Interaction-Driven Topological Phase Diagram of Twisted Bilayer MoTe_{2}
Twisted bilayer MoTe_{2} is a promising platform to investigate the interplay between band topology and many-body interactions. We present a theoretical study of its interaction-driven quantum phase diagrams based on a three-orbital model, which can be viewed as a generalization of the Kane-Mele-Hub...
Ausführliche Beschreibung
Autor*in: |
Wen-Xuan Qiu [verfasserIn] Bohao Li [verfasserIn] Xun-Jiang Luo [verfasserIn] Fengcheng Wu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Übergeordnetes Werk: |
In: Physical Review X - American Physical Society, 2011, 13(2023), 4, p 041026 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2023 ; number:4, p 041026 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.1103/PhysRevX.13.041026 |
---|
Katalog-ID: |
DOAJ091039819 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ091039819 | ||
003 | DE-627 | ||
005 | 20240413222806.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240412s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1103/PhysRevX.13.041026 |2 doi | |
035 | |a (DE-627)DOAJ091039819 | ||
035 | |a (DE-599)DOAJb73f98ea8fe244b0ad445ea68446738d | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QC1-999 | |
100 | 0 | |a Wen-Xuan Qiu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Interaction-Driven Topological Phase Diagram of Twisted Bilayer MoTe_{2} |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Twisted bilayer MoTe_{2} is a promising platform to investigate the interplay between band topology and many-body interactions. We present a theoretical study of its interaction-driven quantum phase diagrams based on a three-orbital model, which can be viewed as a generalization of the Kane-Mele-Hubbard model with one additional orbital and long-range Coulomb repulsion. We predict a cascade of phase transitions tuned by the twist angle θ. At the hole-filling factor ν=1 (one hole per moiré unit cell), the ground state can be in the multiferroic phase, with coexisting spontaneous layer polarization and magnetism; the quantum anomalous Hall phase; and finally, the topologically trivial magnetic phases, as θ increases from 1.5° to 5°. At ν=2, the ground state can have a second-order phase transition between an antiferromagnetic phase and the quantum spin Hall phase as θ passes through a critical value. The dependence of the phase boundaries on model parameters, such as the gate-to-sample distance, the dielectric constant, and the moiré potential amplitude, is examined. The predicted phase diagrams can guide the search for topological phases in twisted transition metal dichalcogenide homobilayers. | ||
653 | 0 | |a Physics | |
700 | 0 | |a Bohao Li |e verfasserin |4 aut | |
700 | 0 | |a Xun-Jiang Luo |e verfasserin |4 aut | |
700 | 0 | |a Fengcheng Wu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Physical Review X |d American Physical Society, 2011 |g 13(2023), 4, p 041026 |w (DE-627)666214115 |w (DE-600)2622565-7 |x 21603308 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2023 |g number:4, p 041026 |
856 | 4 | 0 | |u https://doi.org/10.1103/PhysRevX.13.041026 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/b73f98ea8fe244b0ad445ea68446738d |z kostenfrei |
856 | 4 | 0 | |u http://doi.org/10.1103/PhysRevX.13.041026 |z kostenfrei |
856 | 4 | 0 | |u http://doi.org/10.1103/PhysRevX.13.041026 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2160-3308 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2023 |e 4, p 041026 |
author_variant |
w x q wxq b l bl x j l xjl f w fw |
---|---|
matchkey_str |
article:21603308:2023----::neatodietplgclhsdarmfw |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QC |
publishDate |
2023 |
allfields |
10.1103/PhysRevX.13.041026 doi (DE-627)DOAJ091039819 (DE-599)DOAJb73f98ea8fe244b0ad445ea68446738d DE-627 ger DE-627 rakwb eng QC1-999 Wen-Xuan Qiu verfasserin aut Interaction-Driven Topological Phase Diagram of Twisted Bilayer MoTe_{2} 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Twisted bilayer MoTe_{2} is a promising platform to investigate the interplay between band topology and many-body interactions. We present a theoretical study of its interaction-driven quantum phase diagrams based on a three-orbital model, which can be viewed as a generalization of the Kane-Mele-Hubbard model with one additional orbital and long-range Coulomb repulsion. We predict a cascade of phase transitions tuned by the twist angle θ. At the hole-filling factor ν=1 (one hole per moiré unit cell), the ground state can be in the multiferroic phase, with coexisting spontaneous layer polarization and magnetism; the quantum anomalous Hall phase; and finally, the topologically trivial magnetic phases, as θ increases from 1.5° to 5°. At ν=2, the ground state can have a second-order phase transition between an antiferromagnetic phase and the quantum spin Hall phase as θ passes through a critical value. The dependence of the phase boundaries on model parameters, such as the gate-to-sample distance, the dielectric constant, and the moiré potential amplitude, is examined. The predicted phase diagrams can guide the search for topological phases in twisted transition metal dichalcogenide homobilayers. Physics Bohao Li verfasserin aut Xun-Jiang Luo verfasserin aut Fengcheng Wu verfasserin aut In Physical Review X American Physical Society, 2011 13(2023), 4, p 041026 (DE-627)666214115 (DE-600)2622565-7 21603308 nnns volume:13 year:2023 number:4, p 041026 https://doi.org/10.1103/PhysRevX.13.041026 kostenfrei https://doaj.org/article/b73f98ea8fe244b0ad445ea68446738d kostenfrei http://doi.org/10.1103/PhysRevX.13.041026 kostenfrei http://doi.org/10.1103/PhysRevX.13.041026 kostenfrei https://doaj.org/toc/2160-3308 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 4, p 041026 |
spelling |
10.1103/PhysRevX.13.041026 doi (DE-627)DOAJ091039819 (DE-599)DOAJb73f98ea8fe244b0ad445ea68446738d DE-627 ger DE-627 rakwb eng QC1-999 Wen-Xuan Qiu verfasserin aut Interaction-Driven Topological Phase Diagram of Twisted Bilayer MoTe_{2} 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Twisted bilayer MoTe_{2} is a promising platform to investigate the interplay between band topology and many-body interactions. We present a theoretical study of its interaction-driven quantum phase diagrams based on a three-orbital model, which can be viewed as a generalization of the Kane-Mele-Hubbard model with one additional orbital and long-range Coulomb repulsion. We predict a cascade of phase transitions tuned by the twist angle θ. At the hole-filling factor ν=1 (one hole per moiré unit cell), the ground state can be in the multiferroic phase, with coexisting spontaneous layer polarization and magnetism; the quantum anomalous Hall phase; and finally, the topologically trivial magnetic phases, as θ increases from 1.5° to 5°. At ν=2, the ground state can have a second-order phase transition between an antiferromagnetic phase and the quantum spin Hall phase as θ passes through a critical value. The dependence of the phase boundaries on model parameters, such as the gate-to-sample distance, the dielectric constant, and the moiré potential amplitude, is examined. The predicted phase diagrams can guide the search for topological phases in twisted transition metal dichalcogenide homobilayers. Physics Bohao Li verfasserin aut Xun-Jiang Luo verfasserin aut Fengcheng Wu verfasserin aut In Physical Review X American Physical Society, 2011 13(2023), 4, p 041026 (DE-627)666214115 (DE-600)2622565-7 21603308 nnns volume:13 year:2023 number:4, p 041026 https://doi.org/10.1103/PhysRevX.13.041026 kostenfrei https://doaj.org/article/b73f98ea8fe244b0ad445ea68446738d kostenfrei http://doi.org/10.1103/PhysRevX.13.041026 kostenfrei http://doi.org/10.1103/PhysRevX.13.041026 kostenfrei https://doaj.org/toc/2160-3308 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 4, p 041026 |
allfields_unstemmed |
10.1103/PhysRevX.13.041026 doi (DE-627)DOAJ091039819 (DE-599)DOAJb73f98ea8fe244b0ad445ea68446738d DE-627 ger DE-627 rakwb eng QC1-999 Wen-Xuan Qiu verfasserin aut Interaction-Driven Topological Phase Diagram of Twisted Bilayer MoTe_{2} 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Twisted bilayer MoTe_{2} is a promising platform to investigate the interplay between band topology and many-body interactions. We present a theoretical study of its interaction-driven quantum phase diagrams based on a three-orbital model, which can be viewed as a generalization of the Kane-Mele-Hubbard model with one additional orbital and long-range Coulomb repulsion. We predict a cascade of phase transitions tuned by the twist angle θ. At the hole-filling factor ν=1 (one hole per moiré unit cell), the ground state can be in the multiferroic phase, with coexisting spontaneous layer polarization and magnetism; the quantum anomalous Hall phase; and finally, the topologically trivial magnetic phases, as θ increases from 1.5° to 5°. At ν=2, the ground state can have a second-order phase transition between an antiferromagnetic phase and the quantum spin Hall phase as θ passes through a critical value. The dependence of the phase boundaries on model parameters, such as the gate-to-sample distance, the dielectric constant, and the moiré potential amplitude, is examined. The predicted phase diagrams can guide the search for topological phases in twisted transition metal dichalcogenide homobilayers. Physics Bohao Li verfasserin aut Xun-Jiang Luo verfasserin aut Fengcheng Wu verfasserin aut In Physical Review X American Physical Society, 2011 13(2023), 4, p 041026 (DE-627)666214115 (DE-600)2622565-7 21603308 nnns volume:13 year:2023 number:4, p 041026 https://doi.org/10.1103/PhysRevX.13.041026 kostenfrei https://doaj.org/article/b73f98ea8fe244b0ad445ea68446738d kostenfrei http://doi.org/10.1103/PhysRevX.13.041026 kostenfrei http://doi.org/10.1103/PhysRevX.13.041026 kostenfrei https://doaj.org/toc/2160-3308 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 4, p 041026 |
allfieldsGer |
10.1103/PhysRevX.13.041026 doi (DE-627)DOAJ091039819 (DE-599)DOAJb73f98ea8fe244b0ad445ea68446738d DE-627 ger DE-627 rakwb eng QC1-999 Wen-Xuan Qiu verfasserin aut Interaction-Driven Topological Phase Diagram of Twisted Bilayer MoTe_{2} 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Twisted bilayer MoTe_{2} is a promising platform to investigate the interplay between band topology and many-body interactions. We present a theoretical study of its interaction-driven quantum phase diagrams based on a three-orbital model, which can be viewed as a generalization of the Kane-Mele-Hubbard model with one additional orbital and long-range Coulomb repulsion. We predict a cascade of phase transitions tuned by the twist angle θ. At the hole-filling factor ν=1 (one hole per moiré unit cell), the ground state can be in the multiferroic phase, with coexisting spontaneous layer polarization and magnetism; the quantum anomalous Hall phase; and finally, the topologically trivial magnetic phases, as θ increases from 1.5° to 5°. At ν=2, the ground state can have a second-order phase transition between an antiferromagnetic phase and the quantum spin Hall phase as θ passes through a critical value. The dependence of the phase boundaries on model parameters, such as the gate-to-sample distance, the dielectric constant, and the moiré potential amplitude, is examined. The predicted phase diagrams can guide the search for topological phases in twisted transition metal dichalcogenide homobilayers. Physics Bohao Li verfasserin aut Xun-Jiang Luo verfasserin aut Fengcheng Wu verfasserin aut In Physical Review X American Physical Society, 2011 13(2023), 4, p 041026 (DE-627)666214115 (DE-600)2622565-7 21603308 nnns volume:13 year:2023 number:4, p 041026 https://doi.org/10.1103/PhysRevX.13.041026 kostenfrei https://doaj.org/article/b73f98ea8fe244b0ad445ea68446738d kostenfrei http://doi.org/10.1103/PhysRevX.13.041026 kostenfrei http://doi.org/10.1103/PhysRevX.13.041026 kostenfrei https://doaj.org/toc/2160-3308 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 4, p 041026 |
allfieldsSound |
10.1103/PhysRevX.13.041026 doi (DE-627)DOAJ091039819 (DE-599)DOAJb73f98ea8fe244b0ad445ea68446738d DE-627 ger DE-627 rakwb eng QC1-999 Wen-Xuan Qiu verfasserin aut Interaction-Driven Topological Phase Diagram of Twisted Bilayer MoTe_{2} 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Twisted bilayer MoTe_{2} is a promising platform to investigate the interplay between band topology and many-body interactions. We present a theoretical study of its interaction-driven quantum phase diagrams based on a three-orbital model, which can be viewed as a generalization of the Kane-Mele-Hubbard model with one additional orbital and long-range Coulomb repulsion. We predict a cascade of phase transitions tuned by the twist angle θ. At the hole-filling factor ν=1 (one hole per moiré unit cell), the ground state can be in the multiferroic phase, with coexisting spontaneous layer polarization and magnetism; the quantum anomalous Hall phase; and finally, the topologically trivial magnetic phases, as θ increases from 1.5° to 5°. At ν=2, the ground state can have a second-order phase transition between an antiferromagnetic phase and the quantum spin Hall phase as θ passes through a critical value. The dependence of the phase boundaries on model parameters, such as the gate-to-sample distance, the dielectric constant, and the moiré potential amplitude, is examined. The predicted phase diagrams can guide the search for topological phases in twisted transition metal dichalcogenide homobilayers. Physics Bohao Li verfasserin aut Xun-Jiang Luo verfasserin aut Fengcheng Wu verfasserin aut In Physical Review X American Physical Society, 2011 13(2023), 4, p 041026 (DE-627)666214115 (DE-600)2622565-7 21603308 nnns volume:13 year:2023 number:4, p 041026 https://doi.org/10.1103/PhysRevX.13.041026 kostenfrei https://doaj.org/article/b73f98ea8fe244b0ad445ea68446738d kostenfrei http://doi.org/10.1103/PhysRevX.13.041026 kostenfrei http://doi.org/10.1103/PhysRevX.13.041026 kostenfrei https://doaj.org/toc/2160-3308 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 4, p 041026 |
language |
English |
source |
In Physical Review X 13(2023), 4, p 041026 volume:13 year:2023 number:4, p 041026 |
sourceStr |
In Physical Review X 13(2023), 4, p 041026 volume:13 year:2023 number:4, p 041026 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Physics |
isfreeaccess_bool |
true |
container_title |
Physical Review X |
authorswithroles_txt_mv |
Wen-Xuan Qiu @@aut@@ Bohao Li @@aut@@ Xun-Jiang Luo @@aut@@ Fengcheng Wu @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
666214115 |
id |
DOAJ091039819 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ091039819</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413222806.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240412s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1103/PhysRevX.13.041026</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ091039819</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb73f98ea8fe244b0ad445ea68446738d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Wen-Xuan Qiu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Interaction-Driven Topological Phase Diagram of Twisted Bilayer MoTe_{2}</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Twisted bilayer MoTe_{2} is a promising platform to investigate the interplay between band topology and many-body interactions. We present a theoretical study of its interaction-driven quantum phase diagrams based on a three-orbital model, which can be viewed as a generalization of the Kane-Mele-Hubbard model with one additional orbital and long-range Coulomb repulsion. We predict a cascade of phase transitions tuned by the twist angle θ. At the hole-filling factor ν=1 (one hole per moiré unit cell), the ground state can be in the multiferroic phase, with coexisting spontaneous layer polarization and magnetism; the quantum anomalous Hall phase; and finally, the topologically trivial magnetic phases, as θ increases from 1.5° to 5°. At ν=2, the ground state can have a second-order phase transition between an antiferromagnetic phase and the quantum spin Hall phase as θ passes through a critical value. The dependence of the phase boundaries on model parameters, such as the gate-to-sample distance, the dielectric constant, and the moiré potential amplitude, is examined. The predicted phase diagrams can guide the search for topological phases in twisted transition metal dichalcogenide homobilayers.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bohao Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xun-Jiang Luo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fengcheng Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Physical Review X</subfield><subfield code="d">American Physical Society, 2011</subfield><subfield code="g">13(2023), 4, p 041026</subfield><subfield code="w">(DE-627)666214115</subfield><subfield code="w">(DE-600)2622565-7</subfield><subfield code="x">21603308</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:4, p 041026</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1103/PhysRevX.13.041026</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b73f98ea8fe244b0ad445ea68446738d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://doi.org/10.1103/PhysRevX.13.041026</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://doi.org/10.1103/PhysRevX.13.041026</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2160-3308</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">4, p 041026</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Wen-Xuan Qiu |
spellingShingle |
Wen-Xuan Qiu misc QC1-999 misc Physics Interaction-Driven Topological Phase Diagram of Twisted Bilayer MoTe_{2} |
authorStr |
Wen-Xuan Qiu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)666214115 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QC1-999 |
illustrated |
Not Illustrated |
issn |
21603308 |
topic_title |
QC1-999 Interaction-Driven Topological Phase Diagram of Twisted Bilayer MoTe_{2} |
topic |
misc QC1-999 misc Physics |
topic_unstemmed |
misc QC1-999 misc Physics |
topic_browse |
misc QC1-999 misc Physics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Physical Review X |
hierarchy_parent_id |
666214115 |
hierarchy_top_title |
Physical Review X |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)666214115 (DE-600)2622565-7 |
title |
Interaction-Driven Topological Phase Diagram of Twisted Bilayer MoTe_{2} |
ctrlnum |
(DE-627)DOAJ091039819 (DE-599)DOAJb73f98ea8fe244b0ad445ea68446738d |
title_full |
Interaction-Driven Topological Phase Diagram of Twisted Bilayer MoTe_{2} |
author_sort |
Wen-Xuan Qiu |
journal |
Physical Review X |
journalStr |
Physical Review X |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Wen-Xuan Qiu Bohao Li Xun-Jiang Luo Fengcheng Wu |
container_volume |
13 |
class |
QC1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Wen-Xuan Qiu |
doi_str_mv |
10.1103/PhysRevX.13.041026 |
author2-role |
verfasserin |
title_sort |
interaction-driven topological phase diagram of twisted bilayer mote_{2} |
callnumber |
QC1-999 |
title_auth |
Interaction-Driven Topological Phase Diagram of Twisted Bilayer MoTe_{2} |
abstract |
Twisted bilayer MoTe_{2} is a promising platform to investigate the interplay between band topology and many-body interactions. We present a theoretical study of its interaction-driven quantum phase diagrams based on a three-orbital model, which can be viewed as a generalization of the Kane-Mele-Hubbard model with one additional orbital and long-range Coulomb repulsion. We predict a cascade of phase transitions tuned by the twist angle θ. At the hole-filling factor ν=1 (one hole per moiré unit cell), the ground state can be in the multiferroic phase, with coexisting spontaneous layer polarization and magnetism; the quantum anomalous Hall phase; and finally, the topologically trivial magnetic phases, as θ increases from 1.5° to 5°. At ν=2, the ground state can have a second-order phase transition between an antiferromagnetic phase and the quantum spin Hall phase as θ passes through a critical value. The dependence of the phase boundaries on model parameters, such as the gate-to-sample distance, the dielectric constant, and the moiré potential amplitude, is examined. The predicted phase diagrams can guide the search for topological phases in twisted transition metal dichalcogenide homobilayers. |
abstractGer |
Twisted bilayer MoTe_{2} is a promising platform to investigate the interplay between band topology and many-body interactions. We present a theoretical study of its interaction-driven quantum phase diagrams based on a three-orbital model, which can be viewed as a generalization of the Kane-Mele-Hubbard model with one additional orbital and long-range Coulomb repulsion. We predict a cascade of phase transitions tuned by the twist angle θ. At the hole-filling factor ν=1 (one hole per moiré unit cell), the ground state can be in the multiferroic phase, with coexisting spontaneous layer polarization and magnetism; the quantum anomalous Hall phase; and finally, the topologically trivial magnetic phases, as θ increases from 1.5° to 5°. At ν=2, the ground state can have a second-order phase transition between an antiferromagnetic phase and the quantum spin Hall phase as θ passes through a critical value. The dependence of the phase boundaries on model parameters, such as the gate-to-sample distance, the dielectric constant, and the moiré potential amplitude, is examined. The predicted phase diagrams can guide the search for topological phases in twisted transition metal dichalcogenide homobilayers. |
abstract_unstemmed |
Twisted bilayer MoTe_{2} is a promising platform to investigate the interplay between band topology and many-body interactions. We present a theoretical study of its interaction-driven quantum phase diagrams based on a three-orbital model, which can be viewed as a generalization of the Kane-Mele-Hubbard model with one additional orbital and long-range Coulomb repulsion. We predict a cascade of phase transitions tuned by the twist angle θ. At the hole-filling factor ν=1 (one hole per moiré unit cell), the ground state can be in the multiferroic phase, with coexisting spontaneous layer polarization and magnetism; the quantum anomalous Hall phase; and finally, the topologically trivial magnetic phases, as θ increases from 1.5° to 5°. At ν=2, the ground state can have a second-order phase transition between an antiferromagnetic phase and the quantum spin Hall phase as θ passes through a critical value. The dependence of the phase boundaries on model parameters, such as the gate-to-sample distance, the dielectric constant, and the moiré potential amplitude, is examined. The predicted phase diagrams can guide the search for topological phases in twisted transition metal dichalcogenide homobilayers. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
4, p 041026 |
title_short |
Interaction-Driven Topological Phase Diagram of Twisted Bilayer MoTe_{2} |
url |
https://doi.org/10.1103/PhysRevX.13.041026 https://doaj.org/article/b73f98ea8fe244b0ad445ea68446738d http://doi.org/10.1103/PhysRevX.13.041026 https://doaj.org/toc/2160-3308 |
remote_bool |
true |
author2 |
Bohao Li Xun-Jiang Luo Fengcheng Wu |
author2Str |
Bohao Li Xun-Jiang Luo Fengcheng Wu |
ppnlink |
666214115 |
callnumber-subject |
QC - Physics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1103/PhysRevX.13.041026 |
callnumber-a |
QC1-999 |
up_date |
2024-07-03T18:05:12.002Z |
_version_ |
1803582085011603456 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ091039819</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413222806.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240412s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1103/PhysRevX.13.041026</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ091039819</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb73f98ea8fe244b0ad445ea68446738d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Wen-Xuan Qiu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Interaction-Driven Topological Phase Diagram of Twisted Bilayer MoTe_{2}</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Twisted bilayer MoTe_{2} is a promising platform to investigate the interplay between band topology and many-body interactions. We present a theoretical study of its interaction-driven quantum phase diagrams based on a three-orbital model, which can be viewed as a generalization of the Kane-Mele-Hubbard model with one additional orbital and long-range Coulomb repulsion. We predict a cascade of phase transitions tuned by the twist angle θ. At the hole-filling factor ν=1 (one hole per moiré unit cell), the ground state can be in the multiferroic phase, with coexisting spontaneous layer polarization and magnetism; the quantum anomalous Hall phase; and finally, the topologically trivial magnetic phases, as θ increases from 1.5° to 5°. At ν=2, the ground state can have a second-order phase transition between an antiferromagnetic phase and the quantum spin Hall phase as θ passes through a critical value. The dependence of the phase boundaries on model parameters, such as the gate-to-sample distance, the dielectric constant, and the moiré potential amplitude, is examined. The predicted phase diagrams can guide the search for topological phases in twisted transition metal dichalcogenide homobilayers.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bohao Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xun-Jiang Luo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fengcheng Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Physical Review X</subfield><subfield code="d">American Physical Society, 2011</subfield><subfield code="g">13(2023), 4, p 041026</subfield><subfield code="w">(DE-627)666214115</subfield><subfield code="w">(DE-600)2622565-7</subfield><subfield code="x">21603308</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:4, p 041026</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1103/PhysRevX.13.041026</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b73f98ea8fe244b0ad445ea68446738d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://doi.org/10.1103/PhysRevX.13.041026</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://doi.org/10.1103/PhysRevX.13.041026</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2160-3308</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">4, p 041026</subfield></datafield></record></collection>
|
score |
7.4008837 |