DISCRETE ELEMENT-BASED DESIGN OF KEY PARAMETERS FOR WHEEL RUT TILLAGE DEVICES
ABSTRACT In this study, a device was designed for tillage of compacted soil in wheel ruts formed by the repeated passage of agricultural machines.[Ed1] Soil parameters were measured, and then the wheel rut tillage device was divided into two parts, the soil lifting unit and the soil breaking unit, f...
Ausführliche Beschreibung
Autor*in: |
Haiyang Zhuang [verfasserIn] Xianliang Wang [verfasserIn] Xiangcai Zhang [verfasserIn] Xiupei Cheng [verfasserIn] Zhongcai Wei [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch ; Spanisch ; Portugiesisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Engenharia Agrícola - Sociedade Brasileira de Engenharia Agrícola, 2005, 43(2023), 3 |
---|---|
Übergeordnetes Werk: |
volume:43 ; year:2023 ; number:3 |
Links: |
---|
DOI / URN: |
10.1590/1809-4430-eng.agric.v43n3e20230039/2023 |
---|
Katalog-ID: |
DOAJ090992946 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ090992946 | ||
003 | DE-627 | ||
005 | 20240414085455.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240412s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1590/1809-4430-eng.agric.v43n3e20230039/2023 |2 doi | |
035 | |a (DE-627)DOAJ090992946 | ||
035 | |a (DE-599)DOAJ6e52f3be6c5847c580fc5b5592a8748c | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng |a spa |a por | ||
050 | 0 | |a S1-972 | |
100 | 0 | |a Haiyang Zhuang |e verfasserin |4 aut | |
245 | 1 | 0 | |a DISCRETE ELEMENT-BASED DESIGN OF KEY PARAMETERS FOR WHEEL RUT TILLAGE DEVICES |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a ABSTRACT In this study, a device was designed for tillage of compacted soil in wheel ruts formed by the repeated passage of agricultural machines.[Ed1] Soil parameters were measured, and then the wheel rut tillage device was divided into two parts, the soil lifting unit and the soil breaking unit, for separate simulation tests to study the tillage process. EDEM[Ed2] simulations were applied to the soil lifting device to compare and analyze the microscopic movement of the simulated soil particles and the operational resistance of the device. Analysis of variance (ANOVA) was performed using Design-Expert10 [Ed3] software to obtain the optimum combination of parameters of 125 mm device offset distance, 43.6° entry angle and 28° lifting angle. A full-factor test was conducted on the soil crushing device using EDEM coupled with RecuDyn multi-body system dynamics simulation software. The number of bond breaks and the traction resistance of the soil crushing device were used as the test indicators, and the optimum parameters were obtained for a soil crushing knife blade thickness of 6 mm and a cutting edge angle of 30° for the largest number of bond breaks and least traction resistance. The results of this study will provide technical support for the reduction of compaction zones in wheel ruts after tire travel on agricultural machinery in real time. | ||
650 | 4 | |a discrete element method | |
650 | 4 | |a soil lifting device | |
650 | 4 | |a soil crushing device | |
650 | 4 | |a soil disturbance | |
650 | 4 | |a operating resistance | |
653 | 0 | |a Agriculture (General) | |
700 | 0 | |a Xianliang Wang |e verfasserin |4 aut | |
700 | 0 | |a Xiangcai Zhang |e verfasserin |4 aut | |
700 | 0 | |a Xiupei Cheng |e verfasserin |4 aut | |
700 | 0 | |a Zhongcai Wei |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Engenharia Agrícola |d Sociedade Brasileira de Engenharia Agrícola, 2005 |g 43(2023), 3 |w (DE-627)483300713 |w (DE-600)2182578-6 |x 01006916 |7 nnns |
773 | 1 | 8 | |g volume:43 |g year:2023 |g number:3 |
856 | 4 | 0 | |u https://doi.org/10.1590/1809-4430-eng.agric.v43n3e20230039/2023 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/6e52f3be6c5847c580fc5b5592a8748c |z kostenfrei |
856 | 4 | 0 | |u http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162023000300312&tlng=en |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/0100-6916 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 43 |j 2023 |e 3 |
author_variant |
h z hz x w xw x z xz x c xc z w zw |
---|---|
matchkey_str |
article:01006916:2023----::iceelmnbsdeinfeprmtrfrhe |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
S |
publishDate |
2023 |
allfields |
10.1590/1809-4430-eng.agric.v43n3e20230039/2023 doi (DE-627)DOAJ090992946 (DE-599)DOAJ6e52f3be6c5847c580fc5b5592a8748c DE-627 ger DE-627 rakwb eng spa por S1-972 Haiyang Zhuang verfasserin aut DISCRETE ELEMENT-BASED DESIGN OF KEY PARAMETERS FOR WHEEL RUT TILLAGE DEVICES 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier ABSTRACT In this study, a device was designed for tillage of compacted soil in wheel ruts formed by the repeated passage of agricultural machines.[Ed1] Soil parameters were measured, and then the wheel rut tillage device was divided into two parts, the soil lifting unit and the soil breaking unit, for separate simulation tests to study the tillage process. EDEM[Ed2] simulations were applied to the soil lifting device to compare and analyze the microscopic movement of the simulated soil particles and the operational resistance of the device. Analysis of variance (ANOVA) was performed using Design-Expert10 [Ed3] software to obtain the optimum combination of parameters of 125 mm device offset distance, 43.6° entry angle and 28° lifting angle. A full-factor test was conducted on the soil crushing device using EDEM coupled with RecuDyn multi-body system dynamics simulation software. The number of bond breaks and the traction resistance of the soil crushing device were used as the test indicators, and the optimum parameters were obtained for a soil crushing knife blade thickness of 6 mm and a cutting edge angle of 30° for the largest number of bond breaks and least traction resistance. The results of this study will provide technical support for the reduction of compaction zones in wheel ruts after tire travel on agricultural machinery in real time. discrete element method soil lifting device soil crushing device soil disturbance operating resistance Agriculture (General) Xianliang Wang verfasserin aut Xiangcai Zhang verfasserin aut Xiupei Cheng verfasserin aut Zhongcai Wei verfasserin aut In Engenharia Agrícola Sociedade Brasileira de Engenharia Agrícola, 2005 43(2023), 3 (DE-627)483300713 (DE-600)2182578-6 01006916 nnns volume:43 year:2023 number:3 https://doi.org/10.1590/1809-4430-eng.agric.v43n3e20230039/2023 kostenfrei https://doaj.org/article/6e52f3be6c5847c580fc5b5592a8748c kostenfrei http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162023000300312&tlng=en kostenfrei https://doaj.org/toc/0100-6916 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 43 2023 3 |
spelling |
10.1590/1809-4430-eng.agric.v43n3e20230039/2023 doi (DE-627)DOAJ090992946 (DE-599)DOAJ6e52f3be6c5847c580fc5b5592a8748c DE-627 ger DE-627 rakwb eng spa por S1-972 Haiyang Zhuang verfasserin aut DISCRETE ELEMENT-BASED DESIGN OF KEY PARAMETERS FOR WHEEL RUT TILLAGE DEVICES 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier ABSTRACT In this study, a device was designed for tillage of compacted soil in wheel ruts formed by the repeated passage of agricultural machines.[Ed1] Soil parameters were measured, and then the wheel rut tillage device was divided into two parts, the soil lifting unit and the soil breaking unit, for separate simulation tests to study the tillage process. EDEM[Ed2] simulations were applied to the soil lifting device to compare and analyze the microscopic movement of the simulated soil particles and the operational resistance of the device. Analysis of variance (ANOVA) was performed using Design-Expert10 [Ed3] software to obtain the optimum combination of parameters of 125 mm device offset distance, 43.6° entry angle and 28° lifting angle. A full-factor test was conducted on the soil crushing device using EDEM coupled with RecuDyn multi-body system dynamics simulation software. The number of bond breaks and the traction resistance of the soil crushing device were used as the test indicators, and the optimum parameters were obtained for a soil crushing knife blade thickness of 6 mm and a cutting edge angle of 30° for the largest number of bond breaks and least traction resistance. The results of this study will provide technical support for the reduction of compaction zones in wheel ruts after tire travel on agricultural machinery in real time. discrete element method soil lifting device soil crushing device soil disturbance operating resistance Agriculture (General) Xianliang Wang verfasserin aut Xiangcai Zhang verfasserin aut Xiupei Cheng verfasserin aut Zhongcai Wei verfasserin aut In Engenharia Agrícola Sociedade Brasileira de Engenharia Agrícola, 2005 43(2023), 3 (DE-627)483300713 (DE-600)2182578-6 01006916 nnns volume:43 year:2023 number:3 https://doi.org/10.1590/1809-4430-eng.agric.v43n3e20230039/2023 kostenfrei https://doaj.org/article/6e52f3be6c5847c580fc5b5592a8748c kostenfrei http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162023000300312&tlng=en kostenfrei https://doaj.org/toc/0100-6916 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 43 2023 3 |
allfields_unstemmed |
10.1590/1809-4430-eng.agric.v43n3e20230039/2023 doi (DE-627)DOAJ090992946 (DE-599)DOAJ6e52f3be6c5847c580fc5b5592a8748c DE-627 ger DE-627 rakwb eng spa por S1-972 Haiyang Zhuang verfasserin aut DISCRETE ELEMENT-BASED DESIGN OF KEY PARAMETERS FOR WHEEL RUT TILLAGE DEVICES 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier ABSTRACT In this study, a device was designed for tillage of compacted soil in wheel ruts formed by the repeated passage of agricultural machines.[Ed1] Soil parameters were measured, and then the wheel rut tillage device was divided into two parts, the soil lifting unit and the soil breaking unit, for separate simulation tests to study the tillage process. EDEM[Ed2] simulations were applied to the soil lifting device to compare and analyze the microscopic movement of the simulated soil particles and the operational resistance of the device. Analysis of variance (ANOVA) was performed using Design-Expert10 [Ed3] software to obtain the optimum combination of parameters of 125 mm device offset distance, 43.6° entry angle and 28° lifting angle. A full-factor test was conducted on the soil crushing device using EDEM coupled with RecuDyn multi-body system dynamics simulation software. The number of bond breaks and the traction resistance of the soil crushing device were used as the test indicators, and the optimum parameters were obtained for a soil crushing knife blade thickness of 6 mm and a cutting edge angle of 30° for the largest number of bond breaks and least traction resistance. The results of this study will provide technical support for the reduction of compaction zones in wheel ruts after tire travel on agricultural machinery in real time. discrete element method soil lifting device soil crushing device soil disturbance operating resistance Agriculture (General) Xianliang Wang verfasserin aut Xiangcai Zhang verfasserin aut Xiupei Cheng verfasserin aut Zhongcai Wei verfasserin aut In Engenharia Agrícola Sociedade Brasileira de Engenharia Agrícola, 2005 43(2023), 3 (DE-627)483300713 (DE-600)2182578-6 01006916 nnns volume:43 year:2023 number:3 https://doi.org/10.1590/1809-4430-eng.agric.v43n3e20230039/2023 kostenfrei https://doaj.org/article/6e52f3be6c5847c580fc5b5592a8748c kostenfrei http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162023000300312&tlng=en kostenfrei https://doaj.org/toc/0100-6916 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 43 2023 3 |
allfieldsGer |
10.1590/1809-4430-eng.agric.v43n3e20230039/2023 doi (DE-627)DOAJ090992946 (DE-599)DOAJ6e52f3be6c5847c580fc5b5592a8748c DE-627 ger DE-627 rakwb eng spa por S1-972 Haiyang Zhuang verfasserin aut DISCRETE ELEMENT-BASED DESIGN OF KEY PARAMETERS FOR WHEEL RUT TILLAGE DEVICES 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier ABSTRACT In this study, a device was designed for tillage of compacted soil in wheel ruts formed by the repeated passage of agricultural machines.[Ed1] Soil parameters were measured, and then the wheel rut tillage device was divided into two parts, the soil lifting unit and the soil breaking unit, for separate simulation tests to study the tillage process. EDEM[Ed2] simulations were applied to the soil lifting device to compare and analyze the microscopic movement of the simulated soil particles and the operational resistance of the device. Analysis of variance (ANOVA) was performed using Design-Expert10 [Ed3] software to obtain the optimum combination of parameters of 125 mm device offset distance, 43.6° entry angle and 28° lifting angle. A full-factor test was conducted on the soil crushing device using EDEM coupled with RecuDyn multi-body system dynamics simulation software. The number of bond breaks and the traction resistance of the soil crushing device were used as the test indicators, and the optimum parameters were obtained for a soil crushing knife blade thickness of 6 mm and a cutting edge angle of 30° for the largest number of bond breaks and least traction resistance. The results of this study will provide technical support for the reduction of compaction zones in wheel ruts after tire travel on agricultural machinery in real time. discrete element method soil lifting device soil crushing device soil disturbance operating resistance Agriculture (General) Xianliang Wang verfasserin aut Xiangcai Zhang verfasserin aut Xiupei Cheng verfasserin aut Zhongcai Wei verfasserin aut In Engenharia Agrícola Sociedade Brasileira de Engenharia Agrícola, 2005 43(2023), 3 (DE-627)483300713 (DE-600)2182578-6 01006916 nnns volume:43 year:2023 number:3 https://doi.org/10.1590/1809-4430-eng.agric.v43n3e20230039/2023 kostenfrei https://doaj.org/article/6e52f3be6c5847c580fc5b5592a8748c kostenfrei http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162023000300312&tlng=en kostenfrei https://doaj.org/toc/0100-6916 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 43 2023 3 |
allfieldsSound |
10.1590/1809-4430-eng.agric.v43n3e20230039/2023 doi (DE-627)DOAJ090992946 (DE-599)DOAJ6e52f3be6c5847c580fc5b5592a8748c DE-627 ger DE-627 rakwb eng spa por S1-972 Haiyang Zhuang verfasserin aut DISCRETE ELEMENT-BASED DESIGN OF KEY PARAMETERS FOR WHEEL RUT TILLAGE DEVICES 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier ABSTRACT In this study, a device was designed for tillage of compacted soil in wheel ruts formed by the repeated passage of agricultural machines.[Ed1] Soil parameters were measured, and then the wheel rut tillage device was divided into two parts, the soil lifting unit and the soil breaking unit, for separate simulation tests to study the tillage process. EDEM[Ed2] simulations were applied to the soil lifting device to compare and analyze the microscopic movement of the simulated soil particles and the operational resistance of the device. Analysis of variance (ANOVA) was performed using Design-Expert10 [Ed3] software to obtain the optimum combination of parameters of 125 mm device offset distance, 43.6° entry angle and 28° lifting angle. A full-factor test was conducted on the soil crushing device using EDEM coupled with RecuDyn multi-body system dynamics simulation software. The number of bond breaks and the traction resistance of the soil crushing device were used as the test indicators, and the optimum parameters were obtained for a soil crushing knife blade thickness of 6 mm and a cutting edge angle of 30° for the largest number of bond breaks and least traction resistance. The results of this study will provide technical support for the reduction of compaction zones in wheel ruts after tire travel on agricultural machinery in real time. discrete element method soil lifting device soil crushing device soil disturbance operating resistance Agriculture (General) Xianliang Wang verfasserin aut Xiangcai Zhang verfasserin aut Xiupei Cheng verfasserin aut Zhongcai Wei verfasserin aut In Engenharia Agrícola Sociedade Brasileira de Engenharia Agrícola, 2005 43(2023), 3 (DE-627)483300713 (DE-600)2182578-6 01006916 nnns volume:43 year:2023 number:3 https://doi.org/10.1590/1809-4430-eng.agric.v43n3e20230039/2023 kostenfrei https://doaj.org/article/6e52f3be6c5847c580fc5b5592a8748c kostenfrei http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162023000300312&tlng=en kostenfrei https://doaj.org/toc/0100-6916 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 43 2023 3 |
language |
English Spanish Portuguese |
source |
In Engenharia Agrícola 43(2023), 3 volume:43 year:2023 number:3 |
sourceStr |
In Engenharia Agrícola 43(2023), 3 volume:43 year:2023 number:3 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
discrete element method soil lifting device soil crushing device soil disturbance operating resistance Agriculture (General) |
isfreeaccess_bool |
true |
container_title |
Engenharia Agrícola |
authorswithroles_txt_mv |
Haiyang Zhuang @@aut@@ Xianliang Wang @@aut@@ Xiangcai Zhang @@aut@@ Xiupei Cheng @@aut@@ Zhongcai Wei @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
483300713 |
id |
DOAJ090992946 |
language_de |
englisch spanisch portugiesisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ090992946</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414085455.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240412s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1590/1809-4430-eng.agric.v43n3e20230039/2023</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ090992946</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6e52f3be6c5847c580fc5b5592a8748c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">spa</subfield><subfield code="a">por</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">S1-972</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Haiyang Zhuang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">DISCRETE ELEMENT-BASED DESIGN OF KEY PARAMETERS FOR WHEEL RUT TILLAGE DEVICES</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">ABSTRACT In this study, a device was designed for tillage of compacted soil in wheel ruts formed by the repeated passage of agricultural machines.[Ed1] Soil parameters were measured, and then the wheel rut tillage device was divided into two parts, the soil lifting unit and the soil breaking unit, for separate simulation tests to study the tillage process. EDEM[Ed2] simulations were applied to the soil lifting device to compare and analyze the microscopic movement of the simulated soil particles and the operational resistance of the device. Analysis of variance (ANOVA) was performed using Design-Expert10 [Ed3] software to obtain the optimum combination of parameters of 125 mm device offset distance, 43.6° entry angle and 28° lifting angle. A full-factor test was conducted on the soil crushing device using EDEM coupled with RecuDyn multi-body system dynamics simulation software. The number of bond breaks and the traction resistance of the soil crushing device were used as the test indicators, and the optimum parameters were obtained for a soil crushing knife blade thickness of 6 mm and a cutting edge angle of 30° for the largest number of bond breaks and least traction resistance. The results of this study will provide technical support for the reduction of compaction zones in wheel ruts after tire travel on agricultural machinery in real time.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">discrete element method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">soil lifting device</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">soil crushing device</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">soil disturbance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">operating resistance</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Agriculture (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xianliang Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiangcai Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiupei Cheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhongcai Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Engenharia Agrícola</subfield><subfield code="d">Sociedade Brasileira de Engenharia Agrícola, 2005</subfield><subfield code="g">43(2023), 3</subfield><subfield code="w">(DE-627)483300713</subfield><subfield code="w">(DE-600)2182578-6</subfield><subfield code="x">01006916</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:43</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1590/1809-4430-eng.agric.v43n3e20230039/2023</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6e52f3be6c5847c580fc5b5592a8748c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162023000300312&tlng=en</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0100-6916</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">43</subfield><subfield code="j">2023</subfield><subfield code="e">3</subfield></datafield></record></collection>
|
callnumber-first |
S - Agriculture |
author |
Haiyang Zhuang |
spellingShingle |
Haiyang Zhuang misc S1-972 misc discrete element method misc soil lifting device misc soil crushing device misc soil disturbance misc operating resistance misc Agriculture (General) DISCRETE ELEMENT-BASED DESIGN OF KEY PARAMETERS FOR WHEEL RUT TILLAGE DEVICES |
authorStr |
Haiyang Zhuang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)483300713 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
S1-972 |
illustrated |
Not Illustrated |
issn |
01006916 |
topic_title |
S1-972 DISCRETE ELEMENT-BASED DESIGN OF KEY PARAMETERS FOR WHEEL RUT TILLAGE DEVICES discrete element method soil lifting device soil crushing device soil disturbance operating resistance |
topic |
misc S1-972 misc discrete element method misc soil lifting device misc soil crushing device misc soil disturbance misc operating resistance misc Agriculture (General) |
topic_unstemmed |
misc S1-972 misc discrete element method misc soil lifting device misc soil crushing device misc soil disturbance misc operating resistance misc Agriculture (General) |
topic_browse |
misc S1-972 misc discrete element method misc soil lifting device misc soil crushing device misc soil disturbance misc operating resistance misc Agriculture (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Engenharia Agrícola |
hierarchy_parent_id |
483300713 |
hierarchy_top_title |
Engenharia Agrícola |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)483300713 (DE-600)2182578-6 |
title |
DISCRETE ELEMENT-BASED DESIGN OF KEY PARAMETERS FOR WHEEL RUT TILLAGE DEVICES |
ctrlnum |
(DE-627)DOAJ090992946 (DE-599)DOAJ6e52f3be6c5847c580fc5b5592a8748c |
title_full |
DISCRETE ELEMENT-BASED DESIGN OF KEY PARAMETERS FOR WHEEL RUT TILLAGE DEVICES |
author_sort |
Haiyang Zhuang |
journal |
Engenharia Agrícola |
journalStr |
Engenharia Agrícola |
callnumber-first-code |
S |
lang_code |
eng spa por |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Haiyang Zhuang Xianliang Wang Xiangcai Zhang Xiupei Cheng Zhongcai Wei |
container_volume |
43 |
class |
S1-972 |
format_se |
Elektronische Aufsätze |
author-letter |
Haiyang Zhuang |
doi_str_mv |
10.1590/1809-4430-eng.agric.v43n3e20230039/2023 |
author2-role |
verfasserin |
title_sort |
discrete element-based design of key parameters for wheel rut tillage devices |
callnumber |
S1-972 |
title_auth |
DISCRETE ELEMENT-BASED DESIGN OF KEY PARAMETERS FOR WHEEL RUT TILLAGE DEVICES |
abstract |
ABSTRACT In this study, a device was designed for tillage of compacted soil in wheel ruts formed by the repeated passage of agricultural machines.[Ed1] Soil parameters were measured, and then the wheel rut tillage device was divided into two parts, the soil lifting unit and the soil breaking unit, for separate simulation tests to study the tillage process. EDEM[Ed2] simulations were applied to the soil lifting device to compare and analyze the microscopic movement of the simulated soil particles and the operational resistance of the device. Analysis of variance (ANOVA) was performed using Design-Expert10 [Ed3] software to obtain the optimum combination of parameters of 125 mm device offset distance, 43.6° entry angle and 28° lifting angle. A full-factor test was conducted on the soil crushing device using EDEM coupled with RecuDyn multi-body system dynamics simulation software. The number of bond breaks and the traction resistance of the soil crushing device were used as the test indicators, and the optimum parameters were obtained for a soil crushing knife blade thickness of 6 mm and a cutting edge angle of 30° for the largest number of bond breaks and least traction resistance. The results of this study will provide technical support for the reduction of compaction zones in wheel ruts after tire travel on agricultural machinery in real time. |
abstractGer |
ABSTRACT In this study, a device was designed for tillage of compacted soil in wheel ruts formed by the repeated passage of agricultural machines.[Ed1] Soil parameters were measured, and then the wheel rut tillage device was divided into two parts, the soil lifting unit and the soil breaking unit, for separate simulation tests to study the tillage process. EDEM[Ed2] simulations were applied to the soil lifting device to compare and analyze the microscopic movement of the simulated soil particles and the operational resistance of the device. Analysis of variance (ANOVA) was performed using Design-Expert10 [Ed3] software to obtain the optimum combination of parameters of 125 mm device offset distance, 43.6° entry angle and 28° lifting angle. A full-factor test was conducted on the soil crushing device using EDEM coupled with RecuDyn multi-body system dynamics simulation software. The number of bond breaks and the traction resistance of the soil crushing device were used as the test indicators, and the optimum parameters were obtained for a soil crushing knife blade thickness of 6 mm and a cutting edge angle of 30° for the largest number of bond breaks and least traction resistance. The results of this study will provide technical support for the reduction of compaction zones in wheel ruts after tire travel on agricultural machinery in real time. |
abstract_unstemmed |
ABSTRACT In this study, a device was designed for tillage of compacted soil in wheel ruts formed by the repeated passage of agricultural machines.[Ed1] Soil parameters were measured, and then the wheel rut tillage device was divided into two parts, the soil lifting unit and the soil breaking unit, for separate simulation tests to study the tillage process. EDEM[Ed2] simulations were applied to the soil lifting device to compare and analyze the microscopic movement of the simulated soil particles and the operational resistance of the device. Analysis of variance (ANOVA) was performed using Design-Expert10 [Ed3] software to obtain the optimum combination of parameters of 125 mm device offset distance, 43.6° entry angle and 28° lifting angle. A full-factor test was conducted on the soil crushing device using EDEM coupled with RecuDyn multi-body system dynamics simulation software. The number of bond breaks and the traction resistance of the soil crushing device were used as the test indicators, and the optimum parameters were obtained for a soil crushing knife blade thickness of 6 mm and a cutting edge angle of 30° for the largest number of bond breaks and least traction resistance. The results of this study will provide technical support for the reduction of compaction zones in wheel ruts after tire travel on agricultural machinery in real time. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3 |
title_short |
DISCRETE ELEMENT-BASED DESIGN OF KEY PARAMETERS FOR WHEEL RUT TILLAGE DEVICES |
url |
https://doi.org/10.1590/1809-4430-eng.agric.v43n3e20230039/2023 https://doaj.org/article/6e52f3be6c5847c580fc5b5592a8748c http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162023000300312&tlng=en https://doaj.org/toc/0100-6916 |
remote_bool |
true |
author2 |
Xianliang Wang Xiangcai Zhang Xiupei Cheng Zhongcai Wei |
author2Str |
Xianliang Wang Xiangcai Zhang Xiupei Cheng Zhongcai Wei |
ppnlink |
483300713 |
callnumber-subject |
S - General Agriculture |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1590/1809-4430-eng.agric.v43n3e20230039/2023 |
callnumber-a |
S1-972 |
up_date |
2024-07-03T17:48:03.373Z |
_version_ |
1803581006413824000 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ090992946</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414085455.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240412s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1590/1809-4430-eng.agric.v43n3e20230039/2023</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ090992946</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6e52f3be6c5847c580fc5b5592a8748c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">spa</subfield><subfield code="a">por</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">S1-972</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Haiyang Zhuang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">DISCRETE ELEMENT-BASED DESIGN OF KEY PARAMETERS FOR WHEEL RUT TILLAGE DEVICES</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">ABSTRACT In this study, a device was designed for tillage of compacted soil in wheel ruts formed by the repeated passage of agricultural machines.[Ed1] Soil parameters were measured, and then the wheel rut tillage device was divided into two parts, the soil lifting unit and the soil breaking unit, for separate simulation tests to study the tillage process. EDEM[Ed2] simulations were applied to the soil lifting device to compare and analyze the microscopic movement of the simulated soil particles and the operational resistance of the device. Analysis of variance (ANOVA) was performed using Design-Expert10 [Ed3] software to obtain the optimum combination of parameters of 125 mm device offset distance, 43.6° entry angle and 28° lifting angle. A full-factor test was conducted on the soil crushing device using EDEM coupled with RecuDyn multi-body system dynamics simulation software. The number of bond breaks and the traction resistance of the soil crushing device were used as the test indicators, and the optimum parameters were obtained for a soil crushing knife blade thickness of 6 mm and a cutting edge angle of 30° for the largest number of bond breaks and least traction resistance. The results of this study will provide technical support for the reduction of compaction zones in wheel ruts after tire travel on agricultural machinery in real time.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">discrete element method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">soil lifting device</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">soil crushing device</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">soil disturbance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">operating resistance</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Agriculture (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xianliang Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiangcai Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiupei Cheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhongcai Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Engenharia Agrícola</subfield><subfield code="d">Sociedade Brasileira de Engenharia Agrícola, 2005</subfield><subfield code="g">43(2023), 3</subfield><subfield code="w">(DE-627)483300713</subfield><subfield code="w">(DE-600)2182578-6</subfield><subfield code="x">01006916</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:43</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1590/1809-4430-eng.agric.v43n3e20230039/2023</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6e52f3be6c5847c580fc5b5592a8748c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162023000300312&tlng=en</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0100-6916</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">43</subfield><subfield code="j">2023</subfield><subfield code="e">3</subfield></datafield></record></collection>
|
score |
7.4008236 |