New approach to bisemiring theory via the bipolar valued neutrosophic normal sets
In this paper, we introduce the notion of bipolar-valued neutrosophic subbisemiring (BVNSBS), level sets of BVNSBS, and bipolar valued neutrosophic normal subbisemiring (BVNNSBS) of a bisemiring. The concept of BVNSBS is a new generalization of subbisemiring over bisemirings. We discussed the theory...
Ausführliche Beschreibung
Autor*in: |
M. Palanikumar [verfasserIn] G. Selvi [verfasserIn] Ganeshsree Selvachandran [verfasserIn] Sher Lyn Tan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
bipolar valued neutrosophic subbisemiring |
---|
Übergeordnetes Werk: |
In: Neutrosophic Sets and Systems - University of New Mexico, 2016, 55(2023), Seite 427-450 |
---|---|
Übergeordnetes Werk: |
volume:55 ; year:2023 ; pages:427-450 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.5281/zenodo.7832780 |
---|
Katalog-ID: |
DOAJ090638093 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ090638093 | ||
003 | DE-627 | ||
005 | 20230526112845.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230526s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.5281/zenodo.7832780 |2 doi | |
035 | |a (DE-627)DOAJ090638093 | ||
035 | |a (DE-599)DOAJ2fdfd4ec249248c893489cf4938f2658 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA1-939 | |
050 | 0 | |a QA75.5-76.95 | |
100 | 0 | |a M. Palanikumar |e verfasserin |4 aut | |
245 | 1 | 0 | |a New approach to bisemiring theory via the bipolar valued neutrosophic normal sets |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In this paper, we introduce the notion of bipolar-valued neutrosophic subbisemiring (BVNSBS), level sets of BVNSBS, and bipolar valued neutrosophic normal subbisemiring (BVNNSBS) of a bisemiring. The concept of BVNSBS is a new generalization of subbisemiring over bisemirings. We discussed the theory of (ξ, τ )- BVNSBS and (ξ, τ )-BVNNSBS over bisemirings and presented several illustrative examples to demonstrate the sufficiency and validity of the proposed theorems, lemmas, and propositions. | ||
650 | 4 | |a fuzzy set | |
650 | 4 | |a bipolar valued neutrosophic subbisemiring | |
650 | 4 | |a bipolar valued neutrosophic bisemiring | |
650 | 4 | |a homomorphism | |
653 | 0 | |a Mathematics | |
653 | 0 | |a Electronic computers. Computer science | |
700 | 0 | |a G. Selvi |e verfasserin |4 aut | |
700 | 0 | |a Ganeshsree Selvachandran |e verfasserin |4 aut | |
700 | 0 | |a Sher Lyn Tan |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Neutrosophic Sets and Systems |d University of New Mexico, 2016 |g 55(2023), Seite 427-450 |w (DE-627)1760646911 |x 2331608X |7 nnns |
773 | 1 | 8 | |g volume:55 |g year:2023 |g pages:427-450 |
856 | 4 | 0 | |u https://doi.org/10.5281/zenodo.7832780 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/2fdfd4ec249248c893489cf4938f2658 |z kostenfrei |
856 | 4 | 0 | |u http://fs.unm.edu/NSS/NeutrosophicNormalSets26.pdf |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2331-6055 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2331-608X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 55 |j 2023 |h 427-450 |
author_variant |
m p mp g s gs g s gs s l t slt |
---|---|
matchkey_str |
article:2331608X:2023----::eapoctbsmrntervahbplraude |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QA |
publishDate |
2023 |
allfields |
10.5281/zenodo.7832780 doi (DE-627)DOAJ090638093 (DE-599)DOAJ2fdfd4ec249248c893489cf4938f2658 DE-627 ger DE-627 rakwb eng QA1-939 QA75.5-76.95 M. Palanikumar verfasserin aut New approach to bisemiring theory via the bipolar valued neutrosophic normal sets 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, we introduce the notion of bipolar-valued neutrosophic subbisemiring (BVNSBS), level sets of BVNSBS, and bipolar valued neutrosophic normal subbisemiring (BVNNSBS) of a bisemiring. The concept of BVNSBS is a new generalization of subbisemiring over bisemirings. We discussed the theory of (ξ, τ )- BVNSBS and (ξ, τ )-BVNNSBS over bisemirings and presented several illustrative examples to demonstrate the sufficiency and validity of the proposed theorems, lemmas, and propositions. fuzzy set bipolar valued neutrosophic subbisemiring bipolar valued neutrosophic bisemiring homomorphism Mathematics Electronic computers. Computer science G. Selvi verfasserin aut Ganeshsree Selvachandran verfasserin aut Sher Lyn Tan verfasserin aut In Neutrosophic Sets and Systems University of New Mexico, 2016 55(2023), Seite 427-450 (DE-627)1760646911 2331608X nnns volume:55 year:2023 pages:427-450 https://doi.org/10.5281/zenodo.7832780 kostenfrei https://doaj.org/article/2fdfd4ec249248c893489cf4938f2658 kostenfrei http://fs.unm.edu/NSS/NeutrosophicNormalSets26.pdf kostenfrei https://doaj.org/toc/2331-6055 Journal toc kostenfrei https://doaj.org/toc/2331-608X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 55 2023 427-450 |
spelling |
10.5281/zenodo.7832780 doi (DE-627)DOAJ090638093 (DE-599)DOAJ2fdfd4ec249248c893489cf4938f2658 DE-627 ger DE-627 rakwb eng QA1-939 QA75.5-76.95 M. Palanikumar verfasserin aut New approach to bisemiring theory via the bipolar valued neutrosophic normal sets 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, we introduce the notion of bipolar-valued neutrosophic subbisemiring (BVNSBS), level sets of BVNSBS, and bipolar valued neutrosophic normal subbisemiring (BVNNSBS) of a bisemiring. The concept of BVNSBS is a new generalization of subbisemiring over bisemirings. We discussed the theory of (ξ, τ )- BVNSBS and (ξ, τ )-BVNNSBS over bisemirings and presented several illustrative examples to demonstrate the sufficiency and validity of the proposed theorems, lemmas, and propositions. fuzzy set bipolar valued neutrosophic subbisemiring bipolar valued neutrosophic bisemiring homomorphism Mathematics Electronic computers. Computer science G. Selvi verfasserin aut Ganeshsree Selvachandran verfasserin aut Sher Lyn Tan verfasserin aut In Neutrosophic Sets and Systems University of New Mexico, 2016 55(2023), Seite 427-450 (DE-627)1760646911 2331608X nnns volume:55 year:2023 pages:427-450 https://doi.org/10.5281/zenodo.7832780 kostenfrei https://doaj.org/article/2fdfd4ec249248c893489cf4938f2658 kostenfrei http://fs.unm.edu/NSS/NeutrosophicNormalSets26.pdf kostenfrei https://doaj.org/toc/2331-6055 Journal toc kostenfrei https://doaj.org/toc/2331-608X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 55 2023 427-450 |
allfields_unstemmed |
10.5281/zenodo.7832780 doi (DE-627)DOAJ090638093 (DE-599)DOAJ2fdfd4ec249248c893489cf4938f2658 DE-627 ger DE-627 rakwb eng QA1-939 QA75.5-76.95 M. Palanikumar verfasserin aut New approach to bisemiring theory via the bipolar valued neutrosophic normal sets 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, we introduce the notion of bipolar-valued neutrosophic subbisemiring (BVNSBS), level sets of BVNSBS, and bipolar valued neutrosophic normal subbisemiring (BVNNSBS) of a bisemiring. The concept of BVNSBS is a new generalization of subbisemiring over bisemirings. We discussed the theory of (ξ, τ )- BVNSBS and (ξ, τ )-BVNNSBS over bisemirings and presented several illustrative examples to demonstrate the sufficiency and validity of the proposed theorems, lemmas, and propositions. fuzzy set bipolar valued neutrosophic subbisemiring bipolar valued neutrosophic bisemiring homomorphism Mathematics Electronic computers. Computer science G. Selvi verfasserin aut Ganeshsree Selvachandran verfasserin aut Sher Lyn Tan verfasserin aut In Neutrosophic Sets and Systems University of New Mexico, 2016 55(2023), Seite 427-450 (DE-627)1760646911 2331608X nnns volume:55 year:2023 pages:427-450 https://doi.org/10.5281/zenodo.7832780 kostenfrei https://doaj.org/article/2fdfd4ec249248c893489cf4938f2658 kostenfrei http://fs.unm.edu/NSS/NeutrosophicNormalSets26.pdf kostenfrei https://doaj.org/toc/2331-6055 Journal toc kostenfrei https://doaj.org/toc/2331-608X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 55 2023 427-450 |
allfieldsGer |
10.5281/zenodo.7832780 doi (DE-627)DOAJ090638093 (DE-599)DOAJ2fdfd4ec249248c893489cf4938f2658 DE-627 ger DE-627 rakwb eng QA1-939 QA75.5-76.95 M. Palanikumar verfasserin aut New approach to bisemiring theory via the bipolar valued neutrosophic normal sets 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, we introduce the notion of bipolar-valued neutrosophic subbisemiring (BVNSBS), level sets of BVNSBS, and bipolar valued neutrosophic normal subbisemiring (BVNNSBS) of a bisemiring. The concept of BVNSBS is a new generalization of subbisemiring over bisemirings. We discussed the theory of (ξ, τ )- BVNSBS and (ξ, τ )-BVNNSBS over bisemirings and presented several illustrative examples to demonstrate the sufficiency and validity of the proposed theorems, lemmas, and propositions. fuzzy set bipolar valued neutrosophic subbisemiring bipolar valued neutrosophic bisemiring homomorphism Mathematics Electronic computers. Computer science G. Selvi verfasserin aut Ganeshsree Selvachandran verfasserin aut Sher Lyn Tan verfasserin aut In Neutrosophic Sets and Systems University of New Mexico, 2016 55(2023), Seite 427-450 (DE-627)1760646911 2331608X nnns volume:55 year:2023 pages:427-450 https://doi.org/10.5281/zenodo.7832780 kostenfrei https://doaj.org/article/2fdfd4ec249248c893489cf4938f2658 kostenfrei http://fs.unm.edu/NSS/NeutrosophicNormalSets26.pdf kostenfrei https://doaj.org/toc/2331-6055 Journal toc kostenfrei https://doaj.org/toc/2331-608X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 55 2023 427-450 |
allfieldsSound |
10.5281/zenodo.7832780 doi (DE-627)DOAJ090638093 (DE-599)DOAJ2fdfd4ec249248c893489cf4938f2658 DE-627 ger DE-627 rakwb eng QA1-939 QA75.5-76.95 M. Palanikumar verfasserin aut New approach to bisemiring theory via the bipolar valued neutrosophic normal sets 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, we introduce the notion of bipolar-valued neutrosophic subbisemiring (BVNSBS), level sets of BVNSBS, and bipolar valued neutrosophic normal subbisemiring (BVNNSBS) of a bisemiring. The concept of BVNSBS is a new generalization of subbisemiring over bisemirings. We discussed the theory of (ξ, τ )- BVNSBS and (ξ, τ )-BVNNSBS over bisemirings and presented several illustrative examples to demonstrate the sufficiency and validity of the proposed theorems, lemmas, and propositions. fuzzy set bipolar valued neutrosophic subbisemiring bipolar valued neutrosophic bisemiring homomorphism Mathematics Electronic computers. Computer science G. Selvi verfasserin aut Ganeshsree Selvachandran verfasserin aut Sher Lyn Tan verfasserin aut In Neutrosophic Sets and Systems University of New Mexico, 2016 55(2023), Seite 427-450 (DE-627)1760646911 2331608X nnns volume:55 year:2023 pages:427-450 https://doi.org/10.5281/zenodo.7832780 kostenfrei https://doaj.org/article/2fdfd4ec249248c893489cf4938f2658 kostenfrei http://fs.unm.edu/NSS/NeutrosophicNormalSets26.pdf kostenfrei https://doaj.org/toc/2331-6055 Journal toc kostenfrei https://doaj.org/toc/2331-608X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 55 2023 427-450 |
language |
English |
source |
In Neutrosophic Sets and Systems 55(2023), Seite 427-450 volume:55 year:2023 pages:427-450 |
sourceStr |
In Neutrosophic Sets and Systems 55(2023), Seite 427-450 volume:55 year:2023 pages:427-450 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
fuzzy set bipolar valued neutrosophic subbisemiring bipolar valued neutrosophic bisemiring homomorphism Mathematics Electronic computers. Computer science |
isfreeaccess_bool |
true |
container_title |
Neutrosophic Sets and Systems |
authorswithroles_txt_mv |
M. Palanikumar @@aut@@ G. Selvi @@aut@@ Ganeshsree Selvachandran @@aut@@ Sher Lyn Tan @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
1760646911 |
id |
DOAJ090638093 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ090638093</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230526112845.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230526s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.5281/zenodo.7832780</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ090638093</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ2fdfd4ec249248c893489cf4938f2658</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA75.5-76.95</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">M. Palanikumar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">New approach to bisemiring theory via the bipolar valued neutrosophic normal sets</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, we introduce the notion of bipolar-valued neutrosophic subbisemiring (BVNSBS), level sets of BVNSBS, and bipolar valued neutrosophic normal subbisemiring (BVNNSBS) of a bisemiring. The concept of BVNSBS is a new generalization of subbisemiring over bisemirings. We discussed the theory of (ξ, τ )- BVNSBS and (ξ, τ )-BVNNSBS over bisemirings and presented several illustrative examples to demonstrate the sufficiency and validity of the proposed theorems, lemmas, and propositions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fuzzy set</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bipolar valued neutrosophic subbisemiring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bipolar valued neutrosophic bisemiring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">homomorphism</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronic computers. Computer science</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">G. Selvi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ganeshsree Selvachandran</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sher Lyn Tan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Neutrosophic Sets and Systems</subfield><subfield code="d">University of New Mexico, 2016</subfield><subfield code="g">55(2023), Seite 427-450</subfield><subfield code="w">(DE-627)1760646911</subfield><subfield code="x">2331608X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2023</subfield><subfield code="g">pages:427-450</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.5281/zenodo.7832780</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/2fdfd4ec249248c893489cf4938f2658</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://fs.unm.edu/NSS/NeutrosophicNormalSets26.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2331-6055</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2331-608X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2023</subfield><subfield code="h">427-450</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
M. Palanikumar |
spellingShingle |
M. Palanikumar misc QA1-939 misc QA75.5-76.95 misc fuzzy set misc bipolar valued neutrosophic subbisemiring misc bipolar valued neutrosophic bisemiring misc homomorphism misc Mathematics misc Electronic computers. Computer science New approach to bisemiring theory via the bipolar valued neutrosophic normal sets |
authorStr |
M. Palanikumar |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1760646911 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA1-939 |
illustrated |
Not Illustrated |
issn |
2331608X |
topic_title |
QA1-939 QA75.5-76.95 New approach to bisemiring theory via the bipolar valued neutrosophic normal sets fuzzy set bipolar valued neutrosophic subbisemiring bipolar valued neutrosophic bisemiring homomorphism |
topic |
misc QA1-939 misc QA75.5-76.95 misc fuzzy set misc bipolar valued neutrosophic subbisemiring misc bipolar valued neutrosophic bisemiring misc homomorphism misc Mathematics misc Electronic computers. Computer science |
topic_unstemmed |
misc QA1-939 misc QA75.5-76.95 misc fuzzy set misc bipolar valued neutrosophic subbisemiring misc bipolar valued neutrosophic bisemiring misc homomorphism misc Mathematics misc Electronic computers. Computer science |
topic_browse |
misc QA1-939 misc QA75.5-76.95 misc fuzzy set misc bipolar valued neutrosophic subbisemiring misc bipolar valued neutrosophic bisemiring misc homomorphism misc Mathematics misc Electronic computers. Computer science |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Neutrosophic Sets and Systems |
hierarchy_parent_id |
1760646911 |
hierarchy_top_title |
Neutrosophic Sets and Systems |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1760646911 |
title |
New approach to bisemiring theory via the bipolar valued neutrosophic normal sets |
ctrlnum |
(DE-627)DOAJ090638093 (DE-599)DOAJ2fdfd4ec249248c893489cf4938f2658 |
title_full |
New approach to bisemiring theory via the bipolar valued neutrosophic normal sets |
author_sort |
M. Palanikumar |
journal |
Neutrosophic Sets and Systems |
journalStr |
Neutrosophic Sets and Systems |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
427 |
author_browse |
M. Palanikumar G. Selvi Ganeshsree Selvachandran Sher Lyn Tan |
container_volume |
55 |
class |
QA1-939 QA75.5-76.95 |
format_se |
Elektronische Aufsätze |
author-letter |
M. Palanikumar |
doi_str_mv |
10.5281/zenodo.7832780 |
author2-role |
verfasserin |
title_sort |
new approach to bisemiring theory via the bipolar valued neutrosophic normal sets |
callnumber |
QA1-939 |
title_auth |
New approach to bisemiring theory via the bipolar valued neutrosophic normal sets |
abstract |
In this paper, we introduce the notion of bipolar-valued neutrosophic subbisemiring (BVNSBS), level sets of BVNSBS, and bipolar valued neutrosophic normal subbisemiring (BVNNSBS) of a bisemiring. The concept of BVNSBS is a new generalization of subbisemiring over bisemirings. We discussed the theory of (ξ, τ )- BVNSBS and (ξ, τ )-BVNNSBS over bisemirings and presented several illustrative examples to demonstrate the sufficiency and validity of the proposed theorems, lemmas, and propositions. |
abstractGer |
In this paper, we introduce the notion of bipolar-valued neutrosophic subbisemiring (BVNSBS), level sets of BVNSBS, and bipolar valued neutrosophic normal subbisemiring (BVNNSBS) of a bisemiring. The concept of BVNSBS is a new generalization of subbisemiring over bisemirings. We discussed the theory of (ξ, τ )- BVNSBS and (ξ, τ )-BVNNSBS over bisemirings and presented several illustrative examples to demonstrate the sufficiency and validity of the proposed theorems, lemmas, and propositions. |
abstract_unstemmed |
In this paper, we introduce the notion of bipolar-valued neutrosophic subbisemiring (BVNSBS), level sets of BVNSBS, and bipolar valued neutrosophic normal subbisemiring (BVNNSBS) of a bisemiring. The concept of BVNSBS is a new generalization of subbisemiring over bisemirings. We discussed the theory of (ξ, τ )- BVNSBS and (ξ, τ )-BVNNSBS over bisemirings and presented several illustrative examples to demonstrate the sufficiency and validity of the proposed theorems, lemmas, and propositions. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
New approach to bisemiring theory via the bipolar valued neutrosophic normal sets |
url |
https://doi.org/10.5281/zenodo.7832780 https://doaj.org/article/2fdfd4ec249248c893489cf4938f2658 http://fs.unm.edu/NSS/NeutrosophicNormalSets26.pdf https://doaj.org/toc/2331-6055 https://doaj.org/toc/2331-608X |
remote_bool |
true |
author2 |
G. Selvi Ganeshsree Selvachandran Sher Lyn Tan |
author2Str |
G. Selvi Ganeshsree Selvachandran Sher Lyn Tan |
ppnlink |
1760646911 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.5281/zenodo.7832780 |
callnumber-a |
QA1-939 |
up_date |
2024-07-03T15:55:41.895Z |
_version_ |
1803573937464934401 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ090638093</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230526112845.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230526s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.5281/zenodo.7832780</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ090638093</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ2fdfd4ec249248c893489cf4938f2658</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA75.5-76.95</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">M. Palanikumar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">New approach to bisemiring theory via the bipolar valued neutrosophic normal sets</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, we introduce the notion of bipolar-valued neutrosophic subbisemiring (BVNSBS), level sets of BVNSBS, and bipolar valued neutrosophic normal subbisemiring (BVNNSBS) of a bisemiring. The concept of BVNSBS is a new generalization of subbisemiring over bisemirings. We discussed the theory of (ξ, τ )- BVNSBS and (ξ, τ )-BVNNSBS over bisemirings and presented several illustrative examples to demonstrate the sufficiency and validity of the proposed theorems, lemmas, and propositions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fuzzy set</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bipolar valued neutrosophic subbisemiring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bipolar valued neutrosophic bisemiring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">homomorphism</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronic computers. Computer science</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">G. Selvi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ganeshsree Selvachandran</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sher Lyn Tan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Neutrosophic Sets and Systems</subfield><subfield code="d">University of New Mexico, 2016</subfield><subfield code="g">55(2023), Seite 427-450</subfield><subfield code="w">(DE-627)1760646911</subfield><subfield code="x">2331608X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2023</subfield><subfield code="g">pages:427-450</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.5281/zenodo.7832780</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/2fdfd4ec249248c893489cf4938f2658</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://fs.unm.edu/NSS/NeutrosophicNormalSets26.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2331-6055</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2331-608X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2023</subfield><subfield code="h">427-450</subfield></datafield></record></collection>
|
score |
7.400817 |