Assessment of multi-population polygenic risk scores for lipid traits in African Americans
Polygenic risk scores (PRS) based on genome-wide discoveries are promising predictors or classifiers of disease development, severity, and/or progression for common clinical outcomes. A major limitation of most risk scores is the paucity of genome-wide discoveries in diverse populations, prompting a...
Ausführliche Beschreibung
Autor*in: |
Domenica E. Drouet [verfasserIn] Shiying Liu [verfasserIn] Dana C. Crawford [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: PeerJ - PeerJ Inc., 2013, 11, p e14910(2023) |
---|---|
Übergeordnetes Werk: |
volume:11, p e14910 ; year:2023 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.7717/peerj.14910 |
---|
Katalog-ID: |
DOAJ090583574 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ090583574 | ||
003 | DE-627 | ||
005 | 20240414073838.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230526s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.7717/peerj.14910 |2 doi | |
035 | |a (DE-627)DOAJ090583574 | ||
035 | |a (DE-599)DOAJc22c4d4e86324d449a4b20411be9df8a | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QH301-705.5 | |
100 | 0 | |a Domenica E. Drouet |e verfasserin |4 aut | |
245 | 1 | 0 | |a Assessment of multi-population polygenic risk scores for lipid traits in African Americans |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Polygenic risk scores (PRS) based on genome-wide discoveries are promising predictors or classifiers of disease development, severity, and/or progression for common clinical outcomes. A major limitation of most risk scores is the paucity of genome-wide discoveries in diverse populations, prompting an emphasis to generate these needed data for trans-population and population-specific PRS construction. Given diverse genome-wide discoveries are just now being completed, there has been little opportunity for PRS to be evaluated in diverse populations independent from the discovery efforts. To fill this gap, we leverage here summary data from a recent genome-wide discovery study of lipid traits (HDL-C, LDL-C, triglycerides, and total cholesterol) conducted in diverse populations represented by African Americans, Hispanics, Asians, Native Hawaiians, Native Americans, and others by the Population Architecture using Genomics and Epidemiology (PAGE) Study. We constructed lipid trait PRS using PAGE Study published genetic variants and weights in an independent African American adult patient population linked to de-identified electronic health records and genotypes from the Illumina Metabochip (n = 3,254). Using multi-population lipid trait PRS, we assessed levels of association for their respective lipid traits, clinical outcomes (cardiovascular disease and type 2 diabetes), and common clinical labs. While none of the multi-population PRS were strongly associated with the tested trait or outcome, PRSLDL-Cwas nominally associated with cardiovascular disease. These data demonstrate the complexity in applying PRS to real-world clinical data even when data from multiple populations are available. | ||
650 | 4 | |a Lipids | |
650 | 4 | |a Polygenic risk scores | |
650 | 4 | |a African Americans | |
650 | 4 | |a Genetic risk scores | |
650 | 4 | |a Electronic health records | |
650 | 4 | |a Biorepository | |
653 | 0 | |a Medicine | |
653 | 0 | |a R | |
653 | 0 | |a Biology (General) | |
700 | 0 | |a Shiying Liu |e verfasserin |4 aut | |
700 | 0 | |a Dana C. Crawford |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t PeerJ |d PeerJ Inc., 2013 |g 11, p e14910(2023) |w (DE-627)736558624 |w (DE-600)2703241-3 |x 21678359 |7 nnns |
773 | 1 | 8 | |g volume:11, p e14910 |g year:2023 |
856 | 4 | 0 | |u https://doi.org/10.7717/peerj.14910 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/c22c4d4e86324d449a4b20411be9df8a |z kostenfrei |
856 | 4 | 0 | |u https://peerj.com/articles/14910.pdf |z kostenfrei |
856 | 4 | 0 | |u https://peerj.com/articles/14910/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2167-8359 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11, p e14910 |j 2023 |
author_variant |
d e d ded s l sl d c c dcc |
---|---|
matchkey_str |
article:21678359:2023----::sesetfutppltoplgncikcrsolpdr |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QH |
publishDate |
2023 |
allfields |
10.7717/peerj.14910 doi (DE-627)DOAJ090583574 (DE-599)DOAJc22c4d4e86324d449a4b20411be9df8a DE-627 ger DE-627 rakwb eng QH301-705.5 Domenica E. Drouet verfasserin aut Assessment of multi-population polygenic risk scores for lipid traits in African Americans 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Polygenic risk scores (PRS) based on genome-wide discoveries are promising predictors or classifiers of disease development, severity, and/or progression for common clinical outcomes. A major limitation of most risk scores is the paucity of genome-wide discoveries in diverse populations, prompting an emphasis to generate these needed data for trans-population and population-specific PRS construction. Given diverse genome-wide discoveries are just now being completed, there has been little opportunity for PRS to be evaluated in diverse populations independent from the discovery efforts. To fill this gap, we leverage here summary data from a recent genome-wide discovery study of lipid traits (HDL-C, LDL-C, triglycerides, and total cholesterol) conducted in diverse populations represented by African Americans, Hispanics, Asians, Native Hawaiians, Native Americans, and others by the Population Architecture using Genomics and Epidemiology (PAGE) Study. We constructed lipid trait PRS using PAGE Study published genetic variants and weights in an independent African American adult patient population linked to de-identified electronic health records and genotypes from the Illumina Metabochip (n = 3,254). Using multi-population lipid trait PRS, we assessed levels of association for their respective lipid traits, clinical outcomes (cardiovascular disease and type 2 diabetes), and common clinical labs. While none of the multi-population PRS were strongly associated with the tested trait or outcome, PRSLDL-Cwas nominally associated with cardiovascular disease. These data demonstrate the complexity in applying PRS to real-world clinical data even when data from multiple populations are available. Lipids Polygenic risk scores African Americans Genetic risk scores Electronic health records Biorepository Medicine R Biology (General) Shiying Liu verfasserin aut Dana C. Crawford verfasserin aut In PeerJ PeerJ Inc., 2013 11, p e14910(2023) (DE-627)736558624 (DE-600)2703241-3 21678359 nnns volume:11, p e14910 year:2023 https://doi.org/10.7717/peerj.14910 kostenfrei https://doaj.org/article/c22c4d4e86324d449a4b20411be9df8a kostenfrei https://peerj.com/articles/14910.pdf kostenfrei https://peerj.com/articles/14910/ kostenfrei https://doaj.org/toc/2167-8359 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11, p e14910 2023 |
spelling |
10.7717/peerj.14910 doi (DE-627)DOAJ090583574 (DE-599)DOAJc22c4d4e86324d449a4b20411be9df8a DE-627 ger DE-627 rakwb eng QH301-705.5 Domenica E. Drouet verfasserin aut Assessment of multi-population polygenic risk scores for lipid traits in African Americans 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Polygenic risk scores (PRS) based on genome-wide discoveries are promising predictors or classifiers of disease development, severity, and/or progression for common clinical outcomes. A major limitation of most risk scores is the paucity of genome-wide discoveries in diverse populations, prompting an emphasis to generate these needed data for trans-population and population-specific PRS construction. Given diverse genome-wide discoveries are just now being completed, there has been little opportunity for PRS to be evaluated in diverse populations independent from the discovery efforts. To fill this gap, we leverage here summary data from a recent genome-wide discovery study of lipid traits (HDL-C, LDL-C, triglycerides, and total cholesterol) conducted in diverse populations represented by African Americans, Hispanics, Asians, Native Hawaiians, Native Americans, and others by the Population Architecture using Genomics and Epidemiology (PAGE) Study. We constructed lipid trait PRS using PAGE Study published genetic variants and weights in an independent African American adult patient population linked to de-identified electronic health records and genotypes from the Illumina Metabochip (n = 3,254). Using multi-population lipid trait PRS, we assessed levels of association for their respective lipid traits, clinical outcomes (cardiovascular disease and type 2 diabetes), and common clinical labs. While none of the multi-population PRS were strongly associated with the tested trait or outcome, PRSLDL-Cwas nominally associated with cardiovascular disease. These data demonstrate the complexity in applying PRS to real-world clinical data even when data from multiple populations are available. Lipids Polygenic risk scores African Americans Genetic risk scores Electronic health records Biorepository Medicine R Biology (General) Shiying Liu verfasserin aut Dana C. Crawford verfasserin aut In PeerJ PeerJ Inc., 2013 11, p e14910(2023) (DE-627)736558624 (DE-600)2703241-3 21678359 nnns volume:11, p e14910 year:2023 https://doi.org/10.7717/peerj.14910 kostenfrei https://doaj.org/article/c22c4d4e86324d449a4b20411be9df8a kostenfrei https://peerj.com/articles/14910.pdf kostenfrei https://peerj.com/articles/14910/ kostenfrei https://doaj.org/toc/2167-8359 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11, p e14910 2023 |
allfields_unstemmed |
10.7717/peerj.14910 doi (DE-627)DOAJ090583574 (DE-599)DOAJc22c4d4e86324d449a4b20411be9df8a DE-627 ger DE-627 rakwb eng QH301-705.5 Domenica E. Drouet verfasserin aut Assessment of multi-population polygenic risk scores for lipid traits in African Americans 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Polygenic risk scores (PRS) based on genome-wide discoveries are promising predictors or classifiers of disease development, severity, and/or progression for common clinical outcomes. A major limitation of most risk scores is the paucity of genome-wide discoveries in diverse populations, prompting an emphasis to generate these needed data for trans-population and population-specific PRS construction. Given diverse genome-wide discoveries are just now being completed, there has been little opportunity for PRS to be evaluated in diverse populations independent from the discovery efforts. To fill this gap, we leverage here summary data from a recent genome-wide discovery study of lipid traits (HDL-C, LDL-C, triglycerides, and total cholesterol) conducted in diverse populations represented by African Americans, Hispanics, Asians, Native Hawaiians, Native Americans, and others by the Population Architecture using Genomics and Epidemiology (PAGE) Study. We constructed lipid trait PRS using PAGE Study published genetic variants and weights in an independent African American adult patient population linked to de-identified electronic health records and genotypes from the Illumina Metabochip (n = 3,254). Using multi-population lipid trait PRS, we assessed levels of association for their respective lipid traits, clinical outcomes (cardiovascular disease and type 2 diabetes), and common clinical labs. While none of the multi-population PRS were strongly associated with the tested trait or outcome, PRSLDL-Cwas nominally associated with cardiovascular disease. These data demonstrate the complexity in applying PRS to real-world clinical data even when data from multiple populations are available. Lipids Polygenic risk scores African Americans Genetic risk scores Electronic health records Biorepository Medicine R Biology (General) Shiying Liu verfasserin aut Dana C. Crawford verfasserin aut In PeerJ PeerJ Inc., 2013 11, p e14910(2023) (DE-627)736558624 (DE-600)2703241-3 21678359 nnns volume:11, p e14910 year:2023 https://doi.org/10.7717/peerj.14910 kostenfrei https://doaj.org/article/c22c4d4e86324d449a4b20411be9df8a kostenfrei https://peerj.com/articles/14910.pdf kostenfrei https://peerj.com/articles/14910/ kostenfrei https://doaj.org/toc/2167-8359 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11, p e14910 2023 |
allfieldsGer |
10.7717/peerj.14910 doi (DE-627)DOAJ090583574 (DE-599)DOAJc22c4d4e86324d449a4b20411be9df8a DE-627 ger DE-627 rakwb eng QH301-705.5 Domenica E. Drouet verfasserin aut Assessment of multi-population polygenic risk scores for lipid traits in African Americans 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Polygenic risk scores (PRS) based on genome-wide discoveries are promising predictors or classifiers of disease development, severity, and/or progression for common clinical outcomes. A major limitation of most risk scores is the paucity of genome-wide discoveries in diverse populations, prompting an emphasis to generate these needed data for trans-population and population-specific PRS construction. Given diverse genome-wide discoveries are just now being completed, there has been little opportunity for PRS to be evaluated in diverse populations independent from the discovery efforts. To fill this gap, we leverage here summary data from a recent genome-wide discovery study of lipid traits (HDL-C, LDL-C, triglycerides, and total cholesterol) conducted in diverse populations represented by African Americans, Hispanics, Asians, Native Hawaiians, Native Americans, and others by the Population Architecture using Genomics and Epidemiology (PAGE) Study. We constructed lipid trait PRS using PAGE Study published genetic variants and weights in an independent African American adult patient population linked to de-identified electronic health records and genotypes from the Illumina Metabochip (n = 3,254). Using multi-population lipid trait PRS, we assessed levels of association for their respective lipid traits, clinical outcomes (cardiovascular disease and type 2 diabetes), and common clinical labs. While none of the multi-population PRS were strongly associated with the tested trait or outcome, PRSLDL-Cwas nominally associated with cardiovascular disease. These data demonstrate the complexity in applying PRS to real-world clinical data even when data from multiple populations are available. Lipids Polygenic risk scores African Americans Genetic risk scores Electronic health records Biorepository Medicine R Biology (General) Shiying Liu verfasserin aut Dana C. Crawford verfasserin aut In PeerJ PeerJ Inc., 2013 11, p e14910(2023) (DE-627)736558624 (DE-600)2703241-3 21678359 nnns volume:11, p e14910 year:2023 https://doi.org/10.7717/peerj.14910 kostenfrei https://doaj.org/article/c22c4d4e86324d449a4b20411be9df8a kostenfrei https://peerj.com/articles/14910.pdf kostenfrei https://peerj.com/articles/14910/ kostenfrei https://doaj.org/toc/2167-8359 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11, p e14910 2023 |
allfieldsSound |
10.7717/peerj.14910 doi (DE-627)DOAJ090583574 (DE-599)DOAJc22c4d4e86324d449a4b20411be9df8a DE-627 ger DE-627 rakwb eng QH301-705.5 Domenica E. Drouet verfasserin aut Assessment of multi-population polygenic risk scores for lipid traits in African Americans 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Polygenic risk scores (PRS) based on genome-wide discoveries are promising predictors or classifiers of disease development, severity, and/or progression for common clinical outcomes. A major limitation of most risk scores is the paucity of genome-wide discoveries in diverse populations, prompting an emphasis to generate these needed data for trans-population and population-specific PRS construction. Given diverse genome-wide discoveries are just now being completed, there has been little opportunity for PRS to be evaluated in diverse populations independent from the discovery efforts. To fill this gap, we leverage here summary data from a recent genome-wide discovery study of lipid traits (HDL-C, LDL-C, triglycerides, and total cholesterol) conducted in diverse populations represented by African Americans, Hispanics, Asians, Native Hawaiians, Native Americans, and others by the Population Architecture using Genomics and Epidemiology (PAGE) Study. We constructed lipid trait PRS using PAGE Study published genetic variants and weights in an independent African American adult patient population linked to de-identified electronic health records and genotypes from the Illumina Metabochip (n = 3,254). Using multi-population lipid trait PRS, we assessed levels of association for their respective lipid traits, clinical outcomes (cardiovascular disease and type 2 diabetes), and common clinical labs. While none of the multi-population PRS were strongly associated with the tested trait or outcome, PRSLDL-Cwas nominally associated with cardiovascular disease. These data demonstrate the complexity in applying PRS to real-world clinical data even when data from multiple populations are available. Lipids Polygenic risk scores African Americans Genetic risk scores Electronic health records Biorepository Medicine R Biology (General) Shiying Liu verfasserin aut Dana C. Crawford verfasserin aut In PeerJ PeerJ Inc., 2013 11, p e14910(2023) (DE-627)736558624 (DE-600)2703241-3 21678359 nnns volume:11, p e14910 year:2023 https://doi.org/10.7717/peerj.14910 kostenfrei https://doaj.org/article/c22c4d4e86324d449a4b20411be9df8a kostenfrei https://peerj.com/articles/14910.pdf kostenfrei https://peerj.com/articles/14910/ kostenfrei https://doaj.org/toc/2167-8359 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11, p e14910 2023 |
language |
English |
source |
In PeerJ 11, p e14910(2023) volume:11, p e14910 year:2023 |
sourceStr |
In PeerJ 11, p e14910(2023) volume:11, p e14910 year:2023 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Lipids Polygenic risk scores African Americans Genetic risk scores Electronic health records Biorepository Medicine R Biology (General) |
isfreeaccess_bool |
true |
container_title |
PeerJ |
authorswithroles_txt_mv |
Domenica E. Drouet @@aut@@ Shiying Liu @@aut@@ Dana C. Crawford @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
736558624 |
id |
DOAJ090583574 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ090583574</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414073838.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230526s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.7717/peerj.14910</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ090583574</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc22c4d4e86324d449a4b20411be9df8a</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Domenica E. Drouet</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Assessment of multi-population polygenic risk scores for lipid traits in African Americans</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Polygenic risk scores (PRS) based on genome-wide discoveries are promising predictors or classifiers of disease development, severity, and/or progression for common clinical outcomes. A major limitation of most risk scores is the paucity of genome-wide discoveries in diverse populations, prompting an emphasis to generate these needed data for trans-population and population-specific PRS construction. Given diverse genome-wide discoveries are just now being completed, there has been little opportunity for PRS to be evaluated in diverse populations independent from the discovery efforts. To fill this gap, we leverage here summary data from a recent genome-wide discovery study of lipid traits (HDL-C, LDL-C, triglycerides, and total cholesterol) conducted in diverse populations represented by African Americans, Hispanics, Asians, Native Hawaiians, Native Americans, and others by the Population Architecture using Genomics and Epidemiology (PAGE) Study. We constructed lipid trait PRS using PAGE Study published genetic variants and weights in an independent African American adult patient population linked to de-identified electronic health records and genotypes from the Illumina Metabochip (n = 3,254). Using multi-population lipid trait PRS, we assessed levels of association for their respective lipid traits, clinical outcomes (cardiovascular disease and type 2 diabetes), and common clinical labs. While none of the multi-population PRS were strongly associated with the tested trait or outcome, PRSLDL-Cwas nominally associated with cardiovascular disease. These data demonstrate the complexity in applying PRS to real-world clinical data even when data from multiple populations are available.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lipids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polygenic risk scores</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">African Americans</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genetic risk scores</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic health records</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biorepository</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shiying Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dana C. Crawford</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">PeerJ</subfield><subfield code="d">PeerJ Inc., 2013</subfield><subfield code="g">11, p e14910(2023)</subfield><subfield code="w">(DE-627)736558624</subfield><subfield code="w">(DE-600)2703241-3</subfield><subfield code="x">21678359</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11, p e14910</subfield><subfield code="g">year:2023</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.7717/peerj.14910</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c22c4d4e86324d449a4b20411be9df8a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://peerj.com/articles/14910.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://peerj.com/articles/14910/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2167-8359</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11, p e14910</subfield><subfield code="j">2023</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Domenica E. Drouet |
spellingShingle |
Domenica E. Drouet misc QH301-705.5 misc Lipids misc Polygenic risk scores misc African Americans misc Genetic risk scores misc Electronic health records misc Biorepository misc Medicine misc R misc Biology (General) Assessment of multi-population polygenic risk scores for lipid traits in African Americans |
authorStr |
Domenica E. Drouet |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)736558624 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QH301-705 |
illustrated |
Not Illustrated |
issn |
21678359 |
topic_title |
QH301-705.5 Assessment of multi-population polygenic risk scores for lipid traits in African Americans Lipids Polygenic risk scores African Americans Genetic risk scores Electronic health records Biorepository |
topic |
misc QH301-705.5 misc Lipids misc Polygenic risk scores misc African Americans misc Genetic risk scores misc Electronic health records misc Biorepository misc Medicine misc R misc Biology (General) |
topic_unstemmed |
misc QH301-705.5 misc Lipids misc Polygenic risk scores misc African Americans misc Genetic risk scores misc Electronic health records misc Biorepository misc Medicine misc R misc Biology (General) |
topic_browse |
misc QH301-705.5 misc Lipids misc Polygenic risk scores misc African Americans misc Genetic risk scores misc Electronic health records misc Biorepository misc Medicine misc R misc Biology (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
PeerJ |
hierarchy_parent_id |
736558624 |
hierarchy_top_title |
PeerJ |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)736558624 (DE-600)2703241-3 |
title |
Assessment of multi-population polygenic risk scores for lipid traits in African Americans |
ctrlnum |
(DE-627)DOAJ090583574 (DE-599)DOAJc22c4d4e86324d449a4b20411be9df8a |
title_full |
Assessment of multi-population polygenic risk scores for lipid traits in African Americans |
author_sort |
Domenica E. Drouet |
journal |
PeerJ |
journalStr |
PeerJ |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Domenica E. Drouet Shiying Liu Dana C. Crawford |
container_volume |
11, p e14910 |
class |
QH301-705.5 |
format_se |
Elektronische Aufsätze |
author-letter |
Domenica E. Drouet |
doi_str_mv |
10.7717/peerj.14910 |
author2-role |
verfasserin |
title_sort |
assessment of multi-population polygenic risk scores for lipid traits in african americans |
callnumber |
QH301-705.5 |
title_auth |
Assessment of multi-population polygenic risk scores for lipid traits in African Americans |
abstract |
Polygenic risk scores (PRS) based on genome-wide discoveries are promising predictors or classifiers of disease development, severity, and/or progression for common clinical outcomes. A major limitation of most risk scores is the paucity of genome-wide discoveries in diverse populations, prompting an emphasis to generate these needed data for trans-population and population-specific PRS construction. Given diverse genome-wide discoveries are just now being completed, there has been little opportunity for PRS to be evaluated in diverse populations independent from the discovery efforts. To fill this gap, we leverage here summary data from a recent genome-wide discovery study of lipid traits (HDL-C, LDL-C, triglycerides, and total cholesterol) conducted in diverse populations represented by African Americans, Hispanics, Asians, Native Hawaiians, Native Americans, and others by the Population Architecture using Genomics and Epidemiology (PAGE) Study. We constructed lipid trait PRS using PAGE Study published genetic variants and weights in an independent African American adult patient population linked to de-identified electronic health records and genotypes from the Illumina Metabochip (n = 3,254). Using multi-population lipid trait PRS, we assessed levels of association for their respective lipid traits, clinical outcomes (cardiovascular disease and type 2 diabetes), and common clinical labs. While none of the multi-population PRS were strongly associated with the tested trait or outcome, PRSLDL-Cwas nominally associated with cardiovascular disease. These data demonstrate the complexity in applying PRS to real-world clinical data even when data from multiple populations are available. |
abstractGer |
Polygenic risk scores (PRS) based on genome-wide discoveries are promising predictors or classifiers of disease development, severity, and/or progression for common clinical outcomes. A major limitation of most risk scores is the paucity of genome-wide discoveries in diverse populations, prompting an emphasis to generate these needed data for trans-population and population-specific PRS construction. Given diverse genome-wide discoveries are just now being completed, there has been little opportunity for PRS to be evaluated in diverse populations independent from the discovery efforts. To fill this gap, we leverage here summary data from a recent genome-wide discovery study of lipid traits (HDL-C, LDL-C, triglycerides, and total cholesterol) conducted in diverse populations represented by African Americans, Hispanics, Asians, Native Hawaiians, Native Americans, and others by the Population Architecture using Genomics and Epidemiology (PAGE) Study. We constructed lipid trait PRS using PAGE Study published genetic variants and weights in an independent African American adult patient population linked to de-identified electronic health records and genotypes from the Illumina Metabochip (n = 3,254). Using multi-population lipid trait PRS, we assessed levels of association for their respective lipid traits, clinical outcomes (cardiovascular disease and type 2 diabetes), and common clinical labs. While none of the multi-population PRS were strongly associated with the tested trait or outcome, PRSLDL-Cwas nominally associated with cardiovascular disease. These data demonstrate the complexity in applying PRS to real-world clinical data even when data from multiple populations are available. |
abstract_unstemmed |
Polygenic risk scores (PRS) based on genome-wide discoveries are promising predictors or classifiers of disease development, severity, and/or progression for common clinical outcomes. A major limitation of most risk scores is the paucity of genome-wide discoveries in diverse populations, prompting an emphasis to generate these needed data for trans-population and population-specific PRS construction. Given diverse genome-wide discoveries are just now being completed, there has been little opportunity for PRS to be evaluated in diverse populations independent from the discovery efforts. To fill this gap, we leverage here summary data from a recent genome-wide discovery study of lipid traits (HDL-C, LDL-C, triglycerides, and total cholesterol) conducted in diverse populations represented by African Americans, Hispanics, Asians, Native Hawaiians, Native Americans, and others by the Population Architecture using Genomics and Epidemiology (PAGE) Study. We constructed lipid trait PRS using PAGE Study published genetic variants and weights in an independent African American adult patient population linked to de-identified electronic health records and genotypes from the Illumina Metabochip (n = 3,254). Using multi-population lipid trait PRS, we assessed levels of association for their respective lipid traits, clinical outcomes (cardiovascular disease and type 2 diabetes), and common clinical labs. While none of the multi-population PRS were strongly associated with the tested trait or outcome, PRSLDL-Cwas nominally associated with cardiovascular disease. These data demonstrate the complexity in applying PRS to real-world clinical data even when data from multiple populations are available. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Assessment of multi-population polygenic risk scores for lipid traits in African Americans |
url |
https://doi.org/10.7717/peerj.14910 https://doaj.org/article/c22c4d4e86324d449a4b20411be9df8a https://peerj.com/articles/14910.pdf https://peerj.com/articles/14910/ https://doaj.org/toc/2167-8359 |
remote_bool |
true |
author2 |
Shiying Liu Dana C. Crawford |
author2Str |
Shiying Liu Dana C. Crawford |
ppnlink |
736558624 |
callnumber-subject |
QH - Natural History and Biology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.7717/peerj.14910 |
callnumber-a |
QH301-705.5 |
up_date |
2024-07-03T15:37:47.223Z |
_version_ |
1803572810585473024 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ090583574</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414073838.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230526s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.7717/peerj.14910</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ090583574</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc22c4d4e86324d449a4b20411be9df8a</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Domenica E. Drouet</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Assessment of multi-population polygenic risk scores for lipid traits in African Americans</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Polygenic risk scores (PRS) based on genome-wide discoveries are promising predictors or classifiers of disease development, severity, and/or progression for common clinical outcomes. A major limitation of most risk scores is the paucity of genome-wide discoveries in diverse populations, prompting an emphasis to generate these needed data for trans-population and population-specific PRS construction. Given diverse genome-wide discoveries are just now being completed, there has been little opportunity for PRS to be evaluated in diverse populations independent from the discovery efforts. To fill this gap, we leverage here summary data from a recent genome-wide discovery study of lipid traits (HDL-C, LDL-C, triglycerides, and total cholesterol) conducted in diverse populations represented by African Americans, Hispanics, Asians, Native Hawaiians, Native Americans, and others by the Population Architecture using Genomics and Epidemiology (PAGE) Study. We constructed lipid trait PRS using PAGE Study published genetic variants and weights in an independent African American adult patient population linked to de-identified electronic health records and genotypes from the Illumina Metabochip (n = 3,254). Using multi-population lipid trait PRS, we assessed levels of association for their respective lipid traits, clinical outcomes (cardiovascular disease and type 2 diabetes), and common clinical labs. While none of the multi-population PRS were strongly associated with the tested trait or outcome, PRSLDL-Cwas nominally associated with cardiovascular disease. These data demonstrate the complexity in applying PRS to real-world clinical data even when data from multiple populations are available.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lipids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polygenic risk scores</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">African Americans</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genetic risk scores</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic health records</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biorepository</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shiying Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dana C. Crawford</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">PeerJ</subfield><subfield code="d">PeerJ Inc., 2013</subfield><subfield code="g">11, p e14910(2023)</subfield><subfield code="w">(DE-627)736558624</subfield><subfield code="w">(DE-600)2703241-3</subfield><subfield code="x">21678359</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11, p e14910</subfield><subfield code="g">year:2023</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.7717/peerj.14910</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c22c4d4e86324d449a4b20411be9df8a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://peerj.com/articles/14910.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://peerj.com/articles/14910/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2167-8359</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11, p e14910</subfield><subfield code="j">2023</subfield></datafield></record></collection>
|
score |
7.4012384 |