejecting gas and metals out of the galaxy and by heating the circumgalactic medium (CGM), preventing future accretion. Traditionally, models have assumed that galaxies self-regulate by ejecting a large fraction of the gas, which enters the interstellar medium (ISM), although whether such high mass loadings agree with observations is still unclear. To better understand how the relative importance of ejective (i.e., high mass loading) versus preventative (i.e., high energy loading) feedback affects the present-day properties of galaxies, we develop a simple gas-regulator model of galaxy evolution, where the stellar mass, ISM, and CGM are modeled as distinct reservoirs which exchange mass, metals, and energy at different rates within a growing halo. Focusing on the halo mass range from 10 ^10 to 10 ^12 M _⊙ , we demonstrate that, with reasonable parameter choices, we can reproduce the stellar-to-halo mass relation and the ISM-to-stellar mass relation with low-mass-loaded ( η _M ∼ 0.1–10) but high-energy-loaded ( η _E ∼ 0.1–1) winds, with self-regulation occurring primarily through heating and cooling of the CGM. We show that the model predictions are robust against changes to the mass loading of outflows but are quite sensitive to our choice of the energy loading, preferring η _E ∼ 1 for the lowest-mass halos and ∼0.1 for Milky Way–like halos. | ||
650 | 4 | |a Circumgalactic medium | |
650 | 4 | |a Galactic winds | |
650 | 4 | |a Galaxies | |
650 | 4 | |a Galaxy evolution | |
650 | 4 | |a Galaxy physics | |
650 | 4 | |a Galactic and extragalactic astronomy | |
653 | 0 | |a Astrophysics | |
700 | 0 | |a Greg L. Bryan |e verfasserin |4 aut | |
700 | 0 | |a Drummond B. Fielding |e verfasserin |4 aut | |
700 | 0 | |a Viraj Pandya |e verfasserin |4 aut | |
700 | 0 | |a Rachel S. Somerville |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t The Astrophysical Journal |d IOP Publishing, 2022 |g 949(2023), 1, p 21 |w (DE-627)269019219 |w (DE-600)1473835-1 |x 15384357 |7 nnns |
773 | 1 | 8 | |g volume:949 |g year:2023 |g number:1, p 21 |
856 | 4 | 0 | |u https://doi.org/10.3847/1538-4357/acc4c7 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/7e667a3ab5134daba1bf4cd450864a61 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.3847/1538-4357/acc4c7 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1538-4357 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 949 |j 2023 |e 1, p 21 |
author_variant |
c c cc g l b glb d b f dbf v p vp r s s rss |
---|---|
matchkey_str |
article:15384357:2023----::euainftromtobaocru |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QB |
publishDate |
2023 |
allfields |
10.3847/1538-4357/acc4c7 doi (DE-627)DOAJ090474287 (DE-599)DOAJ7e667a3ab5134daba1bf4cd450864a61 DE-627 ger DE-627 rakwb eng QB460-466 Christopher Carr verfasserin aut Regulation of Star Formation by a Hot Circumgalactic Medium 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Galactic outflows driven by supernovae (SNe) are thought to be a powerful regulator of a galaxy’s star-forming efficiency. Mass, energy, and metal outflows ( η _M , η _E , and η _Z , here normalized by the star formation rate, the SNe energy, and metal production rates, respectively) shape galaxy properties by both ejecting gas and metals out of the galaxy and by heating the circumgalactic medium (CGM), preventing future accretion. Traditionally, models have assumed that galaxies self-regulate by ejecting a large fraction of the gas, which enters the interstellar medium (ISM), although whether such high mass loadings agree with observations is still unclear. To better understand how the relative importance of ejective (i.e., high mass loading) versus preventative (i.e., high energy loading) feedback affects the present-day properties of galaxies, we develop a simple gas-regulator model of galaxy evolution, where the stellar mass, ISM, and CGM are modeled as distinct reservoirs which exchange mass, metals, and energy at different rates within a growing halo. Focusing on the halo mass range from 10 ^10 to 10 ^12 M _⊙ , we demonstrate that, with reasonable parameter choices, we can reproduce the stellar-to-halo mass relation and the ISM-to-stellar mass relation with low-mass-loaded ( η _M ∼ 0.1–10) but high-energy-loaded ( η _E ∼ 0.1–1) winds, with self-regulation occurring primarily through heating and cooling of the CGM. We show that the model predictions are robust against changes to the mass loading of outflows but are quite sensitive to our choice of the energy loading, preferring η _E ∼ 1 for the lowest-mass halos and ∼0.1 for Milky Way–like halos. Circumgalactic medium Galactic winds Galaxies Galaxy evolution Galaxy physics Galactic and extragalactic astronomy Astrophysics Greg L. Bryan verfasserin aut Drummond B. Fielding verfasserin aut Viraj Pandya verfasserin aut Rachel S. Somerville verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 949(2023), 1, p 21 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:949 year:2023 number:1, p 21 https://doi.org/10.3847/1538-4357/acc4c7 kostenfrei https://doaj.org/article/7e667a3ab5134daba1bf4cd450864a61 kostenfrei https://doi.org/10.3847/1538-4357/acc4c7 kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 949 2023 1, p 21 |
spelling |
10.3847/1538-4357/acc4c7 doi (DE-627)DOAJ090474287 (DE-599)DOAJ7e667a3ab5134daba1bf4cd450864a61 DE-627 ger DE-627 rakwb eng QB460-466 Christopher Carr verfasserin aut Regulation of Star Formation by a Hot Circumgalactic Medium 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Galactic outflows driven by supernovae (SNe) are thought to be a powerful regulator of a galaxy’s star-forming efficiency. Mass, energy, and metal outflows ( η _M , η _E , and η _Z , here normalized by the star formation rate, the SNe energy, and metal production rates, respectively) shape galaxy properties by both ejecting gas and metals out of the galaxy and by heating the circumgalactic medium (CGM), preventing future accretion. Traditionally, models have assumed that galaxies self-regulate by ejecting a large fraction of the gas, which enters the interstellar medium (ISM), although whether such high mass loadings agree with observations is still unclear. To better understand how the relative importance of ejective (i.e., high mass loading) versus preventative (i.e., high energy loading) feedback affects the present-day properties of galaxies, we develop a simple gas-regulator model of galaxy evolution, where the stellar mass, ISM, and CGM are modeled as distinct reservoirs which exchange mass, metals, and energy at different rates within a growing halo. Focusing on the halo mass range from 10 ^10 to 10 ^12 M _⊙ , we demonstrate that, with reasonable parameter choices, we can reproduce the stellar-to-halo mass relation and the ISM-to-stellar mass relation with low-mass-loaded ( η _M ∼ 0.1–10) but high-energy-loaded ( η _E ∼ 0.1–1) winds, with self-regulation occurring primarily through heating and cooling of the CGM. We show that the model predictions are robust against changes to the mass loading of outflows but are quite sensitive to our choice of the energy loading, preferring η _E ∼ 1 for the lowest-mass halos and ∼0.1 for Milky Way–like halos. Circumgalactic medium Galactic winds Galaxies Galaxy evolution Galaxy physics Galactic and extragalactic astronomy Astrophysics Greg L. Bryan verfasserin aut Drummond B. Fielding verfasserin aut Viraj Pandya verfasserin aut Rachel S. Somerville verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 949(2023), 1, p 21 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:949 year:2023 number:1, p 21 https://doi.org/10.3847/1538-4357/acc4c7 kostenfrei https://doaj.org/article/7e667a3ab5134daba1bf4cd450864a61 kostenfrei https://doi.org/10.3847/1538-4357/acc4c7 kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 949 2023 1, p 21 |
allfields_unstemmed |
10.3847/1538-4357/acc4c7 doi (DE-627)DOAJ090474287 (DE-599)DOAJ7e667a3ab5134daba1bf4cd450864a61 DE-627 ger DE-627 rakwb eng QB460-466 Christopher Carr verfasserin aut Regulation of Star Formation by a Hot Circumgalactic Medium 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Galactic outflows driven by supernovae (SNe) are thought to be a powerful regulator of a galaxy’s star-forming efficiency. Mass, energy, and metal outflows ( η _M , η _E , and η _Z , here normalized by the star formation rate, the SNe energy, and metal production rates, respectively) shape galaxy properties by both ejecting gas and metals out of the galaxy and by heating the circumgalactic medium (CGM), preventing future accretion. Traditionally, models have assumed that galaxies self-regulate by ejecting a large fraction of the gas, which enters the interstellar medium (ISM), although whether such high mass loadings agree with observations is still unclear. To better understand how the relative importance of ejective (i.e., high mass loading) versus preventative (i.e., high energy loading) feedback affects the present-day properties of galaxies, we develop a simple gas-regulator model of galaxy evolution, where the stellar mass, ISM, and CGM are modeled as distinct reservoirs which exchange mass, metals, and energy at different rates within a growing halo. Focusing on the halo mass range from 10 ^10 to 10 ^12 M _⊙ , we demonstrate that, with reasonable parameter choices, we can reproduce the stellar-to-halo mass relation and the ISM-to-stellar mass relation with low-mass-loaded ( η _M ∼ 0.1–10) but high-energy-loaded ( η _E ∼ 0.1–1) winds, with self-regulation occurring primarily through heating and cooling of the CGM. We show that the model predictions are robust against changes to the mass loading of outflows but are quite sensitive to our choice of the energy loading, preferring η _E ∼ 1 for the lowest-mass halos and ∼0.1 for Milky Way–like halos. Circumgalactic medium Galactic winds Galaxies Galaxy evolution Galaxy physics Galactic and extragalactic astronomy Astrophysics Greg L. Bryan verfasserin aut Drummond B. Fielding verfasserin aut Viraj Pandya verfasserin aut Rachel S. Somerville verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 949(2023), 1, p 21 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:949 year:2023 number:1, p 21 https://doi.org/10.3847/1538-4357/acc4c7 kostenfrei https://doaj.org/article/7e667a3ab5134daba1bf4cd450864a61 kostenfrei https://doi.org/10.3847/1538-4357/acc4c7 kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 949 2023 1, p 21 |
allfieldsGer |
10.3847/1538-4357/acc4c7 doi (DE-627)DOAJ090474287 (DE-599)DOAJ7e667a3ab5134daba1bf4cd450864a61 DE-627 ger DE-627 rakwb eng QB460-466 Christopher Carr verfasserin aut Regulation of Star Formation by a Hot Circumgalactic Medium 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Galactic outflows driven by supernovae (SNe) are thought to be a powerful regulator of a galaxy’s star-forming efficiency. Mass, energy, and metal outflows ( η _M , η _E , and η _Z , here normalized by the star formation rate, the SNe energy, and metal production rates, respectively) shape galaxy properties by both ejecting gas and metals out of the galaxy and by heating the circumgalactic medium (CGM), preventing future accretion. Traditionally, models have assumed that galaxies self-regulate by ejecting a large fraction of the gas, which enters the interstellar medium (ISM), although whether such high mass loadings agree with observations is still unclear. To better understand how the relative importance of ejective (i.e., high mass loading) versus preventative (i.e., high energy loading) feedback affects the present-day properties of galaxies, we develop a simple gas-regulator model of galaxy evolution, where the stellar mass, ISM, and CGM are modeled as distinct reservoirs which exchange mass, metals, and energy at different rates within a growing halo. Focusing on the halo mass range from 10 ^10 to 10 ^12 M _⊙ , we demonstrate that, with reasonable parameter choices, we can reproduce the stellar-to-halo mass relation and the ISM-to-stellar mass relation with low-mass-loaded ( η _M ∼ 0.1–10) but high-energy-loaded ( η _E ∼ 0.1–1) winds, with self-regulation occurring primarily through heating and cooling of the CGM. We show that the model predictions are robust against changes to the mass loading of outflows but are quite sensitive to our choice of the energy loading, preferring η _E ∼ 1 for the lowest-mass halos and ∼0.1 for Milky Way–like halos. Circumgalactic medium Galactic winds Galaxies Galaxy evolution Galaxy physics Galactic and extragalactic astronomy Astrophysics Greg L. Bryan verfasserin aut Drummond B. Fielding verfasserin aut Viraj Pandya verfasserin aut Rachel S. Somerville verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 949(2023), 1, p 21 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:949 year:2023 number:1, p 21 https://doi.org/10.3847/1538-4357/acc4c7 kostenfrei https://doaj.org/article/7e667a3ab5134daba1bf4cd450864a61 kostenfrei https://doi.org/10.3847/1538-4357/acc4c7 kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 949 2023 1, p 21 |
allfieldsSound |
10.3847/1538-4357/acc4c7 doi (DE-627)DOAJ090474287 (DE-599)DOAJ7e667a3ab5134daba1bf4cd450864a61 DE-627 ger DE-627 rakwb eng QB460-466 Christopher Carr verfasserin aut Regulation of Star Formation by a Hot Circumgalactic Medium 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Galactic outflows driven by supernovae (SNe) are thought to be a powerful regulator of a galaxy’s star-forming efficiency. Mass, energy, and metal outflows ( η _M , η _E , and η _Z , here normalized by the star formation rate, the SNe energy, and metal production rates, respectively) shape galaxy properties by both ejecting gas and metals out of the galaxy and by heating the circumgalactic medium (CGM), preventing future accretion. Traditionally, models have assumed that galaxies self-regulate by ejecting a large fraction of the gas, which enters the interstellar medium (ISM), although whether such high mass loadings agree with observations is still unclear. To better understand how the relative importance of ejective (i.e., high mass loading) versus preventative (i.e., high energy loading) feedback affects the present-day properties of galaxies, we develop a simple gas-regulator model of galaxy evolution, where the stellar mass, ISM, and CGM are modeled as distinct reservoirs which exchange mass, metals, and energy at different rates within a growing halo. Focusing on the halo mass range from 10 ^10 to 10 ^12 M _⊙ , we demonstrate that, with reasonable parameter choices, we can reproduce the stellar-to-halo mass relation and the ISM-to-stellar mass relation with low-mass-loaded ( η _M ∼ 0.1–10) but high-energy-loaded ( η _E ∼ 0.1–1) winds, with self-regulation occurring primarily through heating and cooling of the CGM. We show that the model predictions are robust against changes to the mass loading of outflows but are quite sensitive to our choice of the energy loading, preferring η _E ∼ 1 for the lowest-mass halos and ∼0.1 for Milky Way–like halos. Circumgalactic medium Galactic winds Galaxies Galaxy evolution Galaxy physics Galactic and extragalactic astronomy Astrophysics Greg L. Bryan verfasserin aut Drummond B. Fielding verfasserin aut Viraj Pandya verfasserin aut Rachel S. Somerville verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 949(2023), 1, p 21 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:949 year:2023 number:1, p 21 https://doi.org/10.3847/1538-4357/acc4c7 kostenfrei https://doaj.org/article/7e667a3ab5134daba1bf4cd450864a61 kostenfrei https://doi.org/10.3847/1538-4357/acc4c7 kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 949 2023 1, p 21 |
language |
English |
source |
In The Astrophysical Journal 949(2023), 1, p 21 volume:949 year:2023 number:1, p 21 |
sourceStr |
In The Astrophysical Journal 949(2023), 1, p 21 volume:949 year:2023 number:1, p 21 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Circumgalactic medium Galactic winds Galaxies Galaxy evolution Galaxy physics Galactic and extragalactic astronomy Astrophysics |
isfreeaccess_bool |
true |
container_title |
The Astrophysical Journal |
authorswithroles_txt_mv |
Christopher Carr @@aut@@ Greg L. Bryan @@aut@@ Drummond B. Fielding @@aut@@ Viraj Pandya @@aut@@ Rachel S. Somerville @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
269019219 |
id |
DOAJ090474287 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ090474287</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230526111742.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230526s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3847/1538-4357/acc4c7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ090474287</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7e667a3ab5134daba1bf4cd450864a61</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB460-466</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Christopher Carr</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Regulation of Star Formation by a Hot Circumgalactic Medium</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Galactic outflows driven by supernovae (SNe) are thought to be a powerful regulator of a galaxy’s star-forming efficiency. Mass, energy, and metal outflows ( η _M , η _E , and η _Z , here normalized by the star formation rate, the SNe energy, and metal production rates, respectively) shape galaxy properties by both ejecting gas and metals out of the galaxy and by heating the circumgalactic medium (CGM), preventing future accretion. Traditionally, models have assumed that galaxies self-regulate by ejecting a large fraction of the gas, which enters the interstellar medium (ISM), although whether such high mass loadings agree with observations is still unclear. To better understand how the relative importance of ejective (i.e., high mass loading) versus preventative (i.e., high energy loading) feedback affects the present-day properties of galaxies, we develop a simple gas-regulator model of galaxy evolution, where the stellar mass, ISM, and CGM are modeled as distinct reservoirs which exchange mass, metals, and energy at different rates within a growing halo. Focusing on the halo mass range from 10 ^10 to 10 ^12 M _⊙ , we demonstrate that, with reasonable parameter choices, we can reproduce the stellar-to-halo mass relation and the ISM-to-stellar mass relation with low-mass-loaded ( η _M ∼ 0.1–10) but high-energy-loaded ( η _E ∼ 0.1–1) winds, with self-regulation occurring primarily through heating and cooling of the CGM. We show that the model predictions are robust against changes to the mass loading of outflows but are quite sensitive to our choice of the energy loading, preferring η _E ∼ 1 for the lowest-mass halos and ∼0.1 for Milky Way–like halos.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Circumgalactic medium</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Galactic winds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Galaxies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Galaxy evolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Galaxy physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Galactic and extragalactic astronomy</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Greg L. Bryan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Drummond B. Fielding</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Viraj Pandya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rachel S. Somerville</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">The Astrophysical Journal</subfield><subfield code="d">IOP Publishing, 2022</subfield><subfield code="g">949(2023), 1, p 21</subfield><subfield code="w">(DE-627)269019219</subfield><subfield code="w">(DE-600)1473835-1</subfield><subfield code="x">15384357</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:949</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1, p 21</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/acc4c7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7e667a3ab5134daba1bf4cd450864a61</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/acc4c7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1538-4357</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">949</subfield><subfield code="j">2023</subfield><subfield code="e">1, p 21</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Christopher Carr |
spellingShingle |
Christopher Carr misc QB460-466 misc Circumgalactic medium misc Galactic winds misc Galaxies misc Galaxy evolution misc Galaxy physics misc Galactic and extragalactic astronomy misc Astrophysics Regulation of Star Formation by a Hot Circumgalactic Medium |
authorStr |
Christopher Carr |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)269019219 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QB460-466 |
illustrated |
Not Illustrated |
issn |
15384357 |
topic_title |
QB460-466 Regulation of Star Formation by a Hot Circumgalactic Medium Circumgalactic medium Galactic winds Galaxies Galaxy evolution Galaxy physics Galactic and extragalactic astronomy |
topic |
misc QB460-466 misc Circumgalactic medium misc Galactic winds misc Galaxies misc Galaxy evolution misc Galaxy physics misc Galactic and extragalactic astronomy misc Astrophysics |
topic_unstemmed |
misc QB460-466 misc Circumgalactic medium misc Galactic winds misc Galaxies misc Galaxy evolution misc Galaxy physics misc Galactic and extragalactic astronomy misc Astrophysics |
topic_browse |
misc QB460-466 misc Circumgalactic medium misc Galactic winds misc Galaxies misc Galaxy evolution misc Galaxy physics misc Galactic and extragalactic astronomy misc Astrophysics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The Astrophysical Journal |
hierarchy_parent_id |
269019219 |
hierarchy_top_title |
The Astrophysical Journal |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)269019219 (DE-600)1473835-1 |
title |
Regulation of Star Formation by a Hot Circumgalactic Medium |
ctrlnum |
(DE-627)DOAJ090474287 (DE-599)DOAJ7e667a3ab5134daba1bf4cd450864a61 |
title_full |
Regulation of Star Formation by a Hot Circumgalactic Medium |
author_sort |
Christopher Carr |
journal |
The Astrophysical Journal |
journalStr |
The Astrophysical Journal |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Christopher Carr Greg L. Bryan Drummond B. Fielding Viraj Pandya Rachel S. Somerville |
container_volume |
949 |
class |
QB460-466 |
format_se |
Elektronische Aufsätze |
author-letter |
Christopher Carr |
doi_str_mv |
10.3847/1538-4357/acc4c7 |
author2-role |
verfasserin |
title_sort |
regulation of star formation by a hot circumgalactic medium |
callnumber |
QB460-466 |
title_auth |
Regulation of Star Formation by a Hot Circumgalactic Medium |
abstract |
Galactic outflows driven by supernovae (SNe) are thought to be a powerful regulator of a galaxy’s star-forming efficiency. Mass, energy, and metal outflows ( η _M , η _E , and η _Z , here normalized by the star formation rate, the SNe energy, and metal production rates, respectively) shape galaxy properties by both ejecting gas and metals out of the galaxy and by heating the circumgalactic medium (CGM), preventing future accretion. Traditionally, models have assumed that galaxies self-regulate by ejecting a large fraction of the gas, which enters the interstellar medium (ISM), although whether such high mass loadings agree with observations is still unclear. To better understand how the relative importance of ejective (i.e., high mass loading) versus preventative (i.e., high energy loading) feedback affects the present-day properties of galaxies, we develop a simple gas-regulator model of galaxy evolution, where the stellar mass, ISM, and CGM are modeled as distinct reservoirs which exchange mass, metals, and energy at different rates within a growing halo. Focusing on the halo mass range from 10 ^10 to 10 ^12 M _⊙ , we demonstrate that, with reasonable parameter choices, we can reproduce the stellar-to-halo mass relation and the ISM-to-stellar mass relation with low-mass-loaded ( η _M ∼ 0.1–10) but high-energy-loaded ( η _E ∼ 0.1–1) winds, with self-regulation occurring primarily through heating and cooling of the CGM. We show that the model predictions are robust against changes to the mass loading of outflows but are quite sensitive to our choice of the energy loading, preferring η _E ∼ 1 for the lowest-mass halos and ∼0.1 for Milky Way–like halos. |
abstractGer |
Galactic outflows driven by supernovae (SNe) are thought to be a powerful regulator of a galaxy’s star-forming efficiency. Mass, energy, and metal outflows ( η _M , η _E , and η _Z , here normalized by the star formation rate, the SNe energy, and metal production rates, respectively) shape galaxy properties by both ejecting gas and metals out of the galaxy and by heating the circumgalactic medium (CGM), preventing future accretion. Traditionally, models have assumed that galaxies self-regulate by ejecting a large fraction of the gas, which enters the interstellar medium (ISM), although whether such high mass loadings agree with observations is still unclear. To better understand how the relative importance of ejective (i.e., high mass loading) versus preventative (i.e., high energy loading) feedback affects the present-day properties of galaxies, we develop a simple gas-regulator model of galaxy evolution, where the stellar mass, ISM, and CGM are modeled as distinct reservoirs which exchange mass, metals, and energy at different rates within a growing halo. Focusing on the halo mass range from 10 ^10 to 10 ^12 M _⊙ , we demonstrate that, with reasonable parameter choices, we can reproduce the stellar-to-halo mass relation and the ISM-to-stellar mass relation with low-mass-loaded ( η _M ∼ 0.1–10) but high-energy-loaded ( η _E ∼ 0.1–1) winds, with self-regulation occurring primarily through heating and cooling of the CGM. We show that the model predictions are robust against changes to the mass loading of outflows but are quite sensitive to our choice of the energy loading, preferring η _E ∼ 1 for the lowest-mass halos and ∼0.1 for Milky Way–like halos. |
abstract_unstemmed |
Galactic outflows driven by supernovae (SNe) are thought to be a powerful regulator of a galaxy’s star-forming efficiency. Mass, energy, and metal outflows ( η _M , η _E , and η _Z , here normalized by the star formation rate, the SNe energy, and metal production rates, respectively) shape galaxy properties by both ejecting gas and metals out of the galaxy and by heating the circumgalactic medium (CGM), preventing future accretion. Traditionally, models have assumed that galaxies self-regulate by ejecting a large fraction of the gas, which enters the interstellar medium (ISM), although whether such high mass loadings agree with observations is still unclear. To better understand how the relative importance of ejective (i.e., high mass loading) versus preventative (i.e., high energy loading) feedback affects the present-day properties of galaxies, we develop a simple gas-regulator model of galaxy evolution, where the stellar mass, ISM, and CGM are modeled as distinct reservoirs which exchange mass, metals, and energy at different rates within a growing halo. Focusing on the halo mass range from 10 ^10 to 10 ^12 M _⊙ , we demonstrate that, with reasonable parameter choices, we can reproduce the stellar-to-halo mass relation and the ISM-to-stellar mass relation with low-mass-loaded ( η _M ∼ 0.1–10) but high-energy-loaded ( η _E ∼ 0.1–1) winds, with self-regulation occurring primarily through heating and cooling of the CGM. We show that the model predictions are robust against changes to the mass loading of outflows but are quite sensitive to our choice of the energy loading, preferring η _E ∼ 1 for the lowest-mass halos and ∼0.1 for Milky Way–like halos. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1, p 21 |
title_short |
Regulation of Star Formation by a Hot Circumgalactic Medium |
url |
https://doi.org/10.3847/1538-4357/acc4c7 https://doaj.org/article/7e667a3ab5134daba1bf4cd450864a61 https://doaj.org/toc/1538-4357 |
remote_bool |
true |
author2 |
Greg L. Bryan Drummond B. Fielding Viraj Pandya Rachel S. Somerville |
author2Str |
Greg L. Bryan Drummond B. Fielding Viraj Pandya Rachel S. Somerville |
ppnlink |
269019219 |
callnumber-subject |
QB - Astronomy |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3847/1538-4357/acc4c7 |
callnumber-a |
QB460-466 |
up_date |
2024-07-03T14:58:29.246Z |
_version_ |
1803570338071576576 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ090474287</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230526111742.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230526s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3847/1538-4357/acc4c7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ090474287</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7e667a3ab5134daba1bf4cd450864a61</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB460-466</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Christopher Carr</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Regulation of Star Formation by a Hot Circumgalactic Medium</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Galactic outflows driven by supernovae (SNe) are thought to be a powerful regulator of a galaxy’s star-forming efficiency. Mass, energy, and metal outflows ( η _M , η _E , and η _Z , here normalized by the star formation rate, the SNe energy, and metal production rates, respectively) shape galaxy properties by both ejecting gas and metals out of the galaxy and by heating the circumgalactic medium (CGM), preventing future accretion. Traditionally, models have assumed that galaxies self-regulate by ejecting a large fraction of the gas, which enters the interstellar medium (ISM), although whether such high mass loadings agree with observations is still unclear. To better understand how the relative importance of ejective (i.e., high mass loading) versus preventative (i.e., high energy loading) feedback affects the present-day properties of galaxies, we develop a simple gas-regulator model of galaxy evolution, where the stellar mass, ISM, and CGM are modeled as distinct reservoirs which exchange mass, metals, and energy at different rates within a growing halo. Focusing on the halo mass range from 10 ^10 to 10 ^12 M _⊙ , we demonstrate that, with reasonable parameter choices, we can reproduce the stellar-to-halo mass relation and the ISM-to-stellar mass relation with low-mass-loaded ( η _M ∼ 0.1–10) but high-energy-loaded ( η _E ∼ 0.1–1) winds, with self-regulation occurring primarily through heating and cooling of the CGM. We show that the model predictions are robust against changes to the mass loading of outflows but are quite sensitive to our choice of the energy loading, preferring η _E ∼ 1 for the lowest-mass halos and ∼0.1 for Milky Way–like halos.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Circumgalactic medium</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Galactic winds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Galaxies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Galaxy evolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Galaxy physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Galactic and extragalactic astronomy</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Greg L. Bryan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Drummond B. Fielding</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Viraj Pandya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rachel S. Somerville</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">The Astrophysical Journal</subfield><subfield code="d">IOP Publishing, 2022</subfield><subfield code="g">949(2023), 1, p 21</subfield><subfield code="w">(DE-627)269019219</subfield><subfield code="w">(DE-600)1473835-1</subfield><subfield code="x">15384357</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:949</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1, p 21</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/acc4c7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7e667a3ab5134daba1bf4cd450864a61</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/acc4c7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1538-4357</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">949</subfield><subfield code="j">2023</subfield><subfield code="e">1, p 21</subfield></datafield></record></collection>
|
score |
7.4028025 |