Heavy-duty vehicle emission characteristics based on the remote-monitoring three-bin moving-average window method
A three-bin moving average window (3B-MAW) model was proposed and compared with the work-based window method (WB-WM) to investigate the on-road emission characteristics of heavy-duty vehicles. The invalid data of remote monitoring were mainly composed of the NOx sensor’s abnormal data and the upload...
Ausführliche Beschreibung
Autor*in: |
Guo Dongdong [verfasserIn] Yu Quanshun [verfasserIn] Ren Shuojin [verfasserIn] Wang Tao [verfasserIn] Shao Pengfei [verfasserIn] Yang Jianglong [verfasserIn] Shi Fulu [verfasserIn] Li Tengteng [verfasserIn] Zhang Chao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch ; Französisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: E3S Web of Conferences - EDP Sciences, 2013, 438, p 01003(2023) |
---|---|
Übergeordnetes Werk: |
volume:438, p 01003 ; year:2023 |
Links: |
---|
DOI / URN: |
10.1051/e3sconf/202343801003 |
---|
Katalog-ID: |
DOAJ091056756 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ091056756 | ||
003 | DE-627 | ||
005 | 20240413223138.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240412s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1051/e3sconf/202343801003 |2 doi | |
035 | |a (DE-627)DOAJ091056756 | ||
035 | |a (DE-599)DOAJ4884690c21194bd5950728b1afc6cb7c | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng |a fre | ||
050 | 0 | |a GE1-350 | |
100 | 0 | |a Guo Dongdong |e verfasserin |4 aut | |
245 | 1 | 0 | |a Heavy-duty vehicle emission characteristics based on the remote-monitoring three-bin moving-average window method |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a A three-bin moving average window (3B-MAW) model was proposed and compared with the work-based window method (WB-WM) to investigate the on-road emission characteristics of heavy-duty vehicles. The invalid data of remote monitoring were mainly composed of the NOx sensor’s abnormal data and the uploaded data after the engine shutdown. In the 3B-MAW model, each data was attributed to one, two or three bins. The percentage of the three bins were linked to the vehicle’s real driving conditions. In order to gain the emission calculation accuracy and a smaller scale of required data, the value of the four main parameters, i.e., the minimum window number, the window width, the first cut-off and the second cut-off are set around 2 400 s, 300 s, 6% and 20%, respectively. Since the window power is no longer required, the 3B-MAW method is able to capture the low load emission characteristics more effectively, compared to the WB-WM. Therefore, the 3B-MAW method is a more appreciate approach to analyse on-road random driving conditions. | ||
650 | 4 | |a heavy-duty vehicle | |
650 | 4 | |a moving average | |
650 | 4 | |a remote monitoring | |
650 | 4 | |a work-based window method | |
653 | 0 | |a Environmental sciences | |
700 | 0 | |a Yu Quanshun |e verfasserin |4 aut | |
700 | 0 | |a Ren Shuojin |e verfasserin |4 aut | |
700 | 0 | |a Wang Tao |e verfasserin |4 aut | |
700 | 0 | |a Shao Pengfei |e verfasserin |4 aut | |
700 | 0 | |a Yang Jianglong |e verfasserin |4 aut | |
700 | 0 | |a Shi Fulu |e verfasserin |4 aut | |
700 | 0 | |a Li Tengteng |e verfasserin |4 aut | |
700 | 0 | |a Zhang Chao |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t E3S Web of Conferences |d EDP Sciences, 2013 |g 438, p 01003(2023) |w (DE-627)778372081 |w (DE-600)2755680-3 |x 22671242 |7 nnns |
773 | 1 | 8 | |g volume:438, p 01003 |g year:2023 |
856 | 4 | 0 | |u https://doi.org/10.1051/e3sconf/202343801003 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/4884690c21194bd5950728b1afc6cb7c |z kostenfrei |
856 | 4 | 0 | |u https://www.e3s-conferences.org/articles/e3sconf/pdf/2023/75/e3sconf_apee2023_01003.pdf |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2267-1242 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 438, p 01003 |j 2023 |
author_variant |
g d gd y q yq r s rs w t wt s p sp y j yj s f sf l t lt z c zc |
---|---|
matchkey_str |
article:22671242:2023----::evdtvhcemsinhrceitcbsdnhrmtmntrntrei |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
GE |
publishDate |
2023 |
allfields |
10.1051/e3sconf/202343801003 doi (DE-627)DOAJ091056756 (DE-599)DOAJ4884690c21194bd5950728b1afc6cb7c DE-627 ger DE-627 rakwb eng fre GE1-350 Guo Dongdong verfasserin aut Heavy-duty vehicle emission characteristics based on the remote-monitoring three-bin moving-average window method 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A three-bin moving average window (3B-MAW) model was proposed and compared with the work-based window method (WB-WM) to investigate the on-road emission characteristics of heavy-duty vehicles. The invalid data of remote monitoring were mainly composed of the NOx sensor’s abnormal data and the uploaded data after the engine shutdown. In the 3B-MAW model, each data was attributed to one, two or three bins. The percentage of the three bins were linked to the vehicle’s real driving conditions. In order to gain the emission calculation accuracy and a smaller scale of required data, the value of the four main parameters, i.e., the minimum window number, the window width, the first cut-off and the second cut-off are set around 2 400 s, 300 s, 6% and 20%, respectively. Since the window power is no longer required, the 3B-MAW method is able to capture the low load emission characteristics more effectively, compared to the WB-WM. Therefore, the 3B-MAW method is a more appreciate approach to analyse on-road random driving conditions. heavy-duty vehicle moving average remote monitoring work-based window method Environmental sciences Yu Quanshun verfasserin aut Ren Shuojin verfasserin aut Wang Tao verfasserin aut Shao Pengfei verfasserin aut Yang Jianglong verfasserin aut Shi Fulu verfasserin aut Li Tengteng verfasserin aut Zhang Chao verfasserin aut In E3S Web of Conferences EDP Sciences, 2013 438, p 01003(2023) (DE-627)778372081 (DE-600)2755680-3 22671242 nnns volume:438, p 01003 year:2023 https://doi.org/10.1051/e3sconf/202343801003 kostenfrei https://doaj.org/article/4884690c21194bd5950728b1afc6cb7c kostenfrei https://www.e3s-conferences.org/articles/e3sconf/pdf/2023/75/e3sconf_apee2023_01003.pdf kostenfrei https://doaj.org/toc/2267-1242 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 438, p 01003 2023 |
spelling |
10.1051/e3sconf/202343801003 doi (DE-627)DOAJ091056756 (DE-599)DOAJ4884690c21194bd5950728b1afc6cb7c DE-627 ger DE-627 rakwb eng fre GE1-350 Guo Dongdong verfasserin aut Heavy-duty vehicle emission characteristics based on the remote-monitoring three-bin moving-average window method 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A three-bin moving average window (3B-MAW) model was proposed and compared with the work-based window method (WB-WM) to investigate the on-road emission characteristics of heavy-duty vehicles. The invalid data of remote monitoring were mainly composed of the NOx sensor’s abnormal data and the uploaded data after the engine shutdown. In the 3B-MAW model, each data was attributed to one, two or three bins. The percentage of the three bins were linked to the vehicle’s real driving conditions. In order to gain the emission calculation accuracy and a smaller scale of required data, the value of the four main parameters, i.e., the minimum window number, the window width, the first cut-off and the second cut-off are set around 2 400 s, 300 s, 6% and 20%, respectively. Since the window power is no longer required, the 3B-MAW method is able to capture the low load emission characteristics more effectively, compared to the WB-WM. Therefore, the 3B-MAW method is a more appreciate approach to analyse on-road random driving conditions. heavy-duty vehicle moving average remote monitoring work-based window method Environmental sciences Yu Quanshun verfasserin aut Ren Shuojin verfasserin aut Wang Tao verfasserin aut Shao Pengfei verfasserin aut Yang Jianglong verfasserin aut Shi Fulu verfasserin aut Li Tengteng verfasserin aut Zhang Chao verfasserin aut In E3S Web of Conferences EDP Sciences, 2013 438, p 01003(2023) (DE-627)778372081 (DE-600)2755680-3 22671242 nnns volume:438, p 01003 year:2023 https://doi.org/10.1051/e3sconf/202343801003 kostenfrei https://doaj.org/article/4884690c21194bd5950728b1afc6cb7c kostenfrei https://www.e3s-conferences.org/articles/e3sconf/pdf/2023/75/e3sconf_apee2023_01003.pdf kostenfrei https://doaj.org/toc/2267-1242 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 438, p 01003 2023 |
allfields_unstemmed |
10.1051/e3sconf/202343801003 doi (DE-627)DOAJ091056756 (DE-599)DOAJ4884690c21194bd5950728b1afc6cb7c DE-627 ger DE-627 rakwb eng fre GE1-350 Guo Dongdong verfasserin aut Heavy-duty vehicle emission characteristics based on the remote-monitoring three-bin moving-average window method 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A three-bin moving average window (3B-MAW) model was proposed and compared with the work-based window method (WB-WM) to investigate the on-road emission characteristics of heavy-duty vehicles. The invalid data of remote monitoring were mainly composed of the NOx sensor’s abnormal data and the uploaded data after the engine shutdown. In the 3B-MAW model, each data was attributed to one, two or three bins. The percentage of the three bins were linked to the vehicle’s real driving conditions. In order to gain the emission calculation accuracy and a smaller scale of required data, the value of the four main parameters, i.e., the minimum window number, the window width, the first cut-off and the second cut-off are set around 2 400 s, 300 s, 6% and 20%, respectively. Since the window power is no longer required, the 3B-MAW method is able to capture the low load emission characteristics more effectively, compared to the WB-WM. Therefore, the 3B-MAW method is a more appreciate approach to analyse on-road random driving conditions. heavy-duty vehicle moving average remote monitoring work-based window method Environmental sciences Yu Quanshun verfasserin aut Ren Shuojin verfasserin aut Wang Tao verfasserin aut Shao Pengfei verfasserin aut Yang Jianglong verfasserin aut Shi Fulu verfasserin aut Li Tengteng verfasserin aut Zhang Chao verfasserin aut In E3S Web of Conferences EDP Sciences, 2013 438, p 01003(2023) (DE-627)778372081 (DE-600)2755680-3 22671242 nnns volume:438, p 01003 year:2023 https://doi.org/10.1051/e3sconf/202343801003 kostenfrei https://doaj.org/article/4884690c21194bd5950728b1afc6cb7c kostenfrei https://www.e3s-conferences.org/articles/e3sconf/pdf/2023/75/e3sconf_apee2023_01003.pdf kostenfrei https://doaj.org/toc/2267-1242 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 438, p 01003 2023 |
allfieldsGer |
10.1051/e3sconf/202343801003 doi (DE-627)DOAJ091056756 (DE-599)DOAJ4884690c21194bd5950728b1afc6cb7c DE-627 ger DE-627 rakwb eng fre GE1-350 Guo Dongdong verfasserin aut Heavy-duty vehicle emission characteristics based on the remote-monitoring three-bin moving-average window method 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A three-bin moving average window (3B-MAW) model was proposed and compared with the work-based window method (WB-WM) to investigate the on-road emission characteristics of heavy-duty vehicles. The invalid data of remote monitoring were mainly composed of the NOx sensor’s abnormal data and the uploaded data after the engine shutdown. In the 3B-MAW model, each data was attributed to one, two or three bins. The percentage of the three bins were linked to the vehicle’s real driving conditions. In order to gain the emission calculation accuracy and a smaller scale of required data, the value of the four main parameters, i.e., the minimum window number, the window width, the first cut-off and the second cut-off are set around 2 400 s, 300 s, 6% and 20%, respectively. Since the window power is no longer required, the 3B-MAW method is able to capture the low load emission characteristics more effectively, compared to the WB-WM. Therefore, the 3B-MAW method is a more appreciate approach to analyse on-road random driving conditions. heavy-duty vehicle moving average remote monitoring work-based window method Environmental sciences Yu Quanshun verfasserin aut Ren Shuojin verfasserin aut Wang Tao verfasserin aut Shao Pengfei verfasserin aut Yang Jianglong verfasserin aut Shi Fulu verfasserin aut Li Tengteng verfasserin aut Zhang Chao verfasserin aut In E3S Web of Conferences EDP Sciences, 2013 438, p 01003(2023) (DE-627)778372081 (DE-600)2755680-3 22671242 nnns volume:438, p 01003 year:2023 https://doi.org/10.1051/e3sconf/202343801003 kostenfrei https://doaj.org/article/4884690c21194bd5950728b1afc6cb7c kostenfrei https://www.e3s-conferences.org/articles/e3sconf/pdf/2023/75/e3sconf_apee2023_01003.pdf kostenfrei https://doaj.org/toc/2267-1242 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 438, p 01003 2023 |
allfieldsSound |
10.1051/e3sconf/202343801003 doi (DE-627)DOAJ091056756 (DE-599)DOAJ4884690c21194bd5950728b1afc6cb7c DE-627 ger DE-627 rakwb eng fre GE1-350 Guo Dongdong verfasserin aut Heavy-duty vehicle emission characteristics based on the remote-monitoring three-bin moving-average window method 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A three-bin moving average window (3B-MAW) model was proposed and compared with the work-based window method (WB-WM) to investigate the on-road emission characteristics of heavy-duty vehicles. The invalid data of remote monitoring were mainly composed of the NOx sensor’s abnormal data and the uploaded data after the engine shutdown. In the 3B-MAW model, each data was attributed to one, two or three bins. The percentage of the three bins were linked to the vehicle’s real driving conditions. In order to gain the emission calculation accuracy and a smaller scale of required data, the value of the four main parameters, i.e., the minimum window number, the window width, the first cut-off and the second cut-off are set around 2 400 s, 300 s, 6% and 20%, respectively. Since the window power is no longer required, the 3B-MAW method is able to capture the low load emission characteristics more effectively, compared to the WB-WM. Therefore, the 3B-MAW method is a more appreciate approach to analyse on-road random driving conditions. heavy-duty vehicle moving average remote monitoring work-based window method Environmental sciences Yu Quanshun verfasserin aut Ren Shuojin verfasserin aut Wang Tao verfasserin aut Shao Pengfei verfasserin aut Yang Jianglong verfasserin aut Shi Fulu verfasserin aut Li Tengteng verfasserin aut Zhang Chao verfasserin aut In E3S Web of Conferences EDP Sciences, 2013 438, p 01003(2023) (DE-627)778372081 (DE-600)2755680-3 22671242 nnns volume:438, p 01003 year:2023 https://doi.org/10.1051/e3sconf/202343801003 kostenfrei https://doaj.org/article/4884690c21194bd5950728b1afc6cb7c kostenfrei https://www.e3s-conferences.org/articles/e3sconf/pdf/2023/75/e3sconf_apee2023_01003.pdf kostenfrei https://doaj.org/toc/2267-1242 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 438, p 01003 2023 |
language |
English French |
source |
In E3S Web of Conferences 438, p 01003(2023) volume:438, p 01003 year:2023 |
sourceStr |
In E3S Web of Conferences 438, p 01003(2023) volume:438, p 01003 year:2023 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
heavy-duty vehicle moving average remote monitoring work-based window method Environmental sciences |
isfreeaccess_bool |
true |
container_title |
E3S Web of Conferences |
authorswithroles_txt_mv |
Guo Dongdong @@aut@@ Yu Quanshun @@aut@@ Ren Shuojin @@aut@@ Wang Tao @@aut@@ Shao Pengfei @@aut@@ Yang Jianglong @@aut@@ Shi Fulu @@aut@@ Li Tengteng @@aut@@ Zhang Chao @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
778372081 |
id |
DOAJ091056756 |
language_de |
englisch franzoesisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ091056756</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413223138.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240412s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1051/e3sconf/202343801003</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ091056756</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4884690c21194bd5950728b1afc6cb7c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">fre</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Guo Dongdong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Heavy-duty vehicle emission characteristics based on the remote-monitoring three-bin moving-average window method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A three-bin moving average window (3B-MAW) model was proposed and compared with the work-based window method (WB-WM) to investigate the on-road emission characteristics of heavy-duty vehicles. The invalid data of remote monitoring were mainly composed of the NOx sensor’s abnormal data and the uploaded data after the engine shutdown. In the 3B-MAW model, each data was attributed to one, two or three bins. The percentage of the three bins were linked to the vehicle’s real driving conditions. In order to gain the emission calculation accuracy and a smaller scale of required data, the value of the four main parameters, i.e., the minimum window number, the window width, the first cut-off and the second cut-off are set around 2 400 s, 300 s, 6% and 20%, respectively. Since the window power is no longer required, the 3B-MAW method is able to capture the low load emission characteristics more effectively, compared to the WB-WM. Therefore, the 3B-MAW method is a more appreciate approach to analyse on-road random driving conditions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">heavy-duty vehicle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">moving average</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">remote monitoring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">work-based window method</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yu Quanshun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ren Shuojin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wang Tao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shao Pengfei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yang Jianglong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shi Fulu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Li Tengteng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhang Chao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">E3S Web of Conferences</subfield><subfield code="d">EDP Sciences, 2013</subfield><subfield code="g">438, p 01003(2023)</subfield><subfield code="w">(DE-627)778372081</subfield><subfield code="w">(DE-600)2755680-3</subfield><subfield code="x">22671242</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:438, p 01003</subfield><subfield code="g">year:2023</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1051/e3sconf/202343801003</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4884690c21194bd5950728b1afc6cb7c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.e3s-conferences.org/articles/e3sconf/pdf/2023/75/e3sconf_apee2023_01003.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2267-1242</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">438, p 01003</subfield><subfield code="j">2023</subfield></datafield></record></collection>
|
callnumber-first |
G - Geography, Anthropology, Recreation |
author |
Guo Dongdong |
spellingShingle |
Guo Dongdong misc GE1-350 misc heavy-duty vehicle misc moving average misc remote monitoring misc work-based window method misc Environmental sciences Heavy-duty vehicle emission characteristics based on the remote-monitoring three-bin moving-average window method |
authorStr |
Guo Dongdong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)778372081 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
GE1-350 |
illustrated |
Not Illustrated |
issn |
22671242 |
topic_title |
GE1-350 Heavy-duty vehicle emission characteristics based on the remote-monitoring three-bin moving-average window method heavy-duty vehicle moving average remote monitoring work-based window method |
topic |
misc GE1-350 misc heavy-duty vehicle misc moving average misc remote monitoring misc work-based window method misc Environmental sciences |
topic_unstemmed |
misc GE1-350 misc heavy-duty vehicle misc moving average misc remote monitoring misc work-based window method misc Environmental sciences |
topic_browse |
misc GE1-350 misc heavy-duty vehicle misc moving average misc remote monitoring misc work-based window method misc Environmental sciences |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
E3S Web of Conferences |
hierarchy_parent_id |
778372081 |
hierarchy_top_title |
E3S Web of Conferences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)778372081 (DE-600)2755680-3 |
title |
Heavy-duty vehicle emission characteristics based on the remote-monitoring three-bin moving-average window method |
ctrlnum |
(DE-627)DOAJ091056756 (DE-599)DOAJ4884690c21194bd5950728b1afc6cb7c |
title_full |
Heavy-duty vehicle emission characteristics based on the remote-monitoring three-bin moving-average window method |
author_sort |
Guo Dongdong |
journal |
E3S Web of Conferences |
journalStr |
E3S Web of Conferences |
callnumber-first-code |
G |
lang_code |
eng fre |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Guo Dongdong Yu Quanshun Ren Shuojin Wang Tao Shao Pengfei Yang Jianglong Shi Fulu Li Tengteng Zhang Chao |
container_volume |
438, p 01003 |
class |
GE1-350 |
format_se |
Elektronische Aufsätze |
author-letter |
Guo Dongdong |
doi_str_mv |
10.1051/e3sconf/202343801003 |
author2-role |
verfasserin |
title_sort |
heavy-duty vehicle emission characteristics based on the remote-monitoring three-bin moving-average window method |
callnumber |
GE1-350 |
title_auth |
Heavy-duty vehicle emission characteristics based on the remote-monitoring three-bin moving-average window method |
abstract |
A three-bin moving average window (3B-MAW) model was proposed and compared with the work-based window method (WB-WM) to investigate the on-road emission characteristics of heavy-duty vehicles. The invalid data of remote monitoring were mainly composed of the NOx sensor’s abnormal data and the uploaded data after the engine shutdown. In the 3B-MAW model, each data was attributed to one, two or three bins. The percentage of the three bins were linked to the vehicle’s real driving conditions. In order to gain the emission calculation accuracy and a smaller scale of required data, the value of the four main parameters, i.e., the minimum window number, the window width, the first cut-off and the second cut-off are set around 2 400 s, 300 s, 6% and 20%, respectively. Since the window power is no longer required, the 3B-MAW method is able to capture the low load emission characteristics more effectively, compared to the WB-WM. Therefore, the 3B-MAW method is a more appreciate approach to analyse on-road random driving conditions. |
abstractGer |
A three-bin moving average window (3B-MAW) model was proposed and compared with the work-based window method (WB-WM) to investigate the on-road emission characteristics of heavy-duty vehicles. The invalid data of remote monitoring were mainly composed of the NOx sensor’s abnormal data and the uploaded data after the engine shutdown. In the 3B-MAW model, each data was attributed to one, two or three bins. The percentage of the three bins were linked to the vehicle’s real driving conditions. In order to gain the emission calculation accuracy and a smaller scale of required data, the value of the four main parameters, i.e., the minimum window number, the window width, the first cut-off and the second cut-off are set around 2 400 s, 300 s, 6% and 20%, respectively. Since the window power is no longer required, the 3B-MAW method is able to capture the low load emission characteristics more effectively, compared to the WB-WM. Therefore, the 3B-MAW method is a more appreciate approach to analyse on-road random driving conditions. |
abstract_unstemmed |
A three-bin moving average window (3B-MAW) model was proposed and compared with the work-based window method (WB-WM) to investigate the on-road emission characteristics of heavy-duty vehicles. The invalid data of remote monitoring were mainly composed of the NOx sensor’s abnormal data and the uploaded data after the engine shutdown. In the 3B-MAW model, each data was attributed to one, two or three bins. The percentage of the three bins were linked to the vehicle’s real driving conditions. In order to gain the emission calculation accuracy and a smaller scale of required data, the value of the four main parameters, i.e., the minimum window number, the window width, the first cut-off and the second cut-off are set around 2 400 s, 300 s, 6% and 20%, respectively. Since the window power is no longer required, the 3B-MAW method is able to capture the low load emission characteristics more effectively, compared to the WB-WM. Therefore, the 3B-MAW method is a more appreciate approach to analyse on-road random driving conditions. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Heavy-duty vehicle emission characteristics based on the remote-monitoring three-bin moving-average window method |
url |
https://doi.org/10.1051/e3sconf/202343801003 https://doaj.org/article/4884690c21194bd5950728b1afc6cb7c https://www.e3s-conferences.org/articles/e3sconf/pdf/2023/75/e3sconf_apee2023_01003.pdf https://doaj.org/toc/2267-1242 |
remote_bool |
true |
author2 |
Yu Quanshun Ren Shuojin Wang Tao Shao Pengfei Yang Jianglong Shi Fulu Li Tengteng Zhang Chao |
author2Str |
Yu Quanshun Ren Shuojin Wang Tao Shao Pengfei Yang Jianglong Shi Fulu Li Tengteng Zhang Chao |
ppnlink |
778372081 |
callnumber-subject |
GE - Environmental Sciences |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1051/e3sconf/202343801003 |
callnumber-a |
GE1-350 |
up_date |
2024-07-03T18:10:37.150Z |
_version_ |
1803582425951895552 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ091056756</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413223138.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240412s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1051/e3sconf/202343801003</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ091056756</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4884690c21194bd5950728b1afc6cb7c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">fre</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Guo Dongdong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Heavy-duty vehicle emission characteristics based on the remote-monitoring three-bin moving-average window method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A three-bin moving average window (3B-MAW) model was proposed and compared with the work-based window method (WB-WM) to investigate the on-road emission characteristics of heavy-duty vehicles. The invalid data of remote monitoring were mainly composed of the NOx sensor’s abnormal data and the uploaded data after the engine shutdown. In the 3B-MAW model, each data was attributed to one, two or three bins. The percentage of the three bins were linked to the vehicle’s real driving conditions. In order to gain the emission calculation accuracy and a smaller scale of required data, the value of the four main parameters, i.e., the minimum window number, the window width, the first cut-off and the second cut-off are set around 2 400 s, 300 s, 6% and 20%, respectively. Since the window power is no longer required, the 3B-MAW method is able to capture the low load emission characteristics more effectively, compared to the WB-WM. Therefore, the 3B-MAW method is a more appreciate approach to analyse on-road random driving conditions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">heavy-duty vehicle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">moving average</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">remote monitoring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">work-based window method</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yu Quanshun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ren Shuojin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wang Tao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shao Pengfei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yang Jianglong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shi Fulu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Li Tengteng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhang Chao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">E3S Web of Conferences</subfield><subfield code="d">EDP Sciences, 2013</subfield><subfield code="g">438, p 01003(2023)</subfield><subfield code="w">(DE-627)778372081</subfield><subfield code="w">(DE-600)2755680-3</subfield><subfield code="x">22671242</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:438, p 01003</subfield><subfield code="g">year:2023</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1051/e3sconf/202343801003</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4884690c21194bd5950728b1afc6cb7c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.e3s-conferences.org/articles/e3sconf/pdf/2023/75/e3sconf_apee2023_01003.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2267-1242</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">438, p 01003</subfield><subfield code="j">2023</subfield></datafield></record></collection>
|
score |
7.4016123 |