Relation between Latitude-dependent Sunspot Data and Near-Earth Solar Wind Speed
Solar wind is important for the space environment between the Sun and the Earth and varies with the sunspot cycle, which is influenced by solar internal dynamics. We study the impact of latitude-dependent sunspot data on solar wind speed using the Granger causality test method and a machine-learning...
Ausführliche Beschreibung
Autor*in: |
Qirong Jiao [verfasserIn] Wenlong Liu [verfasserIn] Dianjun Zhang [verfasserIn] Jinbin Cao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: The Astrophysical Journal - IOP Publishing, 2022, 958(2023), 1, p 70 |
---|---|
Übergeordnetes Werk: |
volume:958 ; year:2023 ; number:1, p 70 |
Links: |
---|
DOI / URN: |
10.3847/1538-4357/acfc21 |
---|
Katalog-ID: |
DOAJ091074010 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ091074010 | ||
003 | DE-627 | ||
005 | 20240413073004.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240412s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3847/1538-4357/acfc21 |2 doi | |
035 | |a (DE-627)DOAJ091074010 | ||
035 | |a (DE-599)DOAJ46170204a8fa4c8cb0069bb2db5d9ef1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QB460-466 | |
100 | 0 | |a Qirong Jiao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Relation between Latitude-dependent Sunspot Data and Near-Earth Solar Wind Speed |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Solar wind is important for the space environment between the Sun and the Earth and varies with the sunspot cycle, which is influenced by solar internal dynamics. We study the impact of latitude-dependent sunspot data on solar wind speed using the Granger causality test method and a machine-learning prediction approach. The results show that the low-latitude sunspot number has a larger effect on the solar wind speed. The time delay between the annual average solar wind speed and sunspot number decreases as the latitude range decreases. A machine-learning model is developed for the prediction of solar wind speed considering latitude and time effects. It is found that the model performs differently with latitude-dependent sunspot data. It is revealed that the timescale of the solar wind speed is more strongly influenced by low-latitude sunspots and that sunspot data have a greater impact on the 30 day average solar wind speed than on a daily basis. With the addition of sunspot data below 7.°2 latitude, the prediction of the daily and 30 day averages is improved by 0.23% and 12%, respectively. The best correlation coefficient is 0.787 for the daily solar wind prediction model. | ||
650 | 4 | |a Space weather | |
653 | 0 | |a Astrophysics | |
700 | 0 | |a Wenlong Liu |e verfasserin |4 aut | |
700 | 0 | |a Dianjun Zhang |e verfasserin |4 aut | |
700 | 0 | |a Jinbin Cao |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t The Astrophysical Journal |d IOP Publishing, 2022 |g 958(2023), 1, p 70 |w (DE-627)269019219 |w (DE-600)1473835-1 |x 15384357 |7 nnns |
773 | 1 | 8 | |g volume:958 |g year:2023 |g number:1, p 70 |
856 | 4 | 0 | |u https://doi.org/10.3847/1538-4357/acfc21 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/46170204a8fa4c8cb0069bb2db5d9ef1 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.3847/1538-4357/acfc21 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1538-4357 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 958 |j 2023 |e 1, p 70 |
author_variant |
q j qj w l wl d z dz j c jc |
---|---|
matchkey_str |
article:15384357:2023----::eainewelttddpnetusodtader |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QB |
publishDate |
2023 |
allfields |
10.3847/1538-4357/acfc21 doi (DE-627)DOAJ091074010 (DE-599)DOAJ46170204a8fa4c8cb0069bb2db5d9ef1 DE-627 ger DE-627 rakwb eng QB460-466 Qirong Jiao verfasserin aut Relation between Latitude-dependent Sunspot Data and Near-Earth Solar Wind Speed 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Solar wind is important for the space environment between the Sun and the Earth and varies with the sunspot cycle, which is influenced by solar internal dynamics. We study the impact of latitude-dependent sunspot data on solar wind speed using the Granger causality test method and a machine-learning prediction approach. The results show that the low-latitude sunspot number has a larger effect on the solar wind speed. The time delay between the annual average solar wind speed and sunspot number decreases as the latitude range decreases. A machine-learning model is developed for the prediction of solar wind speed considering latitude and time effects. It is found that the model performs differently with latitude-dependent sunspot data. It is revealed that the timescale of the solar wind speed is more strongly influenced by low-latitude sunspots and that sunspot data have a greater impact on the 30 day average solar wind speed than on a daily basis. With the addition of sunspot data below 7.°2 latitude, the prediction of the daily and 30 day averages is improved by 0.23% and 12%, respectively. The best correlation coefficient is 0.787 for the daily solar wind prediction model. Space weather Astrophysics Wenlong Liu verfasserin aut Dianjun Zhang verfasserin aut Jinbin Cao verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 958(2023), 1, p 70 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:958 year:2023 number:1, p 70 https://doi.org/10.3847/1538-4357/acfc21 kostenfrei https://doaj.org/article/46170204a8fa4c8cb0069bb2db5d9ef1 kostenfrei https://doi.org/10.3847/1538-4357/acfc21 kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 958 2023 1, p 70 |
spelling |
10.3847/1538-4357/acfc21 doi (DE-627)DOAJ091074010 (DE-599)DOAJ46170204a8fa4c8cb0069bb2db5d9ef1 DE-627 ger DE-627 rakwb eng QB460-466 Qirong Jiao verfasserin aut Relation between Latitude-dependent Sunspot Data and Near-Earth Solar Wind Speed 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Solar wind is important for the space environment between the Sun and the Earth and varies with the sunspot cycle, which is influenced by solar internal dynamics. We study the impact of latitude-dependent sunspot data on solar wind speed using the Granger causality test method and a machine-learning prediction approach. The results show that the low-latitude sunspot number has a larger effect on the solar wind speed. The time delay between the annual average solar wind speed and sunspot number decreases as the latitude range decreases. A machine-learning model is developed for the prediction of solar wind speed considering latitude and time effects. It is found that the model performs differently with latitude-dependent sunspot data. It is revealed that the timescale of the solar wind speed is more strongly influenced by low-latitude sunspots and that sunspot data have a greater impact on the 30 day average solar wind speed than on a daily basis. With the addition of sunspot data below 7.°2 latitude, the prediction of the daily and 30 day averages is improved by 0.23% and 12%, respectively. The best correlation coefficient is 0.787 for the daily solar wind prediction model. Space weather Astrophysics Wenlong Liu verfasserin aut Dianjun Zhang verfasserin aut Jinbin Cao verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 958(2023), 1, p 70 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:958 year:2023 number:1, p 70 https://doi.org/10.3847/1538-4357/acfc21 kostenfrei https://doaj.org/article/46170204a8fa4c8cb0069bb2db5d9ef1 kostenfrei https://doi.org/10.3847/1538-4357/acfc21 kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 958 2023 1, p 70 |
allfields_unstemmed |
10.3847/1538-4357/acfc21 doi (DE-627)DOAJ091074010 (DE-599)DOAJ46170204a8fa4c8cb0069bb2db5d9ef1 DE-627 ger DE-627 rakwb eng QB460-466 Qirong Jiao verfasserin aut Relation between Latitude-dependent Sunspot Data and Near-Earth Solar Wind Speed 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Solar wind is important for the space environment between the Sun and the Earth and varies with the sunspot cycle, which is influenced by solar internal dynamics. We study the impact of latitude-dependent sunspot data on solar wind speed using the Granger causality test method and a machine-learning prediction approach. The results show that the low-latitude sunspot number has a larger effect on the solar wind speed. The time delay between the annual average solar wind speed and sunspot number decreases as the latitude range decreases. A machine-learning model is developed for the prediction of solar wind speed considering latitude and time effects. It is found that the model performs differently with latitude-dependent sunspot data. It is revealed that the timescale of the solar wind speed is more strongly influenced by low-latitude sunspots and that sunspot data have a greater impact on the 30 day average solar wind speed than on a daily basis. With the addition of sunspot data below 7.°2 latitude, the prediction of the daily and 30 day averages is improved by 0.23% and 12%, respectively. The best correlation coefficient is 0.787 for the daily solar wind prediction model. Space weather Astrophysics Wenlong Liu verfasserin aut Dianjun Zhang verfasserin aut Jinbin Cao verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 958(2023), 1, p 70 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:958 year:2023 number:1, p 70 https://doi.org/10.3847/1538-4357/acfc21 kostenfrei https://doaj.org/article/46170204a8fa4c8cb0069bb2db5d9ef1 kostenfrei https://doi.org/10.3847/1538-4357/acfc21 kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 958 2023 1, p 70 |
allfieldsGer |
10.3847/1538-4357/acfc21 doi (DE-627)DOAJ091074010 (DE-599)DOAJ46170204a8fa4c8cb0069bb2db5d9ef1 DE-627 ger DE-627 rakwb eng QB460-466 Qirong Jiao verfasserin aut Relation between Latitude-dependent Sunspot Data and Near-Earth Solar Wind Speed 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Solar wind is important for the space environment between the Sun and the Earth and varies with the sunspot cycle, which is influenced by solar internal dynamics. We study the impact of latitude-dependent sunspot data on solar wind speed using the Granger causality test method and a machine-learning prediction approach. The results show that the low-latitude sunspot number has a larger effect on the solar wind speed. The time delay between the annual average solar wind speed and sunspot number decreases as the latitude range decreases. A machine-learning model is developed for the prediction of solar wind speed considering latitude and time effects. It is found that the model performs differently with latitude-dependent sunspot data. It is revealed that the timescale of the solar wind speed is more strongly influenced by low-latitude sunspots and that sunspot data have a greater impact on the 30 day average solar wind speed than on a daily basis. With the addition of sunspot data below 7.°2 latitude, the prediction of the daily and 30 day averages is improved by 0.23% and 12%, respectively. The best correlation coefficient is 0.787 for the daily solar wind prediction model. Space weather Astrophysics Wenlong Liu verfasserin aut Dianjun Zhang verfasserin aut Jinbin Cao verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 958(2023), 1, p 70 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:958 year:2023 number:1, p 70 https://doi.org/10.3847/1538-4357/acfc21 kostenfrei https://doaj.org/article/46170204a8fa4c8cb0069bb2db5d9ef1 kostenfrei https://doi.org/10.3847/1538-4357/acfc21 kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 958 2023 1, p 70 |
allfieldsSound |
10.3847/1538-4357/acfc21 doi (DE-627)DOAJ091074010 (DE-599)DOAJ46170204a8fa4c8cb0069bb2db5d9ef1 DE-627 ger DE-627 rakwb eng QB460-466 Qirong Jiao verfasserin aut Relation between Latitude-dependent Sunspot Data and Near-Earth Solar Wind Speed 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Solar wind is important for the space environment between the Sun and the Earth and varies with the sunspot cycle, which is influenced by solar internal dynamics. We study the impact of latitude-dependent sunspot data on solar wind speed using the Granger causality test method and a machine-learning prediction approach. The results show that the low-latitude sunspot number has a larger effect on the solar wind speed. The time delay between the annual average solar wind speed and sunspot number decreases as the latitude range decreases. A machine-learning model is developed for the prediction of solar wind speed considering latitude and time effects. It is found that the model performs differently with latitude-dependent sunspot data. It is revealed that the timescale of the solar wind speed is more strongly influenced by low-latitude sunspots and that sunspot data have a greater impact on the 30 day average solar wind speed than on a daily basis. With the addition of sunspot data below 7.°2 latitude, the prediction of the daily and 30 day averages is improved by 0.23% and 12%, respectively. The best correlation coefficient is 0.787 for the daily solar wind prediction model. Space weather Astrophysics Wenlong Liu verfasserin aut Dianjun Zhang verfasserin aut Jinbin Cao verfasserin aut In The Astrophysical Journal IOP Publishing, 2022 958(2023), 1, p 70 (DE-627)269019219 (DE-600)1473835-1 15384357 nnns volume:958 year:2023 number:1, p 70 https://doi.org/10.3847/1538-4357/acfc21 kostenfrei https://doaj.org/article/46170204a8fa4c8cb0069bb2db5d9ef1 kostenfrei https://doi.org/10.3847/1538-4357/acfc21 kostenfrei https://doaj.org/toc/1538-4357 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 958 2023 1, p 70 |
language |
English |
source |
In The Astrophysical Journal 958(2023), 1, p 70 volume:958 year:2023 number:1, p 70 |
sourceStr |
In The Astrophysical Journal 958(2023), 1, p 70 volume:958 year:2023 number:1, p 70 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Space weather Astrophysics |
isfreeaccess_bool |
true |
container_title |
The Astrophysical Journal |
authorswithroles_txt_mv |
Qirong Jiao @@aut@@ Wenlong Liu @@aut@@ Dianjun Zhang @@aut@@ Jinbin Cao @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
269019219 |
id |
DOAJ091074010 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ091074010</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413073004.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240412s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3847/1538-4357/acfc21</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ091074010</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ46170204a8fa4c8cb0069bb2db5d9ef1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB460-466</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Qirong Jiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Relation between Latitude-dependent Sunspot Data and Near-Earth Solar Wind Speed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Solar wind is important for the space environment between the Sun and the Earth and varies with the sunspot cycle, which is influenced by solar internal dynamics. We study the impact of latitude-dependent sunspot data on solar wind speed using the Granger causality test method and a machine-learning prediction approach. The results show that the low-latitude sunspot number has a larger effect on the solar wind speed. The time delay between the annual average solar wind speed and sunspot number decreases as the latitude range decreases. A machine-learning model is developed for the prediction of solar wind speed considering latitude and time effects. It is found that the model performs differently with latitude-dependent sunspot data. It is revealed that the timescale of the solar wind speed is more strongly influenced by low-latitude sunspots and that sunspot data have a greater impact on the 30 day average solar wind speed than on a daily basis. With the addition of sunspot data below 7.°2 latitude, the prediction of the daily and 30 day averages is improved by 0.23% and 12%, respectively. The best correlation coefficient is 0.787 for the daily solar wind prediction model.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Space weather</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenlong Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dianjun Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinbin Cao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">The Astrophysical Journal</subfield><subfield code="d">IOP Publishing, 2022</subfield><subfield code="g">958(2023), 1, p 70</subfield><subfield code="w">(DE-627)269019219</subfield><subfield code="w">(DE-600)1473835-1</subfield><subfield code="x">15384357</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:958</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1, p 70</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/acfc21</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/46170204a8fa4c8cb0069bb2db5d9ef1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/acfc21</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1538-4357</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">958</subfield><subfield code="j">2023</subfield><subfield code="e">1, p 70</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Qirong Jiao |
spellingShingle |
Qirong Jiao misc QB460-466 misc Space weather misc Astrophysics Relation between Latitude-dependent Sunspot Data and Near-Earth Solar Wind Speed |
authorStr |
Qirong Jiao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)269019219 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QB460-466 |
illustrated |
Not Illustrated |
issn |
15384357 |
topic_title |
QB460-466 Relation between Latitude-dependent Sunspot Data and Near-Earth Solar Wind Speed Space weather |
topic |
misc QB460-466 misc Space weather misc Astrophysics |
topic_unstemmed |
misc QB460-466 misc Space weather misc Astrophysics |
topic_browse |
misc QB460-466 misc Space weather misc Astrophysics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The Astrophysical Journal |
hierarchy_parent_id |
269019219 |
hierarchy_top_title |
The Astrophysical Journal |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)269019219 (DE-600)1473835-1 |
title |
Relation between Latitude-dependent Sunspot Data and Near-Earth Solar Wind Speed |
ctrlnum |
(DE-627)DOAJ091074010 (DE-599)DOAJ46170204a8fa4c8cb0069bb2db5d9ef1 |
title_full |
Relation between Latitude-dependent Sunspot Data and Near-Earth Solar Wind Speed |
author_sort |
Qirong Jiao |
journal |
The Astrophysical Journal |
journalStr |
The Astrophysical Journal |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Qirong Jiao Wenlong Liu Dianjun Zhang Jinbin Cao |
container_volume |
958 |
class |
QB460-466 |
format_se |
Elektronische Aufsätze |
author-letter |
Qirong Jiao |
doi_str_mv |
10.3847/1538-4357/acfc21 |
author2-role |
verfasserin |
title_sort |
relation between latitude-dependent sunspot data and near-earth solar wind speed |
callnumber |
QB460-466 |
title_auth |
Relation between Latitude-dependent Sunspot Data and Near-Earth Solar Wind Speed |
abstract |
Solar wind is important for the space environment between the Sun and the Earth and varies with the sunspot cycle, which is influenced by solar internal dynamics. We study the impact of latitude-dependent sunspot data on solar wind speed using the Granger causality test method and a machine-learning prediction approach. The results show that the low-latitude sunspot number has a larger effect on the solar wind speed. The time delay between the annual average solar wind speed and sunspot number decreases as the latitude range decreases. A machine-learning model is developed for the prediction of solar wind speed considering latitude and time effects. It is found that the model performs differently with latitude-dependent sunspot data. It is revealed that the timescale of the solar wind speed is more strongly influenced by low-latitude sunspots and that sunspot data have a greater impact on the 30 day average solar wind speed than on a daily basis. With the addition of sunspot data below 7.°2 latitude, the prediction of the daily and 30 day averages is improved by 0.23% and 12%, respectively. The best correlation coefficient is 0.787 for the daily solar wind prediction model. |
abstractGer |
Solar wind is important for the space environment between the Sun and the Earth and varies with the sunspot cycle, which is influenced by solar internal dynamics. We study the impact of latitude-dependent sunspot data on solar wind speed using the Granger causality test method and a machine-learning prediction approach. The results show that the low-latitude sunspot number has a larger effect on the solar wind speed. The time delay between the annual average solar wind speed and sunspot number decreases as the latitude range decreases. A machine-learning model is developed for the prediction of solar wind speed considering latitude and time effects. It is found that the model performs differently with latitude-dependent sunspot data. It is revealed that the timescale of the solar wind speed is more strongly influenced by low-latitude sunspots and that sunspot data have a greater impact on the 30 day average solar wind speed than on a daily basis. With the addition of sunspot data below 7.°2 latitude, the prediction of the daily and 30 day averages is improved by 0.23% and 12%, respectively. The best correlation coefficient is 0.787 for the daily solar wind prediction model. |
abstract_unstemmed |
Solar wind is important for the space environment between the Sun and the Earth and varies with the sunspot cycle, which is influenced by solar internal dynamics. We study the impact of latitude-dependent sunspot data on solar wind speed using the Granger causality test method and a machine-learning prediction approach. The results show that the low-latitude sunspot number has a larger effect on the solar wind speed. The time delay between the annual average solar wind speed and sunspot number decreases as the latitude range decreases. A machine-learning model is developed for the prediction of solar wind speed considering latitude and time effects. It is found that the model performs differently with latitude-dependent sunspot data. It is revealed that the timescale of the solar wind speed is more strongly influenced by low-latitude sunspots and that sunspot data have a greater impact on the 30 day average solar wind speed than on a daily basis. With the addition of sunspot data below 7.°2 latitude, the prediction of the daily and 30 day averages is improved by 0.23% and 12%, respectively. The best correlation coefficient is 0.787 for the daily solar wind prediction model. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1, p 70 |
title_short |
Relation between Latitude-dependent Sunspot Data and Near-Earth Solar Wind Speed |
url |
https://doi.org/10.3847/1538-4357/acfc21 https://doaj.org/article/46170204a8fa4c8cb0069bb2db5d9ef1 https://doaj.org/toc/1538-4357 |
remote_bool |
true |
author2 |
Wenlong Liu Dianjun Zhang Jinbin Cao |
author2Str |
Wenlong Liu Dianjun Zhang Jinbin Cao |
ppnlink |
269019219 |
callnumber-subject |
QB - Astronomy |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3847/1538-4357/acfc21 |
callnumber-a |
QB460-466 |
up_date |
2024-07-03T18:17:02.903Z |
_version_ |
1803582830443233280 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ091074010</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413073004.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240412s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3847/1538-4357/acfc21</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ091074010</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ46170204a8fa4c8cb0069bb2db5d9ef1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB460-466</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Qirong Jiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Relation between Latitude-dependent Sunspot Data and Near-Earth Solar Wind Speed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Solar wind is important for the space environment between the Sun and the Earth and varies with the sunspot cycle, which is influenced by solar internal dynamics. We study the impact of latitude-dependent sunspot data on solar wind speed using the Granger causality test method and a machine-learning prediction approach. The results show that the low-latitude sunspot number has a larger effect on the solar wind speed. The time delay between the annual average solar wind speed and sunspot number decreases as the latitude range decreases. A machine-learning model is developed for the prediction of solar wind speed considering latitude and time effects. It is found that the model performs differently with latitude-dependent sunspot data. It is revealed that the timescale of the solar wind speed is more strongly influenced by low-latitude sunspots and that sunspot data have a greater impact on the 30 day average solar wind speed than on a daily basis. With the addition of sunspot data below 7.°2 latitude, the prediction of the daily and 30 day averages is improved by 0.23% and 12%, respectively. The best correlation coefficient is 0.787 for the daily solar wind prediction model.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Space weather</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenlong Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dianjun Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinbin Cao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">The Astrophysical Journal</subfield><subfield code="d">IOP Publishing, 2022</subfield><subfield code="g">958(2023), 1, p 70</subfield><subfield code="w">(DE-627)269019219</subfield><subfield code="w">(DE-600)1473835-1</subfield><subfield code="x">15384357</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:958</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1, p 70</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/acfc21</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/46170204a8fa4c8cb0069bb2db5d9ef1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3847/1538-4357/acfc21</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1538-4357</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">958</subfield><subfield code="j">2023</subfield><subfield code="e">1, p 70</subfield></datafield></record></collection>
|
score |
7.402112 |