Numerical investigation of the hydrothermal performance of novel vortex generators in a rectangular channel by employing inclination and rotational angles
Vortex generators are passive methods of heat transfer enhancement in any thermal system. However, more research is needed to compare the effects of vortex generators having unique shapes on the flow distribution for high heat transmission. Also, a research gap exists in analyzing how different angu...
Ausführliche Beschreibung
Autor*in: |
Mostafa Kamal Fahad [verfasserIn] Nowroze Farhan Ifraj [verfasserIn] Sharzil Huda Tahsin [verfasserIn] Md. Jahid Hasan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: International Journal of Thermofluids - Elsevier, 2020, 20(2023), Seite 100500- |
---|---|
Übergeordnetes Werk: |
volume:20 ; year:2023 ; pages:100500- |
Links: |
---|
DOI / URN: |
10.1016/j.ijft.2023.100500 |
---|
Katalog-ID: |
DOAJ091002494 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ091002494 | ||
003 | DE-627 | ||
005 | 20240414085556.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240412s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijft.2023.100500 |2 doi | |
035 | |a (DE-627)DOAJ091002494 | ||
035 | |a (DE-599)DOAJeef630df89e14201b35e82a7532c540f | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QC251-338.5 | |
100 | 0 | |a Mostafa Kamal Fahad |e verfasserin |4 aut | |
245 | 1 | 0 | |a Numerical investigation of the hydrothermal performance of novel vortex generators in a rectangular channel by employing inclination and rotational angles |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Vortex generators are passive methods of heat transfer enhancement in any thermal system. However, more research is needed to compare the effects of vortex generators having unique shapes on the flow distribution for high heat transmission. Also, a research gap exists in analyzing how different angular orientations of the vortex generator (VG) affect thermohydraulic performance. Therefore, this CFD study aims to propose a total of five novel vortex generator shapes applying modification on a rectangular VG shape, analyzing and comparing the heat transfer and pressure drop properties in a rectangular channel for the Reynolds number varying in the range of Re=4000–11,000. VG-1 (vortex generator-1) with three triangles on its top side, VG-2 with concave shape arc, VG-3 combined with a rectangle and a triangle, VG-4 consists of a rectangle and two triangles at two corners, while VG-5 consists of a rectangle with a triangular inside cut. Among the five designs, VG-1 gives the most optimal hydrothermal performance, incrementing Nusselt number and friction factor of about 38.2 % and 80.38 %, respectively. Combining these two dimensionless parameters, we get the maximum thermal performance factor, TPF, for VG-1, whereas VG-2 performs the least in terms of TPF. Moreover, compared with conventional rectangular VG, VG-1 performed the best with a 1.63 % increase in TPF. Considering the effect of different angular orientations, VG-1 was further studied by applying five vertical inclination angles and four horizontal rotation angle configurations to investigate the impact of inclination and rotational angles. Minimizing the pressure drop penalty, the 30˚ inclination design had the best hydrothermal performance overall, with the highest TPF range of 1.19–1.41, whereas 120˚ variants had the lowest TPF, at 1.09–1.31. Also, for the configuration of the horizontal rotations, 30˚ angle gives the best result, having a slight edge over 150˚case with 1.17–1.41 TPF. Finally, the best cases from vertical inclination and horizontal rotation are combined in a new hybrid configuration, which yielded the maximum TPF of 1.22–1.45, indicating that this configuration is the most effective among all the cases. | ||
650 | 4 | |a CFD | |
650 | 4 | |a Vortex generators | |
650 | 4 | |a Heat transfer | |
650 | 4 | |a Inclination angle | |
650 | 4 | |a Nusselt number | |
650 | 4 | |a Thermal performance factor | |
653 | 0 | |a Heat | |
700 | 0 | |a Nowroze Farhan Ifraj |e verfasserin |4 aut | |
700 | 0 | |a Sharzil Huda Tahsin |e verfasserin |4 aut | |
700 | 0 | |a Md. Jahid Hasan |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t International Journal of Thermofluids |d Elsevier, 2020 |g 20(2023), Seite 100500- |w (DE-627)1760627569 |x 26662027 |7 nnns |
773 | 1 | 8 | |g volume:20 |g year:2023 |g pages:100500- |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ijft.2023.100500 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/eef630df89e14201b35e82a7532c540f |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S266620272300215X |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2666-2027 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 20 |j 2023 |h 100500- |
author_variant |
m k f mkf n f i nfi s h t sht m j h mjh |
---|---|
matchkey_str |
article:26662027:2023----::ueiaivsiainfhhdohrapromnefoevregnrtriaetnuacanlym |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QC |
publishDate |
2023 |
allfields |
10.1016/j.ijft.2023.100500 doi (DE-627)DOAJ091002494 (DE-599)DOAJeef630df89e14201b35e82a7532c540f DE-627 ger DE-627 rakwb eng QC251-338.5 Mostafa Kamal Fahad verfasserin aut Numerical investigation of the hydrothermal performance of novel vortex generators in a rectangular channel by employing inclination and rotational angles 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Vortex generators are passive methods of heat transfer enhancement in any thermal system. However, more research is needed to compare the effects of vortex generators having unique shapes on the flow distribution for high heat transmission. Also, a research gap exists in analyzing how different angular orientations of the vortex generator (VG) affect thermohydraulic performance. Therefore, this CFD study aims to propose a total of five novel vortex generator shapes applying modification on a rectangular VG shape, analyzing and comparing the heat transfer and pressure drop properties in a rectangular channel for the Reynolds number varying in the range of Re=4000–11,000. VG-1 (vortex generator-1) with three triangles on its top side, VG-2 with concave shape arc, VG-3 combined with a rectangle and a triangle, VG-4 consists of a rectangle and two triangles at two corners, while VG-5 consists of a rectangle with a triangular inside cut. Among the five designs, VG-1 gives the most optimal hydrothermal performance, incrementing Nusselt number and friction factor of about 38.2 % and 80.38 %, respectively. Combining these two dimensionless parameters, we get the maximum thermal performance factor, TPF, for VG-1, whereas VG-2 performs the least in terms of TPF. Moreover, compared with conventional rectangular VG, VG-1 performed the best with a 1.63 % increase in TPF. Considering the effect of different angular orientations, VG-1 was further studied by applying five vertical inclination angles and four horizontal rotation angle configurations to investigate the impact of inclination and rotational angles. Minimizing the pressure drop penalty, the 30˚ inclination design had the best hydrothermal performance overall, with the highest TPF range of 1.19–1.41, whereas 120˚ variants had the lowest TPF, at 1.09–1.31. Also, for the configuration of the horizontal rotations, 30˚ angle gives the best result, having a slight edge over 150˚case with 1.17–1.41 TPF. Finally, the best cases from vertical inclination and horizontal rotation are combined in a new hybrid configuration, which yielded the maximum TPF of 1.22–1.45, indicating that this configuration is the most effective among all the cases. CFD Vortex generators Heat transfer Inclination angle Nusselt number Thermal performance factor Heat Nowroze Farhan Ifraj verfasserin aut Sharzil Huda Tahsin verfasserin aut Md. Jahid Hasan verfasserin aut In International Journal of Thermofluids Elsevier, 2020 20(2023), Seite 100500- (DE-627)1760627569 26662027 nnns volume:20 year:2023 pages:100500- https://doi.org/10.1016/j.ijft.2023.100500 kostenfrei https://doaj.org/article/eef630df89e14201b35e82a7532c540f kostenfrei http://www.sciencedirect.com/science/article/pii/S266620272300215X kostenfrei https://doaj.org/toc/2666-2027 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 20 2023 100500- |
spelling |
10.1016/j.ijft.2023.100500 doi (DE-627)DOAJ091002494 (DE-599)DOAJeef630df89e14201b35e82a7532c540f DE-627 ger DE-627 rakwb eng QC251-338.5 Mostafa Kamal Fahad verfasserin aut Numerical investigation of the hydrothermal performance of novel vortex generators in a rectangular channel by employing inclination and rotational angles 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Vortex generators are passive methods of heat transfer enhancement in any thermal system. However, more research is needed to compare the effects of vortex generators having unique shapes on the flow distribution for high heat transmission. Also, a research gap exists in analyzing how different angular orientations of the vortex generator (VG) affect thermohydraulic performance. Therefore, this CFD study aims to propose a total of five novel vortex generator shapes applying modification on a rectangular VG shape, analyzing and comparing the heat transfer and pressure drop properties in a rectangular channel for the Reynolds number varying in the range of Re=4000–11,000. VG-1 (vortex generator-1) with three triangles on its top side, VG-2 with concave shape arc, VG-3 combined with a rectangle and a triangle, VG-4 consists of a rectangle and two triangles at two corners, while VG-5 consists of a rectangle with a triangular inside cut. Among the five designs, VG-1 gives the most optimal hydrothermal performance, incrementing Nusselt number and friction factor of about 38.2 % and 80.38 %, respectively. Combining these two dimensionless parameters, we get the maximum thermal performance factor, TPF, for VG-1, whereas VG-2 performs the least in terms of TPF. Moreover, compared with conventional rectangular VG, VG-1 performed the best with a 1.63 % increase in TPF. Considering the effect of different angular orientations, VG-1 was further studied by applying five vertical inclination angles and four horizontal rotation angle configurations to investigate the impact of inclination and rotational angles. Minimizing the pressure drop penalty, the 30˚ inclination design had the best hydrothermal performance overall, with the highest TPF range of 1.19–1.41, whereas 120˚ variants had the lowest TPF, at 1.09–1.31. Also, for the configuration of the horizontal rotations, 30˚ angle gives the best result, having a slight edge over 150˚case with 1.17–1.41 TPF. Finally, the best cases from vertical inclination and horizontal rotation are combined in a new hybrid configuration, which yielded the maximum TPF of 1.22–1.45, indicating that this configuration is the most effective among all the cases. CFD Vortex generators Heat transfer Inclination angle Nusselt number Thermal performance factor Heat Nowroze Farhan Ifraj verfasserin aut Sharzil Huda Tahsin verfasserin aut Md. Jahid Hasan verfasserin aut In International Journal of Thermofluids Elsevier, 2020 20(2023), Seite 100500- (DE-627)1760627569 26662027 nnns volume:20 year:2023 pages:100500- https://doi.org/10.1016/j.ijft.2023.100500 kostenfrei https://doaj.org/article/eef630df89e14201b35e82a7532c540f kostenfrei http://www.sciencedirect.com/science/article/pii/S266620272300215X kostenfrei https://doaj.org/toc/2666-2027 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 20 2023 100500- |
allfields_unstemmed |
10.1016/j.ijft.2023.100500 doi (DE-627)DOAJ091002494 (DE-599)DOAJeef630df89e14201b35e82a7532c540f DE-627 ger DE-627 rakwb eng QC251-338.5 Mostafa Kamal Fahad verfasserin aut Numerical investigation of the hydrothermal performance of novel vortex generators in a rectangular channel by employing inclination and rotational angles 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Vortex generators are passive methods of heat transfer enhancement in any thermal system. However, more research is needed to compare the effects of vortex generators having unique shapes on the flow distribution for high heat transmission. Also, a research gap exists in analyzing how different angular orientations of the vortex generator (VG) affect thermohydraulic performance. Therefore, this CFD study aims to propose a total of five novel vortex generator shapes applying modification on a rectangular VG shape, analyzing and comparing the heat transfer and pressure drop properties in a rectangular channel for the Reynolds number varying in the range of Re=4000–11,000. VG-1 (vortex generator-1) with three triangles on its top side, VG-2 with concave shape arc, VG-3 combined with a rectangle and a triangle, VG-4 consists of a rectangle and two triangles at two corners, while VG-5 consists of a rectangle with a triangular inside cut. Among the five designs, VG-1 gives the most optimal hydrothermal performance, incrementing Nusselt number and friction factor of about 38.2 % and 80.38 %, respectively. Combining these two dimensionless parameters, we get the maximum thermal performance factor, TPF, for VG-1, whereas VG-2 performs the least in terms of TPF. Moreover, compared with conventional rectangular VG, VG-1 performed the best with a 1.63 % increase in TPF. Considering the effect of different angular orientations, VG-1 was further studied by applying five vertical inclination angles and four horizontal rotation angle configurations to investigate the impact of inclination and rotational angles. Minimizing the pressure drop penalty, the 30˚ inclination design had the best hydrothermal performance overall, with the highest TPF range of 1.19–1.41, whereas 120˚ variants had the lowest TPF, at 1.09–1.31. Also, for the configuration of the horizontal rotations, 30˚ angle gives the best result, having a slight edge over 150˚case with 1.17–1.41 TPF. Finally, the best cases from vertical inclination and horizontal rotation are combined in a new hybrid configuration, which yielded the maximum TPF of 1.22–1.45, indicating that this configuration is the most effective among all the cases. CFD Vortex generators Heat transfer Inclination angle Nusselt number Thermal performance factor Heat Nowroze Farhan Ifraj verfasserin aut Sharzil Huda Tahsin verfasserin aut Md. Jahid Hasan verfasserin aut In International Journal of Thermofluids Elsevier, 2020 20(2023), Seite 100500- (DE-627)1760627569 26662027 nnns volume:20 year:2023 pages:100500- https://doi.org/10.1016/j.ijft.2023.100500 kostenfrei https://doaj.org/article/eef630df89e14201b35e82a7532c540f kostenfrei http://www.sciencedirect.com/science/article/pii/S266620272300215X kostenfrei https://doaj.org/toc/2666-2027 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 20 2023 100500- |
allfieldsGer |
10.1016/j.ijft.2023.100500 doi (DE-627)DOAJ091002494 (DE-599)DOAJeef630df89e14201b35e82a7532c540f DE-627 ger DE-627 rakwb eng QC251-338.5 Mostafa Kamal Fahad verfasserin aut Numerical investigation of the hydrothermal performance of novel vortex generators in a rectangular channel by employing inclination and rotational angles 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Vortex generators are passive methods of heat transfer enhancement in any thermal system. However, more research is needed to compare the effects of vortex generators having unique shapes on the flow distribution for high heat transmission. Also, a research gap exists in analyzing how different angular orientations of the vortex generator (VG) affect thermohydraulic performance. Therefore, this CFD study aims to propose a total of five novel vortex generator shapes applying modification on a rectangular VG shape, analyzing and comparing the heat transfer and pressure drop properties in a rectangular channel for the Reynolds number varying in the range of Re=4000–11,000. VG-1 (vortex generator-1) with three triangles on its top side, VG-2 with concave shape arc, VG-3 combined with a rectangle and a triangle, VG-4 consists of a rectangle and two triangles at two corners, while VG-5 consists of a rectangle with a triangular inside cut. Among the five designs, VG-1 gives the most optimal hydrothermal performance, incrementing Nusselt number and friction factor of about 38.2 % and 80.38 %, respectively. Combining these two dimensionless parameters, we get the maximum thermal performance factor, TPF, for VG-1, whereas VG-2 performs the least in terms of TPF. Moreover, compared with conventional rectangular VG, VG-1 performed the best with a 1.63 % increase in TPF. Considering the effect of different angular orientations, VG-1 was further studied by applying five vertical inclination angles and four horizontal rotation angle configurations to investigate the impact of inclination and rotational angles. Minimizing the pressure drop penalty, the 30˚ inclination design had the best hydrothermal performance overall, with the highest TPF range of 1.19–1.41, whereas 120˚ variants had the lowest TPF, at 1.09–1.31. Also, for the configuration of the horizontal rotations, 30˚ angle gives the best result, having a slight edge over 150˚case with 1.17–1.41 TPF. Finally, the best cases from vertical inclination and horizontal rotation are combined in a new hybrid configuration, which yielded the maximum TPF of 1.22–1.45, indicating that this configuration is the most effective among all the cases. CFD Vortex generators Heat transfer Inclination angle Nusselt number Thermal performance factor Heat Nowroze Farhan Ifraj verfasserin aut Sharzil Huda Tahsin verfasserin aut Md. Jahid Hasan verfasserin aut In International Journal of Thermofluids Elsevier, 2020 20(2023), Seite 100500- (DE-627)1760627569 26662027 nnns volume:20 year:2023 pages:100500- https://doi.org/10.1016/j.ijft.2023.100500 kostenfrei https://doaj.org/article/eef630df89e14201b35e82a7532c540f kostenfrei http://www.sciencedirect.com/science/article/pii/S266620272300215X kostenfrei https://doaj.org/toc/2666-2027 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 20 2023 100500- |
allfieldsSound |
10.1016/j.ijft.2023.100500 doi (DE-627)DOAJ091002494 (DE-599)DOAJeef630df89e14201b35e82a7532c540f DE-627 ger DE-627 rakwb eng QC251-338.5 Mostafa Kamal Fahad verfasserin aut Numerical investigation of the hydrothermal performance of novel vortex generators in a rectangular channel by employing inclination and rotational angles 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Vortex generators are passive methods of heat transfer enhancement in any thermal system. However, more research is needed to compare the effects of vortex generators having unique shapes on the flow distribution for high heat transmission. Also, a research gap exists in analyzing how different angular orientations of the vortex generator (VG) affect thermohydraulic performance. Therefore, this CFD study aims to propose a total of five novel vortex generator shapes applying modification on a rectangular VG shape, analyzing and comparing the heat transfer and pressure drop properties in a rectangular channel for the Reynolds number varying in the range of Re=4000–11,000. VG-1 (vortex generator-1) with three triangles on its top side, VG-2 with concave shape arc, VG-3 combined with a rectangle and a triangle, VG-4 consists of a rectangle and two triangles at two corners, while VG-5 consists of a rectangle with a triangular inside cut. Among the five designs, VG-1 gives the most optimal hydrothermal performance, incrementing Nusselt number and friction factor of about 38.2 % and 80.38 %, respectively. Combining these two dimensionless parameters, we get the maximum thermal performance factor, TPF, for VG-1, whereas VG-2 performs the least in terms of TPF. Moreover, compared with conventional rectangular VG, VG-1 performed the best with a 1.63 % increase in TPF. Considering the effect of different angular orientations, VG-1 was further studied by applying five vertical inclination angles and four horizontal rotation angle configurations to investigate the impact of inclination and rotational angles. Minimizing the pressure drop penalty, the 30˚ inclination design had the best hydrothermal performance overall, with the highest TPF range of 1.19–1.41, whereas 120˚ variants had the lowest TPF, at 1.09–1.31. Also, for the configuration of the horizontal rotations, 30˚ angle gives the best result, having a slight edge over 150˚case with 1.17–1.41 TPF. Finally, the best cases from vertical inclination and horizontal rotation are combined in a new hybrid configuration, which yielded the maximum TPF of 1.22–1.45, indicating that this configuration is the most effective among all the cases. CFD Vortex generators Heat transfer Inclination angle Nusselt number Thermal performance factor Heat Nowroze Farhan Ifraj verfasserin aut Sharzil Huda Tahsin verfasserin aut Md. Jahid Hasan verfasserin aut In International Journal of Thermofluids Elsevier, 2020 20(2023), Seite 100500- (DE-627)1760627569 26662027 nnns volume:20 year:2023 pages:100500- https://doi.org/10.1016/j.ijft.2023.100500 kostenfrei https://doaj.org/article/eef630df89e14201b35e82a7532c540f kostenfrei http://www.sciencedirect.com/science/article/pii/S266620272300215X kostenfrei https://doaj.org/toc/2666-2027 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 20 2023 100500- |
language |
English |
source |
In International Journal of Thermofluids 20(2023), Seite 100500- volume:20 year:2023 pages:100500- |
sourceStr |
In International Journal of Thermofluids 20(2023), Seite 100500- volume:20 year:2023 pages:100500- |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
CFD Vortex generators Heat transfer Inclination angle Nusselt number Thermal performance factor Heat |
isfreeaccess_bool |
true |
container_title |
International Journal of Thermofluids |
authorswithroles_txt_mv |
Mostafa Kamal Fahad @@aut@@ Nowroze Farhan Ifraj @@aut@@ Sharzil Huda Tahsin @@aut@@ Md. Jahid Hasan @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
1760627569 |
id |
DOAJ091002494 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ091002494</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414085556.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240412s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijft.2023.100500</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ091002494</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJeef630df89e14201b35e82a7532c540f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC251-338.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mostafa Kamal Fahad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical investigation of the hydrothermal performance of novel vortex generators in a rectangular channel by employing inclination and rotational angles</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Vortex generators are passive methods of heat transfer enhancement in any thermal system. However, more research is needed to compare the effects of vortex generators having unique shapes on the flow distribution for high heat transmission. Also, a research gap exists in analyzing how different angular orientations of the vortex generator (VG) affect thermohydraulic performance. Therefore, this CFD study aims to propose a total of five novel vortex generator shapes applying modification on a rectangular VG shape, analyzing and comparing the heat transfer and pressure drop properties in a rectangular channel for the Reynolds number varying in the range of Re=4000–11,000. VG-1 (vortex generator-1) with three triangles on its top side, VG-2 with concave shape arc, VG-3 combined with a rectangle and a triangle, VG-4 consists of a rectangle and two triangles at two corners, while VG-5 consists of a rectangle with a triangular inside cut. Among the five designs, VG-1 gives the most optimal hydrothermal performance, incrementing Nusselt number and friction factor of about 38.2 % and 80.38 %, respectively. Combining these two dimensionless parameters, we get the maximum thermal performance factor, TPF, for VG-1, whereas VG-2 performs the least in terms of TPF. Moreover, compared with conventional rectangular VG, VG-1 performed the best with a 1.63 % increase in TPF. Considering the effect of different angular orientations, VG-1 was further studied by applying five vertical inclination angles and four horizontal rotation angle configurations to investigate the impact of inclination and rotational angles. Minimizing the pressure drop penalty, the 30˚ inclination design had the best hydrothermal performance overall, with the highest TPF range of 1.19–1.41, whereas 120˚ variants had the lowest TPF, at 1.09–1.31. Also, for the configuration of the horizontal rotations, 30˚ angle gives the best result, having a slight edge over 150˚case with 1.17–1.41 TPF. Finally, the best cases from vertical inclination and horizontal rotation are combined in a new hybrid configuration, which yielded the maximum TPF of 1.22–1.45, indicating that this configuration is the most effective among all the cases.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CFD</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vortex generators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat transfer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inclination angle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nusselt number</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal performance factor</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Heat</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nowroze Farhan Ifraj</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sharzil Huda Tahsin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Md. Jahid Hasan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International Journal of Thermofluids</subfield><subfield code="d">Elsevier, 2020</subfield><subfield code="g">20(2023), Seite 100500-</subfield><subfield code="w">(DE-627)1760627569</subfield><subfield code="x">26662027</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2023</subfield><subfield code="g">pages:100500-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ijft.2023.100500</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/eef630df89e14201b35e82a7532c540f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S266620272300215X</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2666-2027</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2023</subfield><subfield code="h">100500-</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Mostafa Kamal Fahad |
spellingShingle |
Mostafa Kamal Fahad misc QC251-338.5 misc CFD misc Vortex generators misc Heat transfer misc Inclination angle misc Nusselt number misc Thermal performance factor misc Heat Numerical investigation of the hydrothermal performance of novel vortex generators in a rectangular channel by employing inclination and rotational angles |
authorStr |
Mostafa Kamal Fahad |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1760627569 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QC251-338 |
illustrated |
Not Illustrated |
issn |
26662027 |
topic_title |
QC251-338.5 Numerical investigation of the hydrothermal performance of novel vortex generators in a rectangular channel by employing inclination and rotational angles CFD Vortex generators Heat transfer Inclination angle Nusselt number Thermal performance factor |
topic |
misc QC251-338.5 misc CFD misc Vortex generators misc Heat transfer misc Inclination angle misc Nusselt number misc Thermal performance factor misc Heat |
topic_unstemmed |
misc QC251-338.5 misc CFD misc Vortex generators misc Heat transfer misc Inclination angle misc Nusselt number misc Thermal performance factor misc Heat |
topic_browse |
misc QC251-338.5 misc CFD misc Vortex generators misc Heat transfer misc Inclination angle misc Nusselt number misc Thermal performance factor misc Heat |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International Journal of Thermofluids |
hierarchy_parent_id |
1760627569 |
hierarchy_top_title |
International Journal of Thermofluids |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1760627569 |
title |
Numerical investigation of the hydrothermal performance of novel vortex generators in a rectangular channel by employing inclination and rotational angles |
ctrlnum |
(DE-627)DOAJ091002494 (DE-599)DOAJeef630df89e14201b35e82a7532c540f |
title_full |
Numerical investigation of the hydrothermal performance of novel vortex generators in a rectangular channel by employing inclination and rotational angles |
author_sort |
Mostafa Kamal Fahad |
journal |
International Journal of Thermofluids |
journalStr |
International Journal of Thermofluids |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
100500 |
author_browse |
Mostafa Kamal Fahad Nowroze Farhan Ifraj Sharzil Huda Tahsin Md. Jahid Hasan |
container_volume |
20 |
class |
QC251-338.5 |
format_se |
Elektronische Aufsätze |
author-letter |
Mostafa Kamal Fahad |
doi_str_mv |
10.1016/j.ijft.2023.100500 |
author2-role |
verfasserin |
title_sort |
numerical investigation of the hydrothermal performance of novel vortex generators in a rectangular channel by employing inclination and rotational angles |
callnumber |
QC251-338.5 |
title_auth |
Numerical investigation of the hydrothermal performance of novel vortex generators in a rectangular channel by employing inclination and rotational angles |
abstract |
Vortex generators are passive methods of heat transfer enhancement in any thermal system. However, more research is needed to compare the effects of vortex generators having unique shapes on the flow distribution for high heat transmission. Also, a research gap exists in analyzing how different angular orientations of the vortex generator (VG) affect thermohydraulic performance. Therefore, this CFD study aims to propose a total of five novel vortex generator shapes applying modification on a rectangular VG shape, analyzing and comparing the heat transfer and pressure drop properties in a rectangular channel for the Reynolds number varying in the range of Re=4000–11,000. VG-1 (vortex generator-1) with three triangles on its top side, VG-2 with concave shape arc, VG-3 combined with a rectangle and a triangle, VG-4 consists of a rectangle and two triangles at two corners, while VG-5 consists of a rectangle with a triangular inside cut. Among the five designs, VG-1 gives the most optimal hydrothermal performance, incrementing Nusselt number and friction factor of about 38.2 % and 80.38 %, respectively. Combining these two dimensionless parameters, we get the maximum thermal performance factor, TPF, for VG-1, whereas VG-2 performs the least in terms of TPF. Moreover, compared with conventional rectangular VG, VG-1 performed the best with a 1.63 % increase in TPF. Considering the effect of different angular orientations, VG-1 was further studied by applying five vertical inclination angles and four horizontal rotation angle configurations to investigate the impact of inclination and rotational angles. Minimizing the pressure drop penalty, the 30˚ inclination design had the best hydrothermal performance overall, with the highest TPF range of 1.19–1.41, whereas 120˚ variants had the lowest TPF, at 1.09–1.31. Also, for the configuration of the horizontal rotations, 30˚ angle gives the best result, having a slight edge over 150˚case with 1.17–1.41 TPF. Finally, the best cases from vertical inclination and horizontal rotation are combined in a new hybrid configuration, which yielded the maximum TPF of 1.22–1.45, indicating that this configuration is the most effective among all the cases. |
abstractGer |
Vortex generators are passive methods of heat transfer enhancement in any thermal system. However, more research is needed to compare the effects of vortex generators having unique shapes on the flow distribution for high heat transmission. Also, a research gap exists in analyzing how different angular orientations of the vortex generator (VG) affect thermohydraulic performance. Therefore, this CFD study aims to propose a total of five novel vortex generator shapes applying modification on a rectangular VG shape, analyzing and comparing the heat transfer and pressure drop properties in a rectangular channel for the Reynolds number varying in the range of Re=4000–11,000. VG-1 (vortex generator-1) with three triangles on its top side, VG-2 with concave shape arc, VG-3 combined with a rectangle and a triangle, VG-4 consists of a rectangle and two triangles at two corners, while VG-5 consists of a rectangle with a triangular inside cut. Among the five designs, VG-1 gives the most optimal hydrothermal performance, incrementing Nusselt number and friction factor of about 38.2 % and 80.38 %, respectively. Combining these two dimensionless parameters, we get the maximum thermal performance factor, TPF, for VG-1, whereas VG-2 performs the least in terms of TPF. Moreover, compared with conventional rectangular VG, VG-1 performed the best with a 1.63 % increase in TPF. Considering the effect of different angular orientations, VG-1 was further studied by applying five vertical inclination angles and four horizontal rotation angle configurations to investigate the impact of inclination and rotational angles. Minimizing the pressure drop penalty, the 30˚ inclination design had the best hydrothermal performance overall, with the highest TPF range of 1.19–1.41, whereas 120˚ variants had the lowest TPF, at 1.09–1.31. Also, for the configuration of the horizontal rotations, 30˚ angle gives the best result, having a slight edge over 150˚case with 1.17–1.41 TPF. Finally, the best cases from vertical inclination and horizontal rotation are combined in a new hybrid configuration, which yielded the maximum TPF of 1.22–1.45, indicating that this configuration is the most effective among all the cases. |
abstract_unstemmed |
Vortex generators are passive methods of heat transfer enhancement in any thermal system. However, more research is needed to compare the effects of vortex generators having unique shapes on the flow distribution for high heat transmission. Also, a research gap exists in analyzing how different angular orientations of the vortex generator (VG) affect thermohydraulic performance. Therefore, this CFD study aims to propose a total of five novel vortex generator shapes applying modification on a rectangular VG shape, analyzing and comparing the heat transfer and pressure drop properties in a rectangular channel for the Reynolds number varying in the range of Re=4000–11,000. VG-1 (vortex generator-1) with three triangles on its top side, VG-2 with concave shape arc, VG-3 combined with a rectangle and a triangle, VG-4 consists of a rectangle and two triangles at two corners, while VG-5 consists of a rectangle with a triangular inside cut. Among the five designs, VG-1 gives the most optimal hydrothermal performance, incrementing Nusselt number and friction factor of about 38.2 % and 80.38 %, respectively. Combining these two dimensionless parameters, we get the maximum thermal performance factor, TPF, for VG-1, whereas VG-2 performs the least in terms of TPF. Moreover, compared with conventional rectangular VG, VG-1 performed the best with a 1.63 % increase in TPF. Considering the effect of different angular orientations, VG-1 was further studied by applying five vertical inclination angles and four horizontal rotation angle configurations to investigate the impact of inclination and rotational angles. Minimizing the pressure drop penalty, the 30˚ inclination design had the best hydrothermal performance overall, with the highest TPF range of 1.19–1.41, whereas 120˚ variants had the lowest TPF, at 1.09–1.31. Also, for the configuration of the horizontal rotations, 30˚ angle gives the best result, having a slight edge over 150˚case with 1.17–1.41 TPF. Finally, the best cases from vertical inclination and horizontal rotation are combined in a new hybrid configuration, which yielded the maximum TPF of 1.22–1.45, indicating that this configuration is the most effective among all the cases. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Numerical investigation of the hydrothermal performance of novel vortex generators in a rectangular channel by employing inclination and rotational angles |
url |
https://doi.org/10.1016/j.ijft.2023.100500 https://doaj.org/article/eef630df89e14201b35e82a7532c540f http://www.sciencedirect.com/science/article/pii/S266620272300215X https://doaj.org/toc/2666-2027 |
remote_bool |
true |
author2 |
Nowroze Farhan Ifraj Sharzil Huda Tahsin Md. Jahid Hasan |
author2Str |
Nowroze Farhan Ifraj Sharzil Huda Tahsin Md. Jahid Hasan |
ppnlink |
1760627569 |
callnumber-subject |
QC - Physics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ijft.2023.100500 |
callnumber-a |
QC251-338.5 |
up_date |
2024-07-03T17:51:18.222Z |
_version_ |
1803581210726760448 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ091002494</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414085556.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240412s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijft.2023.100500</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ091002494</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJeef630df89e14201b35e82a7532c540f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC251-338.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mostafa Kamal Fahad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical investigation of the hydrothermal performance of novel vortex generators in a rectangular channel by employing inclination and rotational angles</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Vortex generators are passive methods of heat transfer enhancement in any thermal system. However, more research is needed to compare the effects of vortex generators having unique shapes on the flow distribution for high heat transmission. Also, a research gap exists in analyzing how different angular orientations of the vortex generator (VG) affect thermohydraulic performance. Therefore, this CFD study aims to propose a total of five novel vortex generator shapes applying modification on a rectangular VG shape, analyzing and comparing the heat transfer and pressure drop properties in a rectangular channel for the Reynolds number varying in the range of Re=4000–11,000. VG-1 (vortex generator-1) with three triangles on its top side, VG-2 with concave shape arc, VG-3 combined with a rectangle and a triangle, VG-4 consists of a rectangle and two triangles at two corners, while VG-5 consists of a rectangle with a triangular inside cut. Among the five designs, VG-1 gives the most optimal hydrothermal performance, incrementing Nusselt number and friction factor of about 38.2 % and 80.38 %, respectively. Combining these two dimensionless parameters, we get the maximum thermal performance factor, TPF, for VG-1, whereas VG-2 performs the least in terms of TPF. Moreover, compared with conventional rectangular VG, VG-1 performed the best with a 1.63 % increase in TPF. Considering the effect of different angular orientations, VG-1 was further studied by applying five vertical inclination angles and four horizontal rotation angle configurations to investigate the impact of inclination and rotational angles. Minimizing the pressure drop penalty, the 30˚ inclination design had the best hydrothermal performance overall, with the highest TPF range of 1.19–1.41, whereas 120˚ variants had the lowest TPF, at 1.09–1.31. Also, for the configuration of the horizontal rotations, 30˚ angle gives the best result, having a slight edge over 150˚case with 1.17–1.41 TPF. Finally, the best cases from vertical inclination and horizontal rotation are combined in a new hybrid configuration, which yielded the maximum TPF of 1.22–1.45, indicating that this configuration is the most effective among all the cases.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CFD</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vortex generators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat transfer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inclination angle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nusselt number</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal performance factor</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Heat</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nowroze Farhan Ifraj</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sharzil Huda Tahsin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Md. Jahid Hasan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International Journal of Thermofluids</subfield><subfield code="d">Elsevier, 2020</subfield><subfield code="g">20(2023), Seite 100500-</subfield><subfield code="w">(DE-627)1760627569</subfield><subfield code="x">26662027</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2023</subfield><subfield code="g">pages:100500-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ijft.2023.100500</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/eef630df89e14201b35e82a7532c540f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S266620272300215X</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2666-2027</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2023</subfield><subfield code="h">100500-</subfield></datafield></record></collection>
|
score |
7.401019 |